7,206 research outputs found

    Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 1: System design, performance, and cost analysis

    Get PDF
    The technical and economical feasibility of using the 12 GHz band for broadcasting from satellites were examined. Among the assigned frequency bands for broadcast satellites, the 12 GHz band system offers the most channels. It also has the least interference on and from the terrestrial communication links. The system design and analysis are carried out on the basis of a decision analysis model. Technical difficulties in achieving low-cost 12 GHz ground receivers are solved by making use of a die cast aluminum packaging, a hybrid integrated circuit mixer, a cavity stabilized Gunn oscillator and other state-of-the-art microwave technologies for the receiver front-end. A working model was designed and tested, which used frequency modulation. A final design for the 2.6 GHz system ground receiver is also presented. The cost of the ground-terminal was analyzed and minimized for a given figure-of-merit (a ratio of receiving antenna gain to receiver system noise temperature). The results were used to analyze the performance and cost of the whole satellite system

    Sharing criteria and performance standards for the 11.7-12.2 GHz band in region 2

    Get PDF
    Possible criteria for sharing between the broadcasting-satellite and the fixed-satellite services are considered for each of several parameters in three categories: system, space station, and earth station. Criteria for sharing between the two satellite services and the three terrestrial services to which the 12-GHz band is allocated are discussed separately, first for the case of the fixed and mobile services and then for the broadcasting service

    Sharing the 620-790 MHz band allocated to terrestrial television with an audio-bandwidth social service satellite system

    Get PDF
    A study was carried out to identify the optimum uplink and downlink frequencies for audio-bandwidth channels for use by a satellite system distributing social services. The study considered functional-user-need models for five types of social services and identified a general baseline system that is appropriate for most of them. Technical aspects and costs of this system and of the frequency bands that it might use were reviewed, leading to the identification of the 620-790 MHz band as a perferred candidate for both uplink and downlink transmissions for nonmobile applications. The study also led to some ideas as to how to configure the satellite system

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Design of a 12-GHz multicarrier earth-terminal for satellite-CATV interconnection

    Get PDF
    The design and development of the front-end for a multi-carrier system that allows multiplex signal transmission from satellite-borne transponders is described. Detailed systems analyses provided down-converter specifications. The 12 GHz carrier down-converter uses waveguide, coaxial, and microstrip transmission line elements in its implementation. Mixing is accomplished in a single-ended coaxial mixer employing a field-replacable cartridge style diode

    Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 2: Antenna system and interference

    Get PDF
    The antenna characteristics are analyzed of a low cost mass-producible ground station to be used in broadcast satellite systems. It is found that a prime focus antenna is sufficient for a low-cost but not a low noise system. For the antenna feed waveguide systems are the best choice for the 12 GHz band, while printed-element systems are recommended for the 2.6 GHz band. Zoned reflectors are analyzed and appear to be attractive from the standpoint of cost. However, these reflectors suffer a gain reduction of about one db and a possible increase in sidelobe levels. The off-axis gain of a non-auto-tracking station can be optimized by establishing a special illumination function at the reflector aperture. A step-feed tracking system is proposed to provide automatic procedures for searching for peak signal from a geostationary satellite. This system uses integrated circuitry and therefore results in cost saving under mass production. It is estimated that a complete step-track system would cost only $512 for a production quantity of 1000 units per year

    Radio Frequency Interference Impact Assessment on Global Navigation Satellite Systems

    Get PDF
    The Institute for the Protection and Security of the Citizen of the EC Joint Research Centre (IPSC-JRC) has been mandated to perform a study on the Radio Frequency (RF) threat against telecommunications and ICT control systems. This study is divided into two parts. The rst part concerns the assessment of high energy radio frequency (HERF) threats, where the focus is on the generation of electromagnetic pulses (EMP), the development of corresponding devices and the possible impact on ICT and power distribution systems. The second part of the study concerns radio frequency interference (RFI) with regard to global navigation satellite systems (GNSS). This document contributes to the second part and contains a detailed literature study disclosing the weaknesses of GNSS systems. Whereas the HERF analysis only concerns intentional interference issues, this study on GNSS also takes into account unintentional interference, enlarging the spectrum of plausible interference scenarios.JRC.DG.G.6-Security technology assessmen

    Antennas and Front-End in GNSS

    Get PDF
    Antenna and front-end play a key role in global navigation satellite system (GNSS) receivers where multi-frequency and multi-constellation services are used simultaneously to produce high-precision position, navigation, and timing information. Being the first element on the receiver system, specifications on the antenna for multi-constellation GNSS applications can be challenging. Especially, integration of the antenna into the target platform, either mobile or stationary, may severely affect antenna performance. This is usually an issue for small-size antennas where measured stand-alone antenna performance in ideal conditions is usually not descriptive of actual performance on the platform. Furthermore, carrier phase tracking has become popular among algorithm developers to obtain high accuracy and anti-spoofing at the same time which demand minimal phase centre variation of the antenna within the intended GNSS band. Spoofing and jamming of GNSS receivers is a growing concern especially for aerial vehicles with ever-increasing applications of drones. These requirements demand different characteristics on the antenna and front-end than traditional applications. One of the most utilized forms of GNSS antenna is ceramic patch, due to its low height, low cost, and relatively good narrow band performance. Simulations of this particular antenna in terms of axial ratio and impedance bandwidths, axial ratio variation over elevation, and half-power beam width are carried out and discussed with comparison to its counterparts. Another critical part of the receiver is its front-end where huge amount of signal amplification with minimal distortion takes place. Long integration times (>1 ms) in GNSS signal processing also puts severe requirements on the software and temperature-compensated crystal oscillator. For mass production, the front-end should be implemented in the form of an integrated circuit. Front-end architectures from traditional superheterodyne to zero/low-intermediate frequency configurations are presented. Advantages and disadvantages of each configuration are outlined in view of multi-band and multi-standard GNSS receivers
    corecore