2,104 research outputs found

    Microarchitectural techniques to reduce energy consumption in the memory hierarchy

    Get PDF
    This thesis states that dynamic profiling of the memory reference stream can improve energy and performance in the memory hierarchy. The research presented in this theses provides multiple instances of using lightweight hardware structures to profile the memory reference stream. The objective of this research is to develop microarchitectural techniques to reduce energy consumption at different levels of the memory hierarchy. Several simple and implementable techniques were developed as a part of this research. One of the techniques identifies and eliminates redundant refresh operations in DRAM and reduces DRAM refresh power. Another, reduces leakage energy in L2 and higher level caches for multiprocessor systems. The emphasis of this research has been to develop several techniques of obtaining energy savings in caches using a simple hardware structure called the counting Bloom filter (CBF). CBFs have been used to predict L2 cache misses and obtain energy savings by not accessing the L2 cache on a predicted miss. A simple extension of this technique allows CBFs to do way-estimation of set associative caches to reduce energy in cache lookups. Another technique using CBFs track addresses in a Virtual Cache and reduce false synonym lookups. Finally this thesis presents a technique to reduce dynamic power consumption in level one caches using significance compression. The significant energy and performance improvements demonstrated by the techniques presented in this thesis suggest that this work will be of great value for designing memory hierarchies of future computing platforms.Ph.D.Committee Chair: Lee, Hsien-Hsin S.; Committee Member: Cahtterjee,Abhijit; Committee Member: Mukhopadhyay, Saibal; Committee Member: Pande, Santosh; Committee Member: Yalamanchili, Sudhaka

    Enabling multi-threaded execution and improved memory access in fine-grain near-data processing systems

    Get PDF
    Orientador: Marco Antonio Zanata AlvesTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 08/07/2022Inclui referênciasÁrea de concentração: Ciência da ComputaçãoResumo: Aplicações que lidam com grandes quantidades de dados são cada vez mais populares. No entanto, as arquiteturas tradicionais centradas em computação estão mal equipadas para lidar com essas aplicatções, pois elas causam muito movimento de dados no sistema devido aos acessos de dados quase constantes. Isso leva a um processamento ineficiente, com longos tempos de execução e alto consumo de energia. Os problemas causados por essa disparidade são amplamente conhecidos como memory wall. A partir do final da década de 1990, a ideia de mover parte da computação para perto da memória, quando benéfico, começou a ser considerada. Este conceito tornou-se conhecido como processamento próximo à memória e ganhou mais atenção no início da década de 2010 com o advento da tecnologia de Through-Silicon Via (TSV), que permitiu a integração direta das lógicas de processamento e armazenamento de dados no mesmo chip. Memórias 3D, que integram verticalmente armazenamento e lógica, tornaram-se comercialmente disponíveis desde então e pesquisadores da área de arquitetura de computadores reagiram propondo muitos projetos que colocam elementos de processamento na camada lógica normalmente encontrada nesses dispositivos. Esta tese propõe a Vector-In-Memory Architecture (VIMA), uma arquitetura de processamento próximo à memória baseada em memória 3D que implementa o processamento na memória colocando unidades funcionais na camada lógica desses dispositivos. Nosso projeto usa unidades funcionais vetoriais e uma memória cache para armazenamento dedicado e avança o estado da arte implementando exceções precisas e permitindo multi-threading próximo aos dadosna memória. Simulamos a execução de várias aplicações orientadas a dados em nossa arquitetura e, nossos resultados mostram que o design proposto, que utiliza 1 core e a VIMA, é capaz de superar uma arquitetura tradicional moderna de 16 cores em pelo menos 2× ao lidar com grandes tamanhos de conjuntos de dados. Além disso, essa aceleração no tempo de execução é alcançada enquanto se reduz o consumo de energia em pelo menos 75% de acordo com nossas estimativas. Em comparação com um trabalho similar do estado da arte, a VIMA é capaz de reduzir o tempo de execução de aplicações que fazem streaming de dados em pelo menos 32%.Abstract: Applications that deal with large amounts of data are increasingly popular. However, traditional computation-centric architectures are ill-equipped to handle such applications as they cause much data movement across the system due to their near-constant data accesses. This leads to inefficient processing, with long execution times and high energy consumption. Issues caused by this disparity are widely known as the memory wall. Starting in the late 1990s, the idea of moving portions of the computations close to the memory when beneficial began to be considered. This concept has now become known as Near-Data Processing (NDP) and gained more attention in the early 2010s with the advent of TSV technology, which enabled straight-forward integration of processing logic and data storage in the same chip. 3D-stacked memories, which vertically integrate storage and logic, have become commercially available ever since and computer architecture researchers have reacted by proposing many designs that place processing elements on the logic layer typically found in those devices. This thesis proposes VIMA, a 3D-stacked memory-based NDP architecture that implements processing in the memory by placing Functional Units (FUs) on the logic layer of those devices. Our design uses a vector functional units and a cache memory for dedicated storage and advances the state-of-the-art by implementing near-data precise exceptions and enabling near-data multi-threading. We simulate execution of several common data-driven applications on our architecture and, out results show that the proposed design, with only a single processing core and VIMA, is able to outperform a modern 16-thread by at least 2× when dealing with large dataset sizes. Moreover, such a speedup in performance is achieved while reducing energy consumption by at least 75% according to our estimates. In comparison to its most closely related state-of-the-art work, VIMA is able to reduce the execution time of data-streaming applications by at least 32%

    Towards Lifelong Reasoning with Sparse and Compressive Memory Systems

    Get PDF
    Humans have a remarkable ability to remember information over long time horizons. When reading a book, we build up a compressed representation of the past narrative, such as the characters and events that have built up the story so far. We can do this even if they are separated by thousands of words from the current text, or long stretches of time between readings. During our life, we build up and retain memories that tell us where we live, what we have experienced, and who we are. Adding memory to artificial neural networks has been transformative in machine learning, allowing models to extract structure from temporal data, and more accurately model the future. However the capacity for long-range reasoning in current memory-augmented neural networks is considerably limited, in comparison to humans, despite the access to powerful modern computers. This thesis explores two prominent approaches towards scaling artificial memories to lifelong capacity: sparse access and compressive memory structures. With sparse access, the inspection, retrieval, and updating of only a very small subset of pertinent memory is considered. It is found that sparse memory access is beneficial for learning, allowing for improved data-efficiency and improved generalisation. From a computational perspective - sparsity allows scaling to memories with millions of entities on a simple CPU-based machine. It is shown that memory systems that compress the past to a smaller set of representations reduce redundancy and can speed up the learning of rare classes and improve upon classical data-structures in database systems. Compressive memory architectures are also devised for sequence prediction tasks and are observed to significantly increase the state-of-the-art in modelling natural language

    Data sharing in DHT based P2P systems

    Get PDF
    International audienceThe evolution of peer-to-peer (P2P) systems triggered the building of large scale distributed applications. The main application domain is data sharing across a very large number of highly autonomous participants. Building such data sharing systems is particularly challenging because of the "extreme" characteristics of P2P infrastructures: massive distribution, high churn rate, no global control, potentially untrusted participants... This article focuses on declarative querying support, query optimization and data privacy on a major class of P2P systems, that based on Distributed Hash Table (P2P DHT). The usual approaches and the algorithms used by classic distributed systems and databases forproviding data privacy and querying services are not well suited to P2P DHT systems. A considerable amount of work was required to adapt them for the new challenges such systems present. This paper describes the most important solutions found. It also identies important future research trends in data management in P2P DHT systems

    Machine learning algorithms for structured decision making

    Get PDF

    QEYSSat 2.0 -- White Paper on Satellite-based Quantum Communication Missions in Canada

    Full text link
    We present the white paper developed during the QEYSSat 2.0 study, which was undertaken between June 2021 and March 2022. The study objective was to establish a technology road-map for a Canada-wide quantum network enabled by satellites. We survey the state-of-art in quantum communication technologies, identify the main applications and architectures, review the technical readiness levels and technology bottlenecks and identify a future mission scenario. We report the findings of a dedicated one-day workshop that included Canadian stakeholders from government, industry and academia to gather inputs and insights for the applications and technical road-map. We also provide an overview of the Quantum EncrYption and Science Satellite (QEYSSat) mission expected to launch in 2024-2025 and its anticipated outcomes. One of the main outcomes of this study is that developing the main elements for a Canada-wide quantum internet will have the highest level of impact, which includes Canada-wide entanglement distribution and teleportation. We present and analyze a possible future mission ('QEYSSat 2.0') that would enable a long range quantum teleportation across Canada as an important step towards this vision.Comment: 108 pages, 38 figures, white paper to be submitted to CJ
    corecore