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Abstract

Humans have a remarkable ability to remember information over long time hori-

zons. When reading a book, we build up a compressed representation of the past

narrative, such as the characters and events that have built up the story so far.

We can do this even if they are separated by thousands of words from the current

text, or long stretches of time between readings. During our life, we build up and

retain memories that tell us where we live, what we have experienced, and who we

are.

Adding memory to artificial neural networks has been transformative in machine

learning, allowing models to extract structure from temporal data, and more accu-

rately model the future. However the capacity for long-range reasoning in current

memory-augmented neural networks is considerably limited, in comparison to hu-

mans, despite the access to powerful modern computers.

This thesis explores two prominent approaches towards scaling artificial memo-

ries to lifelong capacity: sparse access and compressive memory structures. With

sparse access, the inspection, retrieval, and updating of only a very small sub-

set of pertinent memory is considered. It is found that sparse memory access is

beneficial for learning, allowing for improved data-efficiency and improved general-

2



isation. From a computational perspective — sparsity allows scaling to memories

with millions of entities on a simple CPU-based machine. It is shown that memory

systems that compress the past to a smaller set of representations reduce redun-

dancy and can speed up the learning of rare classes and improve upon classical

data-structures in database systems. Compressive memory architectures are also

devised for sequence prediction tasks and are observed to significantly increase the

state-of-the-art in modelling natural language.
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Impact Statement

This study investigates memory structures for artificial neural networks that can

scale to longer periods of time and larger quantities of data than previously demon-

strated possible. It is demonstrated that neural networks can learn to store and

retrieve salient information over hundreds of thousands of time-steps — an im-

provement of around two orders of magnitude from prior work. This is achieved

using efficient sparse memory access operations and compressive memory data

structures to reduce the computational cost of accessing memory and the amount

of space required to store it.

The long-term goal for this work is to embed these memory structures within a

complex agent, so it can reason over the stream of data it experiences during its

lifetime. This could be a robotic agent which acts in the real world, or a dialogue

agent which can reason over past conversations and auxiliary text context (e.g.

the web).

This study demonstrates that better long-range memory architectures can be

used to improve state-of-the-art performance in question answering (Chapter 3),

database systems (Chapter 5), and the modelling of language and speech (Chapter

4 and 6).
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Chapter 1

Introduction

Memory-augmented artificial neural networks have risen in prominence over recent

years as a general solution to sequence modelling tasks. By writing and attending

to an external memory, neural networks can learn to correlate information across

time and make accurate predictions of the future — from predicting the next word

in a sequence of text, to predicting the early onset of patient deterioration in a

stream of healthcare data.

However the current memory systems incorporated by neural networks are still

relatively limited in contrast to the brain’s memory circuitry. Where a human is

able to read a book and recall relevant pieces of information from its entirety, a

memory-augmented neural network processing text is currently limited to a few

thousand words of context. During day-to-day life, humans enjoy the ability to

recall salient information over a large range of timescales: hours, weeks, years, and

even decades. For artificial intelligence to master the seemingly simple tasks of

daily life: recalling the location of the car keys, the route to work, the names of
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colleagues and the set of outstanding to-do items; it must be able to reason over

memories of comparably large time horizons. We say reason, because an agent

must be able to use its memory as part of a learning process for many downstream

tasks. A distributed computer database may be able to store a lifetime’s worth of

sensory inputs, and it may be performant at recalling specific pieces of information;

however it may be brittle under uncertainty, slow to update existing information,

poor at registering correlations over time, or require a query interface which is

difficult to learn. An agent needs to not only recall information from a wide range

of timescales, but learn to reason over it.

Existing memory-augmented neural networks are powerful temporal learning ma-

chines however they have a limited range of attention for two principal reasons.

Firstly they require a large compute budget per unit of memory: executing queries

requires a linear or quadratic number of floating-point operations (FLOPS) as a

function of memory capacity. Secondly they struggle to compress information over

time at scale, and thus contain a large amount of redundant information. These

points are elaborated on in the next section.

We aim to bring neural networks closer to being able to reason over a lifetime’s

worth of experience. We pursue two general approaches towards this, sparse mem-

ory access and compressed memory representations. The former emphasizes ef-

ficient interaction with memory, the latter emphasizes increased memory capac-

ity and improved reasoning. We develop several novel memory architectures and

continually evaluate them on natural-data tasks such as question answering and

language modelling.

We emphasize scalable memory systems under which we can learn effectively, and
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we provide analysis of the theoretical and empirical run-time performance of these

systems to ensure they are performant. In several well-studied benchmarks, we

obtain state-of-the-art performance across the field with improved memory systems

— adding to the growing set of findings that better memory systems can result in

better temporal reasoning.

1.1 Limitations of Existing Approaches

We remark that one of the greatest drawbacks to current memory systems is their

limited capacity, despite the abundance of computing power that is available in

the present day. We explain why this is the case with a brief history of neural

networks and memory.

Early memory systems in artificial neural networks were formalized as recurrent

neural networks (Rumelhart et al., 1986) which took inspiration from the brain’s

recurrent circuitry. Here, a recurrent feedback of activations (or recurrent ‘state’),

which are manipulated and re-circulated over time-steps, serve as the stored mem-

ory. In the field of machine learning, recurrent neural networks are formalized

as a learnable function approximator which receives the current timestep’s input

alongside the previous recurrent state, and transforms this to an output and an

updated state which will be passed to the next time-step.

Recurrent neural networks, of which the LSTM (Hochreiter and Schmidhuber,

1997) and GRU (Cho et al., 2014) are the most ubiquitous examples, have displayed

a remarkable ability to make effective use of the recurrent connections to store,

manipulate, and recall information (Sutskever et al., 2014). These models contain
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learnable weights to influence how each unit of the recurrent state is updated as

a function of every other unit of the recurrent state and the current input. This

allows the memory to be highly expressive, but it results in the number of trainable

parameters growing quadratically with the size of the recurrent state. This means

the size of the recurrent state, and thus the memory capacity of the model, cannot

be very large. Some attempts to remedy this have included making the recurrent

weight matrix low-rank (Sak et al., 2014; Jozefowicz et al., 2016) or sparse (Narang

et al., 2017), however this has only facilitated up to 2− 4× memory size increase.

A more successful approach is to augment the neural network with an external

memory.

Memory-augmented neural networks allow the network to interact with an exter-

nal memory matrix which can grow in capacity without requiring any additional

network parameters. This is done by making use of parameter-free write and read

operations which dictate how information flows to and from the memory. These

operations do not contain learnable parameters, but they are defined to be dif-

ferentiable, and thus a neural network can learn to control them by shaping their

inputs. This idea was originally pioneered by the Neural Turing Machine (Graves

et al., 2014), Memory Networks (Weston et al., 2014), and attention-based trans-

lation models (Bahdanau et al., 2014) in 2014. These early architectures largely

differ in how they write and update information to external memory, however in-

terestingly they all use the same operation to read from memory: content-based

attention.

Content-based attention can be thought of as a differentiable analogue to a database

lookup. With a database lookup, one may select rows with a query which evaluates
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the properties of several fields row-by-row, and then extract relevant fields for the

matching set. Attention works by using a differentiable comparison function across

each row in memory, to create a weight per row, and then linearly combining the

values based upon this weight. Because the operation is differentiable, it can be

placed within a neural network which is optimized via gradient descent.

However despite the considerably larger memory capacity of memory-augmented

neural networks over recurrent neural networks, the expense of attention is con-

siderably prohibitive if we wish to scale this approach to lifelong memory. Unlike

a database, which can make use of logarithmic-time lookups via data indexing, at-

tention compares a given query with every row in memory — meaning queries are

linear-time. Furthermore, these memory-augmented neural networks do not tend

to jointly represent information across rows in their memory matrices — which

means it typically contains a multitude of repeated, redundant information. We

aim to tackle these two issues by using efficient sparse access of memory with log-

arithmic time complexity, and more compressive memory structures that contain

a more enriched representation of the past.

1.2 Overview of Contributions

In Chapter 3 we propose a sparse memory-augmented neural network called SAM

(Sparse Access Memory) which uses sparse attention to read from memory in

logarithmic time and a sparse write scheme to update memory in constant time.

We show that it empirically can train up to hundreds of thousands of memory

slots, and crucially show that learning is possible even in settings of extremely

sparse attention. We also propose a more powerful but complex sparse memory
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model called the Sparse Differentiable Neural Computer and apply it to the task

of question-answering for the bAbI benchmark (Weston et al., 2014) where it

outperformed all prior models.

In Chapter 4 we explore classification. Here memory has been successfully in-

corporated as an additional non-parametric classifier alongside a neural network

classifier. The intuition is that memory can serve as a fast-learning mechanism

to enhance the slow-learning parametric neural network. The memory often im-

proves the modelling of rare or previously unseen classes within a limited horizon

of attention. We consider replacing an external memory with a compressed mem-

ory that stores the cumulation of hidden activations for each given class. Such a

system reduces the redundancy of storing many separate memories for frequently

observed classes, and extends the model’s memory of rare classes.

We then place this compressed memory within a subset of weights in the classifier,

instead of storing it as a separate memory of recurrent activations, taking inspi-

ration from the neuroscience literature of memory as a complementary learning

system within the brain (McClelland et al., 1995). We show the memory update

becomes an instance of the Hebbian learning update rule (Hebb, 1949), which is

an early model of synaptic plasticity. The resulting architecture is a modified clas-

sification layer in a neural network which we call the Hebbian Softmax. We show

this significantly improves the prediction of rare words for language modelling,

achieving state-of-the-art (at time of study) on the long-range language modelling

benchmark, WikiText-103 (Merity et al., 2016). We also show the prediction of

newly observed classes is improved in the few-shot case.

In Chapter 5 we explore a scalable compressive memory which stores overlapping
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representations across rows in memory. It takes inspiration from the overlapping

representations in the CA3 of the brain, and the highly compressive data-structure

which uses overlapping sparse binary codes to represent information — called the

Bloom Filter (Bloom, 1970). We name our architecture the Neural Bloom Filter.

We benchmark this for performance on a core memory task: familiarity. Specif-

ically we inspect a number of natural-data settings of familiarity, and compare

how much space each models’ memory consumes at a fixed performance. We see

recurrent neural networks tend to struggle to solve the tasks, but can be very

space-efficient if they do. However Memory Networks can always solve the task

but use a very large memory to do so. The Neural Bloom Filter is both easy to

train, and compressive, and we remark of its potential utility in high-performance

computing systems, such as databases.

Finally in Chapter 6 we combine the compression ideas from prior chapters to pro-

pose a state-of-the-art long range sequence model, the Compressive Transformer,

which incorporates a mixture of granular short-term memory with a coarser-

grained compressed memory of longer-term information. We show this outper-

forms the existing best-performing language models over wikipedia articles, and

also book text. We also show significant performance benefit in the modelling

of audio over strong baselines such as WaveNet (Oord et al., 2016), and in the

domain of navigation within a reinforcement-learning agent. As such we bring the

ideas of previous chapters, which largely are tested on synthetic memory tasks, to

real-world problems with significant potential for impact.

The key idea of the Compressive Transformer is to introduce a learnable com-

pression network which maps a collection of m consecutive memories to a smaller
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set, e.g. m/c where c is a compression factor. We consider simple compression

networks, from simple linear convolutions (which we find to perform best) to deep

dilated convolutions, alongside baselines such as max and mean pooling. We show

the model is able to make use of its long-range compressed memory, and in the

case of language, better models words which require longer spans of dependency

such as rare named entities. We also create a new language model benchmark

derived from book data, called PG-19, to further advance research in the area of

long-range sequence modelling.

We conclude with future directions, namely focusing on a combination of state-

of-the-art sequence models with sparse compressive memories. We consider the

incorporation of a more compressive memory architecture for the Compressive

Transformer that uses optimization routines — such as energy-based optimiza-

tion — to learn writing and reading rules. This is following recent work showing

that energy-based models can be used within deep neural networks to facilitate

associative memory tasks (Bartunov et al., 2020). We also remark at the grow-

ing popularity in incorporating sparse attention into memory-based models since

the inception of this study, and the potential for advances in hardware that could

bolster the widespread adoption of sparse attentive models.
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Chapter 2

Background

To frame the scope of this study, we discuss the classifications of memory from

the psychology literature including episodic memory. We outline the key known

components to lifelong episodic memory in the human brain — notably the hip-

pocampus — before moving on to the field of computer science for foundational

data storage architectures and machine learning for a review of prominent memory-

augmented machine learning models. Finally we discuss a selection of memory

tasks which have driven the development of better memory architectures, and

make the case for modelling natural language to be placed amongst them.

2.1 Memory in Animals

Memory is an umbrella term for many processes that occur in animals, machines,

and even plants. In animals it is an integral aspect of learning, and quite often the

distinction between learning and memorisation becomes difficult to assert.
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Finding an association between correlated events from repeated trials is one of

the mainstays of learning. Ivan Pavlov noted in the early 20th century in his

classical conditioning experiments (Pavlov and Gantt, 1928) that his dog could

elicit the same conditioned response (salivation) from observing an unconditioned

stimulus (dog food) as it would elicit with a conditioned stimulus (the sound of

a metronome) if the two events followed one another. This lead to the study of

human and animal learning via behaviourism in psychology; however the initial

finding is in itself a display of associative memory. The dog had the cognitive

machinery to observe two events, the sound of the metronome and the subsequent

delivery of food, and over several trials, associate them.

The ability to form associations may not be confined to animals. Recent studies

with pea plants have shown that they can be classically conditioned to associate

the direction of a fan emitting a breeze of air, placed at random within a circle

surrounding the plant, with the direction of a corresponding light source (Gagliano

et al., 2016). How then can we distinguish the role of memory from general as-

sociative learning, and define a reasonable set of categories for different types of

long-term memories?

2.1.1 Tulving’s Taxonomy for Long-Term Memories

Aristotle mused on the distinction of different types of long-term memories by

considering the collections of experience of specific events in our lifetime and the

resulting behavioural wisdom, or phronesis that arises therefrom (Ameriks and

Clarke, 2000). That is, the forms of memories that we regard as life experience,

versus the skills that we acquire. The search for a taxonomy for long-term memory
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Long-Term Memory

Declarative Procedural

Semantic Episodic

Medial Temporal Lobe

e.g. “The capital of France is ___”

What can be recalled as fact or event Skills that are acquired

e.g. walking, speaking, tying shoelaces

Hippocampus

e.g. “Today I ate  ____ for breakfast”

Facts that you know Autobiographical events

Neocortex, Amygdala, Cerebellum, Striatum

Figure 2.1: Tulving’s classification of long-term memory (Tulving et al., 1972).

has undergone considerable debate, especially in the field of psychology during the

twentieth century.

The psychologist Endel Tulving provided a modern and intuitive taxonomy in the

70s, that provided a more fine-grained classification than Aristotle’s life experi-

ence versus skills (Tulving et al., 1972). This tree of classification is shown in

Figure 2.1. Long-term memory could first be partitioned as either procedural or

declarative. Procedural memories indicate skills, acquired via learning over many

repetitions, such as learning to walk. Declarative memories indicated facts that

can be asserted, such as the capital of France or the meal one chose for breakfast.

Tulving crucially introduced a classification of declarative memories, as either se-

mantic or episodic (Tulving et al., 1972; Tulving, 1985). Semantic memories could

be described as those which one “knows” without any specific memory of when

(such as the capital of France); episodic memories are autobiographical and may

be associated with many other memories from the same time (e.g. what one ate

for breakfast).
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Different regions of the brain have a role to play in the formation of these different

kinds of long-term memories. The neocortex is associated with procedural mem-

ories, and the hippocampus has been found to be crucial to the development of

new episodic memories (Rolls, 2010). Famously when ‘Patient H.M.’ underwent a

temporal lobectomy in 1953 to treat his severe epilepsy, which removed the ma-

jority of his hippocampus, he was still able to learn new skills (such as drawing

a star from a mirrored view) but could not form new episodic memories (Corkin,

1968). Thus learning long-term skills can occur without memory.

We can not only draw analogies from Tulving’s taxonomy to biological neural net-

works in the brain, but we can also draw analogies from Tulving’s taxonomy to

artificial neural networks. These analogies should be thought of as useful roadmaps

for deep learning research, versus absolute truths — since we do not have a mech-

anism to probe exactly what a neural network ‘knows it knows’.

We can think of the non-declarative procedural memories, and the declarative

semantic memories, as being contained within the trained weights of an artificial

neural network — learned slowly through backpropagation. For example if we

train a neural network to perform next-word prediction over a corpus of text, it

will implicitly learn many grammatical constructs within its trained weights —

which the network cannot express directly in a single instance. These can be

thought of as procedural memories. Furthermore if we provide a simple prompt

“The capital of France is” then the model may return “Paris”. This is a long-

term association that can be declaratively expressed (and would not be considered

episodic given there was no mention of Paris in the episode), so it roughly fits the

description of a semantic memories. Unlike biological neural networks, we cannot
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point to sub-regions of network weights where we would expect the procedural

memories to be stored versus semantic — although this would be an interesting

line of future research.

Episodic memories are not considered to be stored within the standard set of slow-

moving model parameters that are learned via backpropagation. Instead these may

lie in the hidden state of recurrent neural networks, in the memory of memory-

augmented neural networks, or in a separate set of ‘fast-moving’ weights. We

will introduce these architectures in Section 2.3, however roughly these are stores

of past activations containing information from the past (what) along with when

they occured. In this thesis we do not approach all forms of long-term memory

as defined by Tulving. We specifically focus on building lifelong episodic memory

systems. We represent, store, and recall salient memories that specify the what

and when of observed events.

2.1.2 The Hippocampus

We have specified our scope for life-long episodic memory within artificial neural

networks, and have mentioned this is principally in the brain via the Hippocampus.

Thus we give a brief overview of this well-studied piece of neural circuitry that is

present in humans and vertebrates, including rodents where its function is often

probed.1 The Hippocampus is a recurrent circuit of neurons, it integrates with

the Entorhinal Cortex (EC) to receive input and feed its output (see Figure 2.2).

Input activations pass through from lower layers in the EC (layer 2) to the Dentate

1For example, by monitoring the firing rate of a specific set of neurons within rodent hip-
pocampi, it was observed that certain neurons’ firing rates could be attributed to particular
locations. This lead to the Nobel-prize-winning discovery of place cells, which serve as a spatial
memory firing at specific observed landmarks (O’Keefe and Dostrovsky, 1971).
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Figure 2.2: The hippocampo-entorhinal circuit, schematic from Diba (2018).

Gyrus (DG), which is believed to perform pattern separation to differentiate similar

neural codes. The DG is one of the only known areas of the brain to facilitate adult

neurogenesis, that is the continued generation of new neurons. These activation

then pass to the CA3 along with another direct channel of inputs from the EC

layer 2.

The CA3 contains recurrent connections and is a critical region for the storage of

episodic memories. The excitation of CA3 neurons is sparse and overlapping, there

is no clear compartmentalisation between regions of the CA3 for specific types of

memories. The CA3 recirculates activations and the synapses contained within

its pyramidal cells with interconnecting synapses that display long-term potenti-

ation after a single instance of exposure (Bliss and Collingridge, 1993; Nakazawa

et al., 2003). In essence the CA3 contains a one-shot writing associative writing

mechanism into a set of fast-adapting weights.

Where the DG separates patterns, it is believed the auto-associativity of episodic
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memories comes from the joint representation of information in the CA3. The

CA3 then feeds activations to the CA1 which also has a direct connection with

the input activations from the EC layer 3, and this results in an output fed to the

upper layers (4 and 5) of the EC (see Shepherd (2004) for a thorough account of

the hippocampal circuit). We conclude that the Hippocampus is one of the human

mind’s most essential tools for life-long episodic memory, and takes the form of a

recurrent neural network. The Hippocampus sparsifies and separates its inputs to

create sparse decorrelated codes, which it then stores jointly in an attractor-based

optimisation.

2.1.3 Memory as a Complementary Learning System

Memory can allow us to learn tasks which require remembrance of the past, natu-

rally, however it may also have a role to play in general learning. The role of the

hippocampus appears to be not only as a gateway to memory formation, but as a

facilitator of fast learning. The theory of Complementary Learning Systems (Mc-

Clelland et al., 1995) posited the hippocampus acted as a fast learning mechanism

to enhance the neocortex’s slow but stable learning. In this paradigm the neocortex

must update slowly with many decorrelated sensory inputs otherwise catastrophic

forgetting may occur, where the acquisition of a new skill degrades the capability

of a prior skill. The role of memory is to adapt quickly to each new task, and

then to consolidate information to the neocortex, e.g. via the replaying of memo-

ries during sleep. Where the neocortex may require many examples to learn a new

skill the hippocampus can allow us to adapt quickly, this is often termed one-shot

learning. This is thought to be crucial to animal survival in adverse settings, for
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example it is crucial to remember the sight and smell of a poisonous berry after

consumption, such that it can be avoided thereafter. We explore memory as a

means for fast-learning in Chapter 4.

2.2 Data Storage in Computing

The use of pattern separation and sparsity, alike to that of the Dentate Gyrus in

the Hippocampus, are also fundamental tools in the efficient storage and retrieval

in computing systems — notably hashing. In this section, we shall cover the use

of hashing for exact and nearest-neighbour data retrieval in computing.

In the field of computer science there have been many advances in the construction

of data structures which store and query data efficiently. Unlike in the brain, or in

machine learning models, computer architectures can operate in an exact symbolic

space where information is encoded in entirety at given memory locations, and

queries can be executed for very specific attributes. Nevertheless data structures

which support recalling stored information efficiently, or simply indicating whether

a given piece of data has been previously observed, do incorporate sparse and

distributed representations. We find some of these systems, such as fast search,

can be used within neural networks (as demonstrated in Chapter 3) and others,

such as the Bloom Filter, can be used as inspiration to design neural networks

which outperform their classical counterparts (such as the Neural Bloom Filter,

described in Chapter 5). In this section we give a brief overview of several core

data structures that provide utility or inspiration to the architectures developed

in this study.
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2.2.1 Hashing

The simplest desiderata for a data structure which can store and retrieve data

is that its retrieval mechanism is efficient. One can store a collection of data in

an un-ordered list; this is space efficient and writing to this list can be done in

constant time, however querying this list requires a linear scan over each element.

One can maintain an ordering over the data, and store it in a binary search tree.

This incurs very little space overhead (e.g. 16 bytes per storage element) and

retrieval can now be performed in logarithmic time, however inserting elements

increases from constant time to logarithmic.

Hash tables achieve a constant-time read and write operation by maintaining a

map from input elements to their corresponding index in a table. The map is

called a hash function, and they are designed to require constant time to execute.

The overall data-structure is known as a hash table (Cormen et al., 2009). The

elements themselves are stored in an un-ordered list, and their locations (e.g.

pointers, in modern computing systems) are stored in the hash table. When two

different inputs are mapped to the same location this is known as a collision, a

simple resolution is to chain the corresponding elements mapped to this location

in a linked list, as shown in Figure 2.3.

Hash tables do incur a number of implementation decisions, there is an additional

space overhead consumed by empty locations in the hash table, there are consid-

erations for methods to adaptively increase the size of the table as more data is

stored, and there are different approaches for dealing with collisions when multiple

input elements are mapped to the same slot. Crucially many different implemen-

tations of hash tables do arrive at a constant-time input and retrieval time in
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Figure 2.3: Hash table schematic with collisions chained as lists, from Smith
(2019).

theory and practice, and they are a central data-structure to many databases and

networking high-performance computing systems (Maurer and Lewis, 1975). Thus

the problem of memory retrieval can be solved very efficiently — constant time —

with a sparse-access hash function if we know exactly what we are looking for; is

this the case for non-exact matching queries? Neural networks may wish to query

for memories which resemble the current input but do not exactly match it. We

shall discuss this problem in the following section.

2.2.2 Nearest Neighbour Search

Nearest neighbour search is the problem of finding the closest element x1, . . . , xn in

a set of stored data to a given query element: arg min ‖q − x‖. Naively storing the

data in an un-sorted list allows for O(nd) nearest neighbour retrieval, where d is

the dimensionality of the data-points. If d = 1 we can trivially improve upon this

by indexing the data with a binary search tree, and serve queries in O(log n) time,

however the approach of indexing the data grows exponentially in the size of the
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Figure 2.4: K-d tree partition of 2-D data-points. Schematic from Kraus and
Dzwinel (2008).

dimensionality d (Borodin et al., 1999), due to the curse of dimensionality. Thus

unlike the constant-time retrieval for when one knows exactly what one is looking

for, there is a linear-time cost for when one only knows of a similar query.

Approximate nearest neighbour search rephrases the problem to allow for a factor

of error ε. Namely instead of returning the closest element, it returns the element

which is no more than 1 + ε times further away than the nearest neighbour, with

some probability p. Finding the approximate nearest neighbour can be done in

O( d
ε2

log n) time (Andoni and Indyk, 2006), i.e. exponentially faster than the exact

nearest neighbour. There are several approaches to building data structures which

can efficiently solve the approximate nearest neighbour problem. Many partition

the data-points x1, . . . xn into buckets of points which are close together. This

includes tree-based partition algorithms such as k-d trees (Bentley, 1975). K-

d trees split the data-points along their axis, as shown in Figure 2.4. This split

value is usually chosen to be the median value along the chosen dimension, to arrive

at a tree with log n depth and an equal number of data-points in each resulting
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hypersphere. The accuracy of the tree is dependent on the first dimensions that

the data are split on; often many such trees are built with a random shuffling of

dimension ordering, i.e. randomised k-d trees (Muja and Lowe, 2014).

When the number of dimensions is large, tree-based space partitioning degrades

in accuracy, a favoured approach in this setting is locality-sensitive-hashing which

buckets the data-points mapped with a hash function which contains some distance-

preserving properties (Gionis et al., 1999). One class of distance-preserving hash

functions are random projections. For example it can be noted that for two points

x, y ∈ Rd, their distance ‖x− y‖2 can be approximated by their distance un-

der random projection with a gaussian vector Rd 3 a ∼ N(0, I). Namely the

1-dimensional distance a · x − a · y ∼ N(‖x− y‖2 , ‖x− y‖
2
2) is an unbiased esti-

mator of the d-dimensional distance. Thus one can use multiple random projec-

tions a1, . . . ak and partition each 1-d projection space into equal buckets of width

r, h(x) = (bai·x
r
c, j = 1, . . . k). At query-time the query is hashed into the k

buckets and the exact distance is computed between the query and the associated

data-points contained in these buckets, often prioritised by the number of match-

ing buckets. This is known as p-stable LSH hashing because it can be used for

any p-norm ‖x− y‖p. One can specify a distribution Dp such that we can sample

random vectors a ∼ Dp for which the p-norm follows the distribution of Dp under

projection: a · (x−y) ∼ ‖x− y‖p Z,Z ∼ Dp (Datar et al., 2004). For example, the

2-stable distribution D2 is the Gaussian distribution, and the Cauchy distribution

is 1-stable.

If the data is highly isotropic then splitting projection axes into equally-sized

buckets can result in some buckets which have too many associated data-points
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and many empty buckets. Data-dependent schemes incorporate the distribution

of the data into the algorithm. K-means nearest-neighbour algorithms bucket

the data into clusters from a k-means clustering scheme where the number of

clusters is typically chosen to be the square-root of the number of data-points

√
n. We see in Figure 2.5 that k-means LSH outperforms a number of baselines

including random projection when benchmarked on features derived from images.

The distance is computed between the query and each of the
√
n cluster centroids,

and then after with the
√
n points contained in the closest cluster. This O(

√
n)-

time query can be lowered to O(log n) time by having a hierarchical clustering

scheme, i.e. recursively partitioning the data into two separate clusters until a

balanced tree of depth log2 n is constructed (Nister and Stewenius, 2006). This

can both reduce the computational cost of clustering all data-points simultaneously

(which can consume quadratic time) and speed up queries, at a small reduction to

query accuracy. See Nister and Stewenius (2006) for a more complete survey on

approximate nearest neighbour search using locality-sensitive hashing.

2.2.3 Set Membership

Instead of storing and retrieving data, we may want to store it and simply know

whether we have seen it or not. I.e. instead of retrieval, we may only be interested

in familiarity. The problem of exact set membership is to state whether or not a

given query q belongs to a set of n distinct observations S = {x1, . . . , xn} where

xi are drawn from a universe set U . By counting the number of distinct subsets

of size n it can be shown that any such exact set membership tester requires at

least log2

(|U |
n

)
bits of space. To mitigate the space dependency on |U |, which can
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Figure 2.5: Comparison of approximate nearest-neighbour on image fea-
tures (Lowe, 2004). Schematic from Paulevé et al. (2010).

be prohibitively large, one can relax the constraint on perfect correctness.

Approximate set membership allows for a false positive rate of at most ε. Specif-

ically we answer q ∈ A(S) where A(S) ⊇ S and p(q ∈ A(S) − S) ≤ ε. It can

be shown2 the space requirement for approximate set membership of uniformly

sampled observations is at least n log2(1
ε
) bits (Carter et al., 1978) which can be

achieved with perfect hashing. So for a false positive rate of 1%, say, this amounts

to 6.6 bits per element. In contrast to storing raw or compressed elements this

can be a huge space saving, for example ImageNet images require 108 KB per

image on average when compressed with JPEG, an increase of over four orders of

magnitude.

2By counting the minimal number of A(S) sets required to cover all S ⊂ U .
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Figure 2.6: Bloom Filter using k = 3 hash functions storing the inputs ‘x’, ‘y’, ‘z’,
and querying ‘w’ with a negative result. Schematic from Eppstein and Goodrich
(2007).

2.2.4 Bloom Filter

The Bloom Filter is a data structure which solves the dynamic approximate set

membership problem with near-optimal space complexity (Bloom, 1970). It as-

sumes access to k uniform hash functions hi : U → {1, . . . ,m}, i = 1, . . . , k such

that p(hi(x) = j) = 1/m independent of prior hash values or input x. The Bloom

Filter’s memory M ∈ [0, 1]m is a binary string of length m which is initialised to

zero. Writes are performed by hashing an input x to k locations in M and setting

the corresponding bits to 1, M [hi(x)] ← 1; i = 1, . . . , k. For a given query q the

Bloom Filter returns true if all corresponding hashed locations are set to 1 and

returns false otherwise,

Query(M, q) := M [h1(q)] ∧M [h2(q)] ∧ . . . ∧M [hk(q)] .

We see an example of this in Figure 2.6 where a Bloom Filter stores three characters

‘x, y, z’, each with three hash functions. When the character ‘w’ is queried some

locations collide with the prior characters’ however at least one hash function maps

‘w’ to an un-written location (holding a zero) which indicates we have not seen
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‘w’ before.

More generally we can assert that a Bloom Filter incurs zero false negatives, as any

previously observed input must have enabled the corresponding bits in M , however

there can be false positives due to hash collisions. To achieve a false positive rate

of ε with minimal space one can set k = log2 (1/ε) and m = n log2 (1/ε) log2 e,

where e is Euler’s constant. The resulting space is a factor of log2 e ≈ 1.44 from

the optimal static lower bound given by Carter et al. (1978).

Bloom Filters provide no guarantees of false positive rates under approximate

matching, elements are only familiar if they have been exactly seen before. Fur-

thermore they have a fixed operation which is independent of the data distribution

— their performance is bounded by a worst-case analysis. However having mem-

ory components which can work under uncertainty and can specialise to the data

distribution is crucial for intelligent agents which need to reason over a complex

and noisy stream of sensory inputs. In the next section we discuss such learnable

memory structures.

2.3 Memory-Augmented Neural Networks

In this section the topic progresses to memory in artificial neural networks. The

topic is naturally complementary to the prior two sections: memory in animals and

data storage in computing, because we wish to obtain the same complex reasoning

and capacity from biological memory systems however we wish to ultimately devise

algorithms which run efficiently on modern hardware and can be analyzed in terms

of their asymptotic complexity.
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The key differentiator between a memory system for neural networks versus classi-

cal data-structures, is that its read and write operations must be compatible with

a learning algorithm. For modern neural networks this learning algorithm has

settled upon backpropagation (Rumelhart et al., 1986), an instance of gradient-

descent optimisation. If the reads and writes to memory are differentiable, they

can be placed within a neural network which is trained via backpropagation and

the network can learn what to read and write in order to solve the underlying

task. However can be optimised in theory may not result in a practical memory

system, becaues the optimisation may be slow or too expensive as the capacity of

the memory is augmented.

The scope of this section is restricted to memory in artificial neural networks be-

cause these systems have driven such a large increase in performance for temporal

reasoning tasks. However it is worth noting that the intersection of memory and

machine learning is broader. The storage of exemplar data-points or embeddings,

which can be thought of as memories, has long been used within machine learn-

ing systems. For example, Support Vector Machines (Cortes and Vapnik, 1995)

which can learn to classify or regress input data by storing support vectors. These

support vectors are pertinent inputs with respect to the task (e.g. they are inputs

which sit closest to the classification boundary), and they can be thought of as a

compact memory. Nevertheless it would require a non-trivial modification to the

SVM architecture for such a model to learn a function approximator over a tempo-

rally ordered sequence of inputs. For a more general background in non-parametric

machine learning models see Wasserman (2006).

We will cover a number of seminal memory architectures in the literature of arti-
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ficial neural networks, discussing the mechanics of such models alongside remarks

of capacity limitations that motivate this thesis.

2.3.1 Hopfield Networks

Hopfield networks are an early mathematical model of associative memory (Hop-

field, 1982). They operate by storing binary-pattern inputs into the weights of a

fully-conected neural network using a local update rule. For an input ξ ∈ {−1, 1}d

containing d binary values (positive or negative), a Hopfield network contains d2

real-valued connections, W ∈ Rd×d. The Hopfield learning algorithm specifies

a write over n binary memories ξ1, ξ2, . . . , ξn, represented as column vectors, by

cumulating their outer product:

W ←
n∑
l=1

ξlξ
T
l (2.1)

This specific write update is termed the Hebbian update rule as it follows the “fire

together, wire together” principle

W [i, j] =
n∑
l=1

ξl[i]ξl[j]

proposed by the psychologist Donald Hebb as a model of synaptic learning (Hebb,

1949).

Hopfield Networks are a model of associative memory, as they can store a sequence

of patterns, and reconstruct a partiall occluded prior pattern ξ̃. Thus if our binary

input patterns contain several overlapping piece of information, such as the sight

and smell of a wild fruit and the label of whether it is poisonous, then we can
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reconstruct an important piece of information (whether it is poisonous) from a

subset of other stimuli (sight of fruit). This is also known as content-addressable

memory, a term which will be used frequently throughout this study.

The Hopfield Network read operation involves the minimisation of an energy func-

tion

E(W, s) = −1

2
sTWs (2.2)

where s ∈ Rd is the state of the network, initialised to the query ξ̃ initially, and

then optimised to a stable state known as an attractor. This can be viewed as the

retrieved memory. The Hopfield Network defines the optimisation of the energy

via the update:

s0 ← ξ̃ ∈ {−1, 1}d Initialise with query

st+1[i]← 1 if W [i]T st > 0; else -1 for i = 1, 2, . . . , d Update

The update is applied from s0 → sT such that T is the first time-step satisfying

Update(sT ) = sT . The resulting sT is known as an attractor state. Crucially it is a

local minima of the energy function (2.2), and is the resulting value read from the

Hopfield Network. Thus we can think of the Hopfield read operation as a discrete

optimisation of the energy function given a start state, the query ξ̃.

The capacity of a Hopfield Network is linear in terms of the number of weights.

Specifically, for an input dimension d the network can store at most d/4 log d

patterns, if each corrupted query is at most d/2 Hamming distance away from the

original pattern (McEliece et al., 1987). Thus each real-valued weight increases the

capacity by 1/4 log d binary-valued patterns. Thus the read and write operation
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is linear in terms of the number of real-value connections, and thus the capacity

of the network.

Hopfield Networks serve as an interesting weight-based method of memory storage.

However although they use optimisation as a method of memory retrieval, their

learning rule is not differentiable due to the use of discrete states. Whilst this

is still possible to interface with a differentiable neural network using straight-

through gradient estimates or reinforcement learning, this added complexity has

arguably stymied Hopfield Networks from being adopted as a memory store for

modern neural networks. We will next investigate such end-to-end learning systems

in the form of differentiable recurrent neural networks, which represent memories

as recycled activations in a recurrent state — versus a set of fast-changing auto-

associative weights.

2.3.2 Recurrent Neural Networks

Recurrent neural networks are a class of models which map a sequence of inputs

x1:t to a sequence of outputs y1:t by feeding a recurrent state ht−1 from the previous

timestep to the next (Rumelhart et al., 1986). Whilst many computational neural

network models contain recurrent connections, including Hopfield Networks as part

of their weight update mechanism, here the focus is on differentiable recurrent

neural networks that can be trained via gradient descent.

These models can be expressed with a differentiable function f with learnable

parameters φ:

fφ(xt, ht−1) → yt, ht .
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The recurrent state cycles information into the network from the previous time-

step and allows the network to condition on information from the past, serving

as a memory. One of the simplest recurrent neural networks is the Elman net-

work (Elman, 1990) which chooses a single-layer Perceptron (Rosenblatt, 1961) to

update the recurrent state and produce an output,

ht = σ (Whht−1 +Whxxt + bh)

yt = σ (Wyht + by) .

Here we use σ to denote the sigmoid activation function, and Wh ∈ Rd×d,Whx ∈

Rdi×d,Wy ∈ Rd×do are the learnable weight matrices for a model with hidden state

d and input-output dimensions di, do respectively. The bh ∈ Rd, by ∈ Rdo are

learnable bias terms.

An empirically effective way to train neural networks is via gradient descent. For

recurrent neural networks, and more generally neural sequence models, this is most

commonly done with backpropagating through time (BPTT). This is an application

of the iterative backpropagation algorithm, used to calculate the derivative of the

loss with respect to the model parameters ∂L/∂φ. The RNN is unrolled over

the input sequence, the loss with respect to each output step is calculated, and

backpropagation is calculated over the unrolled graph of computation; starting

from the last time-step and working backwards.

Due to the multiplication of error signals over time, choosing f to be a standard

multi-layer perceptron (MLP) or even a linear transform results in vanishing or

exploding gradients (Hochreiter, 1998). This can most clearly be seen if the update
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to the recurrent state is a simple linear transformation, i.e. ht = Wht−1. Then

∂ht/∂ht−1 = W , which implies the n-step gradient ∂ht/∂ht−n = W n. If the largest

eigenvalue of W is greater than one, this norm explodes in magnitude, and if it is

less than one, it tends to zero.

2.3.3 Gated Recurrent Neural Networks

The Long Short Term Memory (LSTM) is a recurrent neural network designed to

avoid this issue (Hochreiter and Schmidhuber, 1997). It works by gating the mod-

ification of the recurrent state. Namely it uses an input gate to filter information

that will be used to update the recurrent state, a forget gate to remove informa-

tion from the state (introduced later by Gers et al. (1999), and an output gate to

select which information will influence the current time-step’s predictions, and the

next time-step’s update. The LSTM’s hidden state consists of two d−dimensional

vectors, c referred to as the ‘cell’ and h referred to as the hidden state which is

also the output of the network. It can be visualised with a network diagram as

shown in Figure 2.7 but more concretely described by the following set of update
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Figure 2.7: The LSTM recurrent neural network, schematic from Olah (2015).

equations:

it = σ (Wihht−1 +Wixxt + bi) Input gate

ft = σ (Wfhht−1 +Wfxxt + bf ) Forget gate

yt = σ (Wyhht−1 +Wyxxt + by) Output gate

c′t = σ (Wchht−1 +Wcxxt + bc) Cell update

ct = ft � ct−1 + it � c′t

ht = yt � tanh(ct)

Here, � signifies element-wise multiplication. All gate activations are bounded be-

tween [0, 1] due to the sigmoid activations. The hidden state is bounded between

[−1, 1] due to the tanh activation function, although a popular LSTM variant

(peephole LSTM) removes the tanh and allows the cell to be unbounded on the

real axis. The hidden cell ct is unbounded. The crucial observation is that gate

values can allow or prevent information to pass at a given time-step, which means

gradient values can be reset to zero for certain indices — and so the model does

not necessarily suffer from the vanishing or exploding gradients problem. LSTMs
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have since been applied widely to domains such as handwriting and speech recogni-

tion (Graves and Schmidhuber, 2009; Graves et al., 2013), machine translation (Wu

et al., 2016), continuous control (Heess et al., 2015), and deep reinforcement learn-

ing (Mnih et al., 2016).

One simplification of the LSTM, which has received widespread use, is the Gated

Reccurent Unit (GRU). The Gated Recurrent Unit passes information over time

via a single hidden state vector ht ∈ Rd, and simplifies the gating to an update

gate and a reset gate. The GRU can be be formally defined with a simpler set of

update equations:

zt = σ (Wzhht−1 +Wzxxt + bz) Update gate

rt = σ (Wrhht−1 +Wrxxt + br) Reset gate

ut = tanh (Wuh(ht−1 � rt) +Wuxxt + bu) Hidden state update

ht = (1− zt)� ht−1 + zt � ut

The GRU has proven popular over the LSTM due to its comparable performance

with a reduced amount of computation per step (Chung et al., 2014). Namely,

the GRU requires 2× less computation per step (8d2 FLOPs for the LSTM vs 4d2

for the GRU) and the state size requires 2× less space (2d floating point numbers

for the LSTM and d for the GRU). It has often been applied to performance-

critical sequence modelling tasks, such as financial modelling (Shen et al., 2018)

and healthcare monitoring systems (Zhao et al., 2019). Intuitively the GRU is able

to achieve comparable performance via reduced computation and space by taking

advantage of the redundancy in the LSTM’s recurrent state (as ct and ht contain
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very similar information) and some of the memory access computation (i.e. using

a reset gate versus an input and output gate). We apply a similar philosophy in

this study, by investigating architectures that reduce redundant memory access

computation (e.g. in Chapter 3 where we obtain an exponential reduction in

compute as a function of memory capacity) and those which learnably remove

redundant information from their memory (e.g. in Chapter 6 via a compressive

memory bottleneck).

One general short-coming of recurrent neural networks, including the Elman net-

work, LSTM and GRU, is that the number of trainable parameters is tied to the

memory capacity. For any of these RNNS, for example, if the state is a vector of

dimension d then the networks contain O(d2) parameters. For LSTMs it is in fact

8d2 + 4d. This naturally results in a quadratic compute requirement. Therefore

RNNs are typically constrained to state sizes in the order of hundreds or singular

thousands in common applications. This motivates neural networks that contain

memory systems which are independent of the parameter count in the network,

and are more compute-efficient.

2.3.4 Attention

Attention allows neural networks to reason over memories that are much larger

capacity than the states of traditional recurrent neural networks. If we define an

external memory M ∈ Rn×d is a collection of n real-valued vectors, or words, of

fixed size d. A soft read operation is defined to be a weighted average over memory

words,

r =
n∑
i=1

a(i)M(i) , (2.3)
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where a ∈ Rn is a vector of weights with non-negative entries that sum to one.

Attending to memory is formalised as the problem of computing a. A content

addressable memory is an external memory with an addressing scheme which se-

lects w based upon the similarity of memory words to a given query q (Graves

et al., 2014; Weston et al., 2014; Bahdanau et al., 2014; Sukhbaatar et al., 2015).

Specifically, for the ith read weight a(i) we define,

a(i) =
f (d(q,M(i)))∑n
j=1 f (d(q,M(j))

, (2.4)

where d is a similarity measure, typically Euclidean distance or cosine similarity,

and f is a differentiable monotonic transformation, typically the exponential func-

tion. We can think of this as an instance of kernel smoothing where the network

learns to query relevant points q.

The addressing scheme is content-based because the content of the memory dictates

which rows we read from. Because the read operation (2.3) and content-based

addressing scheme (2.4) are smooth, their derivative can be calculated and so they

can be placed in a neural network and optimised via backpropagation.

2.3.5 Memory Networks

Memory Networks make use of a content addressable memory that is accessed via

a series of read operations (Weston et al., 2014; Sukhbaatar et al., 2015). Given a

context that we wish to reason over, such as a collection of sentences x1, x2, . . . , xn,

these are individually embedded into n d-dimensional hidden states h1, h2, . . . , hn.

These are used to construct a key-value memory, where keys are equal to ki = hiK
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Figure 2.8: Memory Networks for question answering, schematic from Weston
(2016).

and values equal to vi = viV where K,V ∈ Rd×d are learnable weights. The

memory contains pairs of keys and values, M = [(k1, v1), . . . , (kn, vn)] ∈ Rn×2d. A

read was originally defined as the vl; l = arg maxi q ·ki, i.e. the value corresponding

to the key which most closely resembled the query. However a differentiable variant

proposed in Sukhbaatar et al. (2015) defined the read as a weighted sum of values

where the weighting is defined by attention between the queries and keys, r =∑n
i=1 aiv; ai = eq·ki/

∑n
j=1 e

q·kj . The number of network parameters in Memory

Networks is O(d2), thus crucially it is not a function of the number of rows in

the memory, n. This allows us to train with a larger memory capacity than

RNNs.

This process is shown for the task of question answering in Figure 2.8, the network

queries this memory either once or several times (i.e. H times in the above figure).

Memory networks have been successfully applied to a number of question answering

tasks (Weston et al., 2015; Hill et al., 2015). They are best suited to tasks with fixed

contexts that need multiple steps of reasoning over, such as open-book question

answering, instead of tasks where the entire contents of memory may need to be
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updated or re-written, such as machine translation.

2.3.6 Neural Turing Machines

The Neural Turing Machine (NTM) is a recurrent neural network equipped with a

content-addressable memory, similar to Memory Networks, but with the additional

capability to write to memory over time and read memories based on absolute

location in memory alongside content. The NTM consists of a controller network

which can specify what to read and write to memory, alongside the address of

where in memory these reads and writes should occur. The address in this case is

specified both from content, using the same content-based attention mechanism

as Memory Networks, but also relative location — allowing the network to learn

shift operators along consecutive slots of memory.

Controller

The NTM incorporates an inner controller neural network to decide how to read

and write from memory. Broadly the write operation specifies how the external

memory Mt−1 ∈ Rn×d is updated to Mt and the read operation results in a single

vector r ∈ Rd that is read from Mt. This is often chosen to be an LSTM but it

can also be a feed-forward neural network, it takes the current time-step’s input

xt along with the hidden state of the controller (if any) ht−1, and the previously

read word rt−1 and outputs a tuple of tensors which dictate the interaction with

external memory:

• ρR = (qR, γR, gR, sR) read address inputs

• ρW = (qW , γW , gW , sW )h write address inputs
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• w ∈ Rd, write word.

• e ∈ [0, 1]d, erase word.

where the address inputs for read and write are,

• q ∈ Rd content-based query.

• γ ∈ R+, sharpening scalar.

• g ∈ [0, 1] interpolation gate.

• s ∈ R3, shift weighting.

The query, sharpening scalar, and interpolation gates are used to calculate an

address aR ∈ Rn, aW ∈ Rn for the read and write operations respectively. Each

address specifies a probability distribution over the rows of M , namely
∑

j a(j) = 1

and a(j) ≥ 0, j = 1, . . . , n. It is a differentiable vector specifying where in memory

to read and write from. The address vector is a mixture of content-based addressing

(using attention) and location-based addressing (using shift operators), we shall

describe these in more detail.

Addressing

The NTM addressing mechanism is identical for read and write operations and so

we describe the general computation. Because different parameters are used to

specify the inputs to the read and write address calculation, the NTM can learn

to simultaneously read and write to different locations in memory.

The content-based addressing is defined to be content-based attention from (2.4)

using cosine-similarity for D and the gaussian kernel,
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act(i) ∝ exp(qt ·Mt(i)/ ‖qt‖ ‖Mt(i)‖) .

The address is then an interpolation between the current timestep’s content-based

address and the previous timestep’s address,

agt = act · gt + at−1 · (1− gt).

Further location-based addressing is controlled by applying a shift to the ad-

dress

ãt(i) =
n∑
j=1

agt (j) · st(i− j)

where st ∈ Rn is a shift vector with
∑

i st(i) = 1, st(j) ≥ 0 that determines how

far to shift the attention weight, e.g. for a four-row memory matrix s = [0, 1, 0, 0]

would shift the attention exactly up one row (with attention over the first row

cycling round to the last). In practice s can be of lower-dimensions than n to

restrict the maximum possible shift i.e. s ∈ R3 to allow only shifts of -1, 0, and

1.

Finally the attention is sharpened to allow the network to concentrate the address

(i.e. push its value close to one) around a particular row,

at(i) =
at(i)

γt∑
j at(j)

γt
.
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Write

A write to memory, consists of a copy of the memory from the previous time step

Mt−1 decayed by the erase matrix Rt indicating obsolete or inaccurate content,

and an addition of new or updated information At

Mt ← (1−Rt)�Mt−1 + At . (2.5)

The erase matrix Rt = aWt e
T
t is constructed as the outer product between the write

address aWt ∈ Rn and erase vector et ∈ [0, 1]d. The add matrix At = aWt w
T
t is the

outer product between the write address and a new write word wt ∈ Rd, which the

controller outputs.

The write takes inspiration from the gated update of cells in LSTMs, where the

multiplication with a vector of values within [0, 1] can be used to block or erase

signal from memory, and the addition operator is used to introduce new signal

from the current step’s computation.

Read

Following a write, the read operation is simply a weighted sum of the rows using

the location and content-based addressing scheme,

rt =
n∑
i=1

Mt(i)a
R(i) .
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Parameters

The NTM contains all of its learnable parameters in the controller which is inde-

pendent in size to the external memory, similar to Memory Networks. The number

of parameters is O(d2), the capacity of memory is O(nd), and the cost of address-

ing, reading, and writing to memory is O(nd). A selection of models are compared

in Table 2.1. The Neural Turing Machine and Memory Networks have comparable

Table 2.1: A comparison of parameter count and access complexity for different
memory-augmented neural networks.

Model Capacity No. Params Read Cost Write Cost
LSTM d O(8d2) O(d2) O(d2)
Memory Networks n× d O(d2) O(nd+ d2) O(d2)
NTM n× d O(5d2) O(nd+ d2) O(nd+ d2)

capacity and read cost, however they differ from Memory Networks in their use of

linear-time (with respect to the number of memory slots n) write operations. This

is crucial to allow the model to update existing information in external memory

and organise its contents into a semantic structure, e.g. for copying sequences of

data.

Multi-head Memory Access

The NTM can optionally be configured to have multiple read and write heads.

That is, instead of specifying a single set of read and write inputs (ρR, ρR, w), the

controller outputs h of them, and each produce a separate write: M
(i)
t , r

(i)
t ; i =

1, . . . , h which are averaged: Mt = 1
h

∑
iM

(i)
t , rt = 1

h

∑
i r

(i)
t .

Models that use multiple heads have been observed to be more stable and faster to

train, even when the number of trainable parameters is kept constant. This is likely
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due to the geometric benefit of having multiple different attempts to retrieve the

correct information, once one read head begins to function correctly the rest can

follow suit. Furthermore, multiple heads may learn different but complimentary

functions. Multi-head memory access has since become a standard feature of

memory-augmented neural networks.

2.3.7 Neural Stacks

The NTM and DNC both contain a ‘content-based’ write scheme where inputs are

written into memory with a location that is a function of their contents. This uses

attention and places a non-zero write weight over all slots in memory, which implies

the write operation is ‘dense’ as every row in memory is written to. Both networks

also use a location-based write scheme, where the write address is a function of

past addresses (i.e. the NTM can shift the write head to the left and write).

Another class of memory-augmented neural networks are those which restrict

writes to purely location-based schemes and emulate the data access of classical

data structures. Grefenstette et al. (2015) proposes a neural stack, neural queue,

and neural dequeue, which are three variants of the same general idea: a recurrent

neural network controller can push or pop data into a slot-based memory either

from the top (a stack), the bottom (a queue) or from both sides (a dequeue).

We will describe the stack architecture, since the other two are variations of the

same core idea. The model contains a memory M ∈ Rt×d which dynamically

grows by one slot for each timestep. After t timesteps it contains t rows, and a

write word vector w ∈ Rd is written at timestep t to the final row — which has

index t. Using the terminology of this section we class this write as being sparse
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as the write word w is written to O(1) slots in memory — in this case exactly

1. The neural stack maintains differentiability by maintaining a strength vector

s ∈ Rt which controls the strength of reading each past memory; it is modified via

continuous push, dt ∈ (0, 1), and pop, ut ∈ (0, 1), scalar values.

The strength update is defined as:

st[t] = dt (strength is initialised with the push weight)

st[i] = max(0, st−1[i]−max(0, ut −
t∑

j=i+1

st[j])), i < t

thus the strength is initialised as the push weight and the pop weight is used

to arithmetically decrease the strengths from the highest index to the lowest,

with each strength being thresholded to a minimum value of zero. The read uses

these strengths to traverse down the memory matrix M . By iterating from the

highest indices down to the lowest the model maintains a cumulative read weight

ct[i] = max(0, 1−∑t
j=i+1 st[j]) and continues reading rows until their read strength

is less than this maintained value, s′[i] = min(st[i], ct[i]). We interpret the read

strenghts s′t as selecting the strengths st from the top index down until at most a

cumulative strength of 1 has been selected. The resulting read is

rt =
t∑
i=1

s′t[i]Vt[i]

Alike to other memory-augmented neural networks a controller neural network

outputs the write word and push/pop weights which control the stack’s read and

write operations. Since the reads and writes are differentiable the full model can

67



be optimised with gradient methods. The read operation is not necessarily sparse

as it is possible to have positive strengths across over all past memories however

this could easily be constrained by ensuring the strenghts vector contains some

maximum cumulative weight or a maximum number of non-zero entries.

Grefenstette et al. (2015) found the inductive bias of the stack architecture allowed

for very data-efficient learning of algorithmic tasks such as sequence copying and

reversal, alongside some synthetic grammar translation tasks such as mapping

Subject-Verb-Object phrases to an equivalent formulation using a Subject-Object-

Verb grammar. More recently Cai et al. (2016) showed that a stack-augmented

neural network could learn more generalisable recursive programs given example

traces.

The neural stack explicitly does not employ a content-based memory, which can

support auto-association. It is interesting to see how powerful a location-only read

and write memory scheme can be, in this thesis we consider sparsifying models with

both content-based and location-based memory however we place more emphasis

on content-based addressing since this is a computational bottleneck for many

memory-augmented neural networks which support auto-association.

2.3.8 Differentiable Neural Computer

The Differentiable Neural Computer (DNC) is a variant of the Neural Turing Ma-

chine. It contains a neural network ‘controller’ with a set of differntiable write

and read operations to an external memory. In contrast to the Neural Turing Ma-

chine it contains a garbage collection mechanism that supports the forgetting of

infrequently accessed information, and a location-based addressing scheme which
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Figure 2.9: Read and writing to external memory in the Differentiable Neural
Computer (Graves et al., 2016)

supports transitioning between subsequently accessed slots in memory via a tem-

poral ‘linkage’ matrix, as shown in Figure 2.9. These links can be thought of as

pointers in memory, they allow the network to walk through subsequently-accessed

regions of memory. This combination of content-based and location-based mem-

ory lookups is quite powerful as the network can still perform auto-association but

can organise memory alike to the neural stack. The DNC was found to be state-

of-the-art at several synthetic algorithmic tasks involving reasoning over graph

data, solving combinatorial planning tasks such as SHRDLU using reinforcement

learning, and synthetic question-answering on the bAbI dataset.

2.3.9 Transformer

The Transformer is a feed-forward memory-augmented neural network which uses

attention to access information over time (Vaswani et al., 2017). It avoids the use

of recurrence, unlike the DNC and NTM which feed back the external memory,

69



Figure 2.10: A Transformer layer, schematic from Alammar (2018)

and unlike Memory Networks which typically use a recurrent neural network to

construct the memory embeddings. This allows the model to process multiple

timesteps in parallel, which make it well suited to hardware specialised to facilitate

batched matrix multiplications with high throughput, such as GPUs and Google’s

Tensor Processing Unit (TPU) (Jouppi et al., 2017).

The Transformer contains interleaved layers of attention and MLPs as shown in

Figure 2.10, the original architecture was designed for machine translation and

contains an encoder variant that allows for bi-directional attention forward and

backwards in time, alongside a decoder architecture which is causally masked such

that queries can only access the past. We shall describe the decoder variant, as

this model corresponds to a sequence model with a multi-layer memory.
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The model’s layers consist of two blocks, a multi-head attention block and an MLP.

To facilitate stable training layer-normalisation (Ba et al., 2016b) and residual

connections (He et al., 2016) are used. For a sequence of embedded inputs Rn×d 3

H(0) = h
(0)
1 , . . . , h

(0)
n , layer i is defined as:

H
(i)
attn = multi-head attention(H(i−1))

H ′(i) = layer norm(H
(i)
attn +H(i−1))

H
(i)
mlp = MLP (H ′(i))

H(i) = layer norm(H
(i)
mlp +H ′(i))

Multi-head attention is defined to be content-based attention using separate learn-

able projection matrices Q,K, V ∈ Rd×d to map the input embedding H(i) to a set

of queries which attend to keys using inner product similarity, and then select the

corresponding values. The queries, keys, and values are split into h equally-sized

tensors of dimension n × d
h

and attention is performed separately for each head

(thus the multi -head). The result of each head are mixed with a learnable projec-

tion O. To ensure elements only attend to the past, the attention matrix can be
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masked with a lower-triangular matrix.

q = H(i−1)Q, k = H(i−1)K, v = H(i−1)V ∈ Rn×d queries, keys, and values

For head j = 1, . . . , h

qj,kj,vj ∈ Rn× d
h j-th slice of queries, keys, and values

aj
′ = σ(qjk

T
j ) ∈ Rn×n bi-directional attention weights

aj = aj
′ · LowerDiagonal(n, n) causal attention weights

rj = ajvj ∈ Rn× d
h read values

H
(i)
attn = [r1, r2, . . . , rh] O ∈ Rn×d concatenate and mix across heads

The multi-head attention scheme in the Transformer takes inspiration from the

multiple attention heads from the NTM and from the key-value memory in Mem-

Nets. By having multiple heads, the network can query multiple separate pieces

of information at a given time-step, it has been later observed that different atten-

tion head can specialise to different tasks. For example, for the task of modelling

natural language some attention heads learn to take weighted averages over words

in a given history (essentially performing an n-gram-like specialisation) whereas

others will always fixate on the previous token (Sukhbaatar et al., 2019).

Positional Encodings

An RNN can learn about the ordering of time from its recurrent weight matrix,

however a Transformer applies an identical learnable function at each timestep. To

understand time and the ordering of the input sequence, a distributed timestamp,

in the form of sinusoidal waves of varying frequency, are added to the inputs.
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For the inputs xt ∈ Rd we calculate h
(0)
t = xt + S[t] where

S[t] = [sin
(
(t/Tmax)

2i/d
)

for i = 1, . . . , d] (2.6)

i.e. the dimensions represent sinusoidal curves with a range of wavelengths from

2π to 2Tmaxπ. The authors originally proposed using a combination of sine and

cosine waves and setting Tmax = 10, 000, i.e. such that timesteps from 0 to 10, 000

could be uniquely represented.

This scheme has shown to be effective, however simpler positional encoding schemes

can also work. If one is always evaluating a model on sequence lengths that are

within the range observed during training, one can instead construct a learnable

parameter S ′ ∈ RTmax×d and compute xt + S ′[t], i.e. learn each unit of time as

independent tokens (Al-Rfou et al., 2019). The proposed benefit of using sinu-

soidal encodings is it injects the prior of a continuity of time and better facilitates

generalisation to time ranges unseen during training.

Further iterations on how transformers should understand time have become pop-

ular. The notion of relative positional encoding avoids the placement of absolute

time-stamps on inputs, instead preferring attending from timestep t to a timestep

r-timesteps ago. One simple way of doing this is by adding a term to the attention

computation:

aij′ = (qkT )ij + qiR[i− j]T

where R ∈ Rn×d is a learnable matrix and R[i−j] ∈ R1×d is the row which indicates

attending ‘i− j’ steps back in time (Shaw et al., 2018).

A slight variation on relative positional encodings was proposed by Dai et al.
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(2019), where we construct R not as a full learnable matrix of size n × d but as

a combination of sinusoidal encodings and a learnable embedding Rsin = SR′,

where S is defined in (2.6) and R′ ∈ Rd×d. The authors note this outperforms

the previous brute-force relative positional encoding scheme when the model is

evaluated outside of temporal ranges observed during training — alike to that of

the absolute positional encoding.

One benefit to a relative view of time is that one does not have to maintain

a consistent representation of a timestamp in memory. That is, in the absolute

positional encoding case, old activations essentially store their underlying timestep.

If there is a drift in representations over time, this may become meaningless. With

relative positions, one makes use of the fact that activations are temporally ordered

in the Transformer and thus the network can discern which activations are older

or younger at the time of query. In Chapter 6 we introduce a transformer variant

with a compressive memory which compacts information over time. Crucially this

model preserves the temporal ordering of memories, thus we use relative position

encodings.

2.3.10 Non-parametric Classification

Instead of having neural networks read and manipulate memory, there has been a

prevalence of using memory as a non-parametric classifier which is paired with a

neural network. One combines the two models by mixing their output probability

distributions from the parametric model and memory respectively. The benefit

of this approach is that the neural network does not have to learn how to read

memory and thus can be trained as a standalone system. The memory is simply
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appended to improve the model’s ability to recognise and model unfamiliar (or

previously unseen) words.

One particular architecture which uses memory as a mixture model in this manner

is the Neural Cache (Grave et al., 2016b). This uses a memory for the modelling of

natural language, specifically the prediction of the next word — otherwise referred

to as language modelling. The cache is a store of the last n hidden activations along

with their corresponding target outputs (next words) from a trained parametric

language model, such as the Long Short Term Memory (LSTM). The conditional

probability of a word w occurring is proportional to the sum over kernalised inner

product similarities between the current hidden state ht and past hidden states

when word w occurred.

pnp(w | ht) ∝
t−1∑
i=t−n

eh
T
t hi I{yi = w} (2.7)

Where I{p} = 1 if p is true, 0 otherwise. The overall model output

p = λpnp + (1− λ)pp

is an interpolation of the cache’s output probability pnp and the neural network’s pp

using a fixed hyper-parameter λ, which is swept over during validation. Although

the cache is of fixed size n, it can be defined to be very large with sparse attention

and efficient data-structures (Rae et al., 2016; Kaiser et al., 2017; Grave et al.,

2017).
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2.4 Memory Tasks

The creation of tasks to benchmark and analyse artificial memory systems is of

equal importance to the creation of architectures themselves, as better tasks often

drive the development of better architectures. We highlight some tasks that have

been associated with seminal architectures in the development of artificial neural

networks and make the case for modelling natural language as a non-synthetic

problem which contains challenges for long-range memory systems.

2.4.1 Selective Processing of a Stream of Numbers

As part of the development of the LSTM (Hochreiter and Schmidhuber, 1997),

six synthetic memory tasks were proposed to display the LSTM’s ability to retain

information over a long period of time. Crucially each of these tasks had the

format of receiving a stream of bits or floating point values, a channel which

would indicate which memories would be selected, and then and then the target

output which would consist of a simple function over the selected bits (e.g. an OR

operation). This included very simple tasks, such as copying the first timestep’s bit

pattern, after a sequence of distractors, to more challenging tasks such as adding

or multiplying two selected floating-point numbers within a sequence of distractor

floating-point numbers.

LSTMs performed very well at these tasks because they could learn to ignore dis-

tractor inputs, and could retain information over sequences of up to 1,000 timesteps

long. Crucially, none of these tasks required the storage of many pieces of infor-

mation. In all tasks the model would only need to retain up to two numbers, along

with their temporal ordering in some instances.
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2.4.2 Algorithmic Tasks

A set of algorithmic tasks were proposed by Graves et al. (2014) as part of the

development of the NTM. These had a similar flavour to the LSTM tasks however

they required the storage of a large quantity of information, and richer processing

of multiple timestep’s worth of data. These included copying a sequence of bits a

variable number of times (shown in Figure 2.11) and sorting a sequence of values.

This also included associative recall: retrieving an element from a sequence that

follows a given query.

Figure 2.11: The repeated copy task from Graves et al. (2014), given an input
sequence of bits and a number of repeats specification n, repeat the sequence n
times.

These tasks required the content-based selection of past inputs, the ability to se-

quentially iterate through past elements in temporal order, and the maintenance

of temporary local values such as a counter to track the number of copies per-

formed in a repeated copy operation. Whilst the LSTM was able to solve these

tasks at small scale, it simply could not scale to sequences containing hundreds of

timesteps. The inclusion of a larger-capacity external memory was thus shown to

be essential. We investigate these tasks at huge capacity in Chapter 3, pushing

the number of items to store and the length of sequences, to the order of hundreds

of thousands.
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2.4.3 Language Modelling

Finding machine learning tasks which both drive the development of better mem-

ory architectures, push us further towards artificial general intelligence, and have

real-world downstream applications is challenging. Statistical language modelling

is one such task that could be valuable for all such purposes as argued by Rae and

Lillicrap (2020). We incorporate it several times throughout the thesis as a core

task. Language models work by sequentially predicting the next word in a stream

of text. One can express the probability of a sequence of text as the product of

conditional word probabilities,

p(w1, w2, . . . , wt) =
t∏
i=1

p(wi | w1, w2, . . . , wi−1)

which are estimated separately.

Traditional n-gram models take frequency-based estimates of these conditional

probabilities with truncated contexts pn = p(wi | wi−n, . . . , wi−1) and smooth

between them to estimate the full conditional probability, p(wi | w1, . . . , wi−1) =∑n
j=1 λjpj. A popular approach is Kneser-Ney smoothing (Kneser and Ney, 1995).

More recently, neural language models such as LSTMs, convolutional neural net-

works, and Transformers directly model the conditional probabilities by character-

ising the past with their internal memory structures. This has lead to a continual

advancement in state-of-the-art performance across established benchmarks over

the years (Mikolov et al., 2010; Collobert and Weston, 2008; Sundermeyer et al.,

2012; Kalchbrenner et al., 2014; Jozefowicz et al., 2016; Dauphin et al., 2016; Melis

et al., 2017; Dai et al., 2019).
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Language models can be used to model existing texts and also to generate novel

texts. As they get better at modelling the past, their predictions become more

accurate, and the texts they generate become more realistic. Thus better memory

systems can become drivers for better language models.

In Claude Shannon’s seminal article ‘A Mathematical Theory of Communication’

published in 1948, which founded the field of information theory, he discussed

primitive language models and illustrated how adding more context improves the

quality and realism of generated text (Shannon, 1948). He does this by introducing

the most simple model of English text, which has no contextual modelling at all:

a character-level model which treats each character independently. By sampling

characters with their relative frequencies (8% of the time for a, 1.5% for b etc.)

we arrive with a nonsensical string :

xfoml rxkhrjffjuj zlpwcfwkcyj ffjeyvkcqsghyd qpaamkbzaacibzlhjqd.

However, he remarks at the improvement in sample quality if one instead models

the probability of words independently. Now the modelled context is approxi-

mately 7X larger (the average number of characters in a word):

representing and speedily is an good apt or come can different

natural here he the a in came the to of to expert gray come

to furnishes the line message had be these.

By modelling the probability of word pairs, a further 2X in context length, even

more realistic text emerges:

the head and in frontal attack on an english writer that the

character of this point is therefore another method for the
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letters that the time of who ever told the problem for an

In other words, an increase in the length of context leads to an improvement in

the quality of text generated. Shannon remarks on the quality of his produced

samples and conjectures that natural text samples may emerge from a sufficiently

complex statistical model, “The particular sequence of ten words ‘attack on an

English writer that the character of this’ is not at all unreasonable. It

appears then that a sufficiently complex stochastic process will give a satisfactory

representation of a discrete source.”

One criticism of language modelling as a task for long-range reasoning is that

models can capture a large portion of their predictions from the local context.

Neural language models have traditionally ignored the wider context, focusing

mostly on the short term. For example, it was observed an LSTM language model

augmented with attention would rarely look beyond the preceding five words in

order to make a prediction (Daniluk et al., 2017).

However in the past year large Transformer models have been shown to make

use of hundreds of words of context to generate ever-more realistic text with a

longer range of coherence. A demo from OpenAI’s GPT-2 (Radford et al., 2019),

a 1.5B parameter Transformer, indicate that the model is able to generate realistic

text and retain key entities (e.g. Dr Jorge Perez and unicorns) across multiple

paragraphs:

“‘The scientist named the population, after their distinctive horn, Ovid’s

Unicorn. These four-horned, silver-white unicorns were previously

unknown to science.
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Now, after almost two centuries, the mystery of what sparked this odd

phenomenon is finally solved.

Dr. Jorge Perez, an evolutionary biologist from the University of

La Paz, and several companions, were exploring the Andes Mountains

when they found a small valley, with no other animals or humans.

Perez noticed that the valley had what appeared to be a natural foun-

tain, surrounded by two peaks of rock and silver snow.

Perez and the others then ventured further into the valley. ‘By the

time we reached the top of one peak, the water looked blue, with some

crystals on top,’ said Perez.

Perez and his friends were astonished to see the unicorn herd. These

creatures could be seen from the air without having to move too much

to see them, they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that

the creatures also spoke some fairly regular English. Perez stated, ‘We

can see, for example, that they have a common language, something

like a dialect or dialectic.’

Dr. Perez believes that the unicorns may have originated in Ar-

gentina, where the animals were believed to be descendants of a lost

race of people who lived there before the arrival of humans in those

parts of South America.

While their origins are still unclear, some believe that perhaps the

creatures were created when a human and a unicorn met each other
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in a time before human civilization. According to Perez, ‘In South

America, such incidents seem to be quite common.’

However, Perez also pointed out that it is likely that the only way of

knowing for sure if unicorns are indeed the descendants of a lost alien

race is through DNA. ‘But they seem to be able to communicate in

English quite well, which I believe is a sign of evolution, or at least a

change in social organization,’ said the scientist.”’

It is becoming increasingly clear that a powerful model can thus use long contexts

to improve their modelling of natural language, and this can even be evident when

evaluating long-form samples. In this thesis we find we are able to make significant

gains in language model performance by effectively modelling over 5,000 words of

context (see Chapter 6).

Language Models Applications

Modern language model samples would likely astound Shannon, 70 years on from

his early language model experiments. However the real benefit of powerful neural

language models and their relevance to the goal of AGI is their ability to transfer

knowledge to a suite of tasks. In the process of learning how to model text,

neural language models appear to build up a knowledge-base of associations, and

a plethora of skills.

Language modelling can be directly applied to predictive text applications, how-

ever language models are also implicitly part of many other systems, such as speech

recognition models and even machine translation systems. More recently, it has

been observed that pre-training language models can result in strong representa-
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tions of natural language, and the models can be fine-tuned to obtain state-of-the-

art results in question answering, text classification benchmarks, search ranking,

and dialogue.

Researchers at OpenAI showed that GPT-2 can be applied to natural-language

processing tasks such as question answering, paraphrasing, or sentiment analysis

with surprisingly good performance, especially for a model that has never been

explicitly trained to perform such tasks (Radford et al., 2019). When large Trans-

former language models are fine-tuned on particular tasks such as question an-

swering, the resulting performance is significantly better than models that were

designed and trained solely for question answering (Raffel et al., 2020). Google’s

prominent natural language model, BERT (Devlin et al., 2019), is a transformer

which achieves state-of-the-art performance on a wide array of NLP benchmarks,

and is now incorporated to rank results in Google Search. And more recently,

it was shown that GPT-2 can learn to play rudimentary chess by training it on

strings of game moves (Alexander, 2020).

Benchmarking language models

The canonical benchmark for language models which has seen progress over from

n-gram language models to the latest transformer architectures is Penn Treebank,

a selection of Wall Street Journal articles initially used by Mikolov et al. (2010)

to demonstrate the effectiveness of RNN-based LMs. However the average article

length is 350 words and the dataset size is very small, which renders overfitting

as the principal challenge to overcome. A more recent popular long-range lan-

guage model benchmark is WikiText-103, which is comprised of English-language
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Wikipedia articles (Merity et al., 2016). Articles are around 3,600 words on av-

erage, which, at the time of creation, was far beyond the memory window of

state-of-the-art models.

However researchers at Google recently showed that a Transformer variant called

the TransformerXL which maintains a memory of past network activations and

recently obtained state-of-the-art results on WikiText-103 can make use of contexts

spanning over one thousand words (Dai et al., 2019). This raises the question: will

models soon saturate these benchmarks? As such, we’ve compiled and released a

new, longer-range language model benchmark based on books called PG-19 which

we discuss in Section 6.4.

2.4.4 Question Answering

One of the most closely related tasks to memory is question answering (QA); prob-

ing for information from a knowledge base or from a model’s past observations.

Auto-associative memory retrieval can be phrased as a question answering prob-

lem, “find a past observation similar to this query” as can many temporal reasoning

tasks. We break down question answering into the synthetic, where a templated

observation is seen and a query is generated which tests a particular form of tem-

poral reasoning, and natural-data question answering where the knowledge base

and questions are sourced from real data. Question answering benchmarks cover

both visual question answering over video (Tapaswi et al., 2016), and images (An-

tol et al., 2015), however in this section we restrict the scope to the rich domain

of text-only question answering.
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Synthetic QA with bAbI

A suite of synthetic text-reasoning tasks named ‘bAbI’ was developed alongside the

creation of Memory Networks (Weston et al., 2015). These are framed as question-

answering tasks where there is a specific underlying template to the context and

answer, to test a different feature of memory. It includes, in full, 20 separate tasks

and models are encouraged to train jointly on all problems. Some include simple

yes-no questions, e.g. Task 6: “John moved to the playground. Daniel went to the

bathroom. John went back to the hallway. Is John in the playground? A:no. Is

Daniel in the bathroom? A: yes”, some are specifically designed to require two-

hope reasoning, e.g. Task 2: “John is in the playground. John picked up the

football. Bob went to the kitchen. Where is the football? A: playground”.

These tasks emulate a natural-language reasoning over text, and specify different

functions of memory: the ability for content-based retrieval, the updating of facts

about an entity (e.g. the location of a person), and the redundancy of language. We

introduce an architecture, the Sparse Differentiable Neural Computer, in Chapter 3

that obtained state-of-the-art results on this task for several years. The benefit

of these tasks is they clearly isolate different properties of memory we would like

from an agent, e.g. transitive reasoning. However one drawback is that the context

lengths are quite short, a couple of sentences, and the language is very simplistic.

The text does not emulate the challenges of memory in the real world, that is

they do not incorporate noise, a natural curriculum of temporal range, nor the

often indirect purpose of memory. In the next section we discuss the modelling of

real-world text as another driver of memory research.
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Open-Book QA

Much of the focus on question answering from natural data has focused on open-

book QA. In the open-book question answering formulation we have a triplet of

(context, query, answer) with the intention that an answer should be plausibly ob-

tained from the given context. Typically the context is not very long, a paragraph

extract or more recently a collection of articles up to several thousand words.

Within this broad category there has been a progression of question answering

from closed domain tasks where the answers are always constrained to be words

or entities from the context. This has then transitioned to open domain ques-

tion answering benchmarks which usually start with a set of naturally occuring

questions, e.g. from web searches, and they provide a set of contexts which are

deemed to be helpful, with answers that may a single word or even a sentence. At

the beginning of this study the prominent question answering benchmarks were

closed-domain and took the form of a Cloze task (Taylor, 1953).

Closed-Domain QA with Cloze

In the Cloze formulation, the model with a body of context text and an additional

sentence (the query) with one or more missing words that need to be predicted

(the answer). The CNN/Daily Mail dataset (Hermann et al., 2015) uses news

articles as context, LAMBADA (Paperno et al., 2016) and the Children’s Book

Test (Hill et al., 2015) uses book text, SQUAD Ȧn example of a Daily Mail context,

query and answer triplet is shown in Table 2.2. The classification of these tasks

as QA is fuzzy, these Cloze-formulated benchmarks can also be considered to be

regular masked language modelling tasks or even summarisation tasks in the case
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Table 2.2: Example context, query and answer from the Daily Mail dataset (Her-
mann et al., 2015).

Context: The BBC producer allegedly struck by Jeremy Clarkson will not
press charges against the “Top Gear” host, his lawyer said Friday. Clark-
son, who hosted one of the most-watched television shows in the world, was
dropped by the BBC Wednesday after an internal investigation by the British
broadcaster found he had subjected producer Oisin Tymon “to an unprovoked
physical and verbal attack.” . . .
Query: Producer X will not press charges against Jeremy Clarkson, his lawyer
says.
Answer: Oisin Tymon

of CNN/Daily Mail, since for this dataset the held-out terms (answers) are all

sourced from article summaries.

The motivation behind these benchmarks is to discern models with better read-

ing comprehension, an ability to process some stream of input and display an

understanding of its contents by answering or completing carefully constructed

questions. For example LAMBADA chooses book extracts that human raters con-

sider to have a clear correct completion with a longer context but also a compelling

but incorrect completion if one considers only the local context. CNN/Daily Mail

chooses queries that are picked from bulleted summaries of the articles. However it

is difficult to construct probes for true comprehension. An analysis by Chen et al.

(2016) showed that from a sample of 100 datapoints from the CNN/Daily Mail

benchmark only 2% required reasoning across more than 1 sentence, with 54%

being either exact or paraphrased by a sentence in the context, 8% containing

incorrect answers, and 17% being considered ambiguous.

The types of architectures that have demonstrated best performance for these

types of question answering benchmarks have been models with a very simple
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attention mechanism. One of which is the Attentive Reader (Hermann et al.,

2015) which is a variant of a Memory Network (Weston et al., 2015). The Attentive

Reader encodes both the query and document tokens using a bi-directional RNN,

computes a content-based attention score between the query and each document

token feeds the query and attention result through an MLP to give the predicted

answer token. Better performance was later obtained by simplifying the memory

scheme to attend and retrieve tokens directly instead of embeddings; this model

is called the Attention Sum Reader (Kadlec et al., 2016).

The Attention Sum Reader can be briefly written down as computing

P (w|q, c) ∝
n∑
i=1

I{ci = w}ef(q)T g(ci) (2.8)

where w is a candidate answer, ci is the i-th token in the context, q is the query

string and f and g are neural network encoders that map a string query and context

token respectively to fixed-sized embedding with d dimensions. The model uses

a very similar token-level attention scheme as the previously mentioned Neural

Cache (2.7). The Attention Sum Reader contains a key, value memory; the key

being a document token embedding g(ci) the value being the document token ci,

and the query being a fixed-size embedding of the question f(q). Thus this model

can only use its memory to copy a token from the context. This model is actually

an instance of a Pointer Network (Vinyals et al., 2015), which is a general encoder-

decoder model that uses attention to copy from its stream of inputs, however it is

specialised to QA.

At the time of initiating this study the Attention Sum Reader was state-of-the-art

88



across the Children’s Book Test, Daily Mail and CNN benchmarks despite being

much simpler than existing memory models in construction (e.g. versus the At-

tentive Reader, or even the Neural Turing Machine). This was another indication,

prior to the dataset analysis by Chen et al. (2016) that these datasets favour mod-

els which can copy a particular word from the context with some contextual clues

from the query, but such models are, by construction, limited in their ability to

reason over time. For example, the Attention Sum Reader would not be able to

count the occurrence of a mentioned entity, or transitively infer the relationship

between two disparately mentioned entities.

Due to the emphasis on single-term retrieval versus temporal reasoning over long

time-scales for these benchmarks, the incorporation of question answering to bench-

mark lifelong reasoning must be treated with careful deliberation. We want to

pursue a model that can read a book, for example, and answer many questions on

its contents that require multi-hop reasoning and require the model to compress

salient pieces of information.

Open Domain QA

Several question answering benchmarks have tested open-domain question answer-

ing capability where a selection of questions is gathered, e.g. from web searches,

and relevant contexts and answers are coupled together. Such datasets in this

category are WikiQA (Yang et al., 2015) which takes search queries from Bing

and matches them to relevant extracts from Wikipedia; SQuAD (Rajpurkar et al.,

2016) which takes paragraphs from Wikipedia and crowd-sources questions and an-

swers based on the content, TriviaQA (Joshi et al., 2017) which sourced questions
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and answers from trivia sites and contexts from Bing and a Wikipedia entity-

matching search, HotpotQA (Yang et al., 2018) from crowd-sourced questions and

Wikipedia contexts with a filtering system to isolate difficult multi-hop reasoning

questions, and Natural Questions (Kwiatkowski et al., 2019) which pairs queries,

contexts and answers from Google Search results.

These datasets are making progress on the front of requiring more complex reason-

ing. For example, from CNN/DailyMail’s estimated 2% of questions which require

multi-sentence reasoning, SQuAD is estimated to contain 14%, and HotPotQA it

is estimated to be over 90%. They also push dataset scale and context lengths,

from sentences in WikiQA with less than 100 words on average to entire Wikipedia

pages in Natural Questions with thousands of words on average. The encouraging

progression we are seeing from open domain QA is that progress is being made

by very recent transformer variants which incorporate deep and sparse (via static

attention sparsity) and compressive (via global attention) memory systems, such

as BigBird (Zaheer et al., 2020) and the LongFormer (Beltagy et al., 2020). Thus

whilst simplifying the memory architecture improved performance for the closed-

domain Cloze QA tasks that were present at the inception of this study, we are

seeing better tasks now drive better architectures. Some of these datasets can be

approached without the open-book formulation, i.e. where a relevant context is re-

quired. New neural network architectures such as REALM (Guu et al., 2020) and

RAG (Lewis et al., 2020) do not make use of the provided context page but search

for relevant contexts from a large knowledge base, such as Wikipedia. These very

recently created systems, formulated at the point this study had been concluded,

combines many architectural components that this study finds necessary for life-
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Figure 2.12: A schematic of the Retrieval-Augmented Generation (RAG) approach
from (Lewis et al., 2020). Here MIPS refers to Maximum-Inner Product Search, an
instance of Approximate Nearest Neighbour Search discussed in Chapter 3. The
model combines a large-scale sparse retrieval system with a granular reasoning
over the retrieved documents for answer generation.

long reasoning: approximate nearest neighbour indexing for efficient neural search,

sparse attention of documents, compression via transformers to create small doc-

ument embeddings and more granular attention over relevant documents. Thus

question answering is not only morphing from closed-domain open-book question

answering to open-domain, but it is removing the contextual supervision entirely to

create more and more powerful memory architectures and retrieval systems.

Closed-Book Question Answering

One future direction for question answering which has a small but growing up-

take near this study’s conclusion is closed-book question answering. In contrast

to starting with a question and scanning through the context to look for rele-

vant key-words, which emphasizes the information-retrieval component of mem-

ory, closed-book question answering maps directly from question to answer. Thus

when processing context, the model must compress salient pieces of information

with much less supervision over what to store. This more closely resembles the role
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of episodic memory in the human brain, where we choose what to store up-front

without knowing what we will need to remember in future.

The most powerful closed-book question answering system at present is a large-

scale language model tuned or primed on question answering data (Brown et al.,

2020; Raffel et al., 2020). These models are able to store and recall a huge quantity

of information and facts from pre-training in the model parameters, and flexibly

access this to answer unseen questions. However this process moreso resembles the

semantic memory in Tulving’s classification versus episodic memory.

If we give a model sufficient storage capacity and compute, the harder problem of

closed-book question answering boils down to open-book question answering, as the

model can simply store everything it has seen in an exact form before encountering

its query. Then upon reading the query, it can search over its uncompressed

knowledge base using an information-retrieval system such as RAG or REALM.

Whilst this may seem contrived, this becomes more and more likely with language

models whose parameters’ capacity far exceeds the training set size.

An interesting benchmark that does not appear to exist at present, but would

stress the type of lifelong episodic memory architecture of interest, would be a

closed-book question answering task where the model is constrained in the size

of its memory. The model would read a book, for example, and then answer

questions about the content but it would be forced to store only a small amount

of data from the book — inhibiting it from copying it. This would force the

model to learn a general compression of its memory for many potential questions

or reasoning tasks.
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In conclusion, this thesis has not relied heavily on question answering simply be-

cause the right kinds of benchmarks and datasets were not present at its inception.

However the pace of benchmark creation has picked up and question answering

tasks now appear to be motivating lifelong reasoning architectures. Thus it has

much future promise.
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Chapter 3

Scaling Memory with Sparsity

Neural networks augmented with external memory have the ability to learn algo-

rithmic solutions to complex tasks. These models appear promising for applica-

tions such as language modelling and machine translation. However when trained

with soft attention over the entire memory, their compute scales linearly or even

quadratically as the amount of memory grows. This in turn forces us to use small

memories which cover only a small window of time from the past — limiting their

applicability to real-world domains. In this chapter we propose an end-to-end dif-

ferentiable memory access scheme, which we call Sparse Access Memory (SAM),

that retains the representational power of the original approaches whilst training

efficiently with very large memories.

We show that SAM achieves asymptotic lower bounds in space and time complex-

ity, reaching logarithmic time to access memory and consuming only a constant

amount of additional space per training step. Empirically, we find that an imple-

mentation runs 1,000× faster and with 3,000× less physical memory than non-
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sparse models. SAM learns with comparable data efficiency to existing models on

a range of synthetic tasks and few-shot Omniglot character recognition, and can

scale to tasks requiring 100,000s of time steps and memories. As well, we show

how our approach can be adapted for models that maintain temporal associations

between memories, as with the recently introduced Differentiable Neural Com-

puter (DNC), proposing another sparse model — the Sparse Differentiable Neural

Computer (SDNC). We find the SDNC achieved state-of-the-art performance in

the bAbI question answering task, outperforming the DNC, Memory Networks,

and LSTM on this benchmark. Thus we conclude sparsity can not only help scale

memory systems, but it can also improve learning.

3.1 Motivation

Recurrent neural networks, such as the Long Short-Term Memory (LSTM) (Hochre-

iter and Schmidhuber, 1997), have proven to be powerful sequence learning mod-

els (Graves et al., 2013; Sutskever et al., 2014). However, one limitation of the

LSTM architecture is that the number of parameters grows proportionally to the

square of the size of the memory, making them unsuitable for problems requiring

large amounts of long-term memory. Recent approaches, such as Neural Tur-

ing Machines (NTMs) (Graves et al., 2014) and Memory Networks (Weston et al.,

2014), have addressed this issue by decoupling the memory capacity from the num-

ber of model parameters. We refer to this class of models as memory augmented

neural networks (MANNs). External memory allows MANNs to learn algorithmic

solutions to problems that have eluded the capabilities of traditional LSTMs, and

to generalise to longer sequence lengths. Nonetheless, MANNs have had limited
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success in real world application.

A significant difficulty in training these models results from their smooth read

and write operations, which incur linear computational overhead on the number

of memories stored per time step of training. Even worse, they require duplication

of the entire memory at each time step to perform backpropagation through time

(BPTT). To deal with sufficiently complex problems, such as processing a book, or

Wikipedia, this overhead becomes prohibitive. For example, to store 64 memories,

a straightforward implementation of the NTM trained over a sequence of length

100 consumes ≈ 30 MiB physical memory; to store 64,000 memories the overhead

exceeds 29 GiB (see Figure 3.3).

In this chapter, we present a MANN named SAM (sparse access memory). By

thresholding memory modifications to a sparse subset, and using efficient data

structures for content-based read operations, our model is optimal in space and

time with respect to memory size, while retaining end-to-end gradient based opti-

misation. To test whether the model is able to learn with this sparse approxima-

tion, we examined its performance on a selection of synthetic and natural tasks:

algorithmic tasks from the NTM work (Graves et al., 2014), bAbI reasoning tasks

used with Memory Networks (Sukhbaatar et al., 2015) and Omniglot few-shot clas-

sification (Santoro et al., 2016a; Lake et al., 2015). We also tested several of these

tasks scaled to longer sequences via curriculum learning. For large external mem-

ories we observed improvements in empirical run-time and memory overhead by

up to three orders magnitude over vanilla NTMs, while maintaining near-identical

data efficiency and performance.

Further, in Section 3.5 we demonstrate the generality of our approach by de-
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scribing how to construct a sparse version of the recently published Differentiable

Neural Computer (Graves et al., 2016). This Sparse Differentiable Neural Com-

puter (SDNC) is over 400× faster than the canonical dense variant for a memory

size of 2,000 slots, and achieves the best reported result in the bAbI tasks without

supervising the memory access.

3.2 Architecture

This section introduces Sparse Access Memory (SAM), a new neural memory ar-

chitecture with two innovations. Most importantly, all reads and writes to exter-

nal memory are constrained to a sparse subset of the memory words, providing

similar functionality as the NTM, while allowing computational and memory ef-

ficient operation. Secondly, we introduce a sparse memory management scheme

that tracks memory usage and finds unused blocks of memory for recording new

information.

For a memory containing N words, SAM executes a forward, backward step in

Θ(logN) time, initialises in Θ(N) space, and consumes Θ(1) space per time step.

Under some reasonable assumptions, SAM is asymptotically optimal in time and

space complexity (Section 3.3).
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3.2.1 Read

The sparse read operation is defined to be a weighted average over a selection of

words in memory:

r̃t =
K∑
i=1

ãRt (si)Mt(si), (3.1)

where ãRt ∈ RN contains K number of non-zero entries with indices s1, s2, . . . , sK ;

K is a small constant, independent of N , typically K = 4 or K = 8. We will refer

to sparse analogues of weight vectors w as w̃, and when discussing operations that

are used in both the sparse and dense versions of our model use w.

3.2.2 Sparse Attention

In general we would like to construct a sparse attention vector which preserves

the read contents, i.e. r̃t ≈ rt. For content-based reads where aRt is defined by

(2.4), an effective approach is to keep the K largest non-zero entries and set the

remaining entries to zero. We re-normalise the non-zero components to keep the

attention sum to one.

The sparse attention operator is no longer uniformly continuous as it has a point

of discontinuity for queries which lie on the voronoi boundary of their K-nearest

neighbours. We could consider different ways of inducing sparsity, such as applying

an L1 penalty to the attention weights such that many are pushed to zero naturally.

We could also consider using the SparseMax (Martins and Astudillo, 2016) which

projects the logits onto the closest point lying on the probability simplex. Both

of these methods povide a differentiable and principled way of achieving sparsity
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however they both have the drawback in being linear-time operations, with respect

to the memory size N .

Sub-linear methods can be used to approximately find the K largest attention

values. Whilst we can compute ãRt naively in O(N) time by calculating aRt and

keeping the K largest values. Since the K largest values in aRt correspond to the

K closest points to our query qt, we can use an approximate nearest neighbour

data-structure, described in Section 3.2.7, to calculate ãRt in O(logN) time.

The sparse read can be considered a special case of the matrix-vector product

defined in (2.3), with two key distinctions. The first is that we pass gradients

for only a constant K number of rows of memory per time step, versus N , which

results in a negligible fraction of non-zero error gradient per timestep when the

memory is large. The second distinction is in implementation: by using an efficient

sparse matrix format such as Compressed Sparse Rows (CSR), we can compute

(3.1) and its gradients in constant time and space (see Section 3.3).

3.2.3 Write

The write operation is SAM is an instance of (2.5) where the write weights ãWt are

constrained to contain a constant number of non-zero entries.

Mt ← (1− ãWt eTt )�Mt−1 + ãWt w
T
t . (3.2)

This controller writes either to the previously read locations, in order to update

contextually relevant memories, or the least recently accessed location, in order to

overwrite stale or unused memory slots with fresh content. This write scheme is
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inherited from the Neural Turing Machine and the idea behind it is that we may

want to update some recent information or allocate a new slot in memory. When

we overwite a slot in memory the question arises, which slot should we garbage

collect? Taking inspiration from cache data structures, this is chosen to be the slot

which has been least ‘used’ where the usage will be defined formally in (3.4).

It is worth noting that in the case where the maximum number of slots is small in

comparison to the sequence length, this least usage mechanism can counterract the

learning of long-range dependencies for data that would not be read for long spans

of time. This could be counter-acted by using a learned saliency that can decidedly

store a class of input for longer stretches of time, however for the class of problems

we consider we find this cache-inspired system works sufficiently well.

The introduction of sparsity could be achieved via other write schemes. For exam-

ple, we could use a sparse content-based write scheme, where the controller chooses

a query vector qWt and applies writes to similar words in memory. This would allow

for direct memory updates, but would create problems when the memory is empty

(and shift further complexity to the controller). We decided upon the previously

read / least recently accessed addressing scheme for simplicity and flexibility.

The write weights are defined as

aWt = αt
(
γt a

R
t−1 + (1− γt) IUt

)
, (3.3)

where the controller outputs the interpolation gate parameter γt and the write gate

parameter αt. The write to the previously read locations aRt−1 is purely additive,

while the least recently accessed word IUt is set to zero before being written to.
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When the read operation is sparse (aRt−1 has K non-zero entries), it follows the

write operation is also sparse.

We define IUt to be an indicator over words in memory, with a value of 1 when the

word minimises a usage measure Ut

IUt (i) =


1 if Ut(i) = min

j=1,...,N
Ut(j)

0 otherwise.

(3.4)

If there are several words that minimise Ut then we choose arbitrarily between

them. We tried two definitions of Ut. The first definition is a time-discounted

sum of write weights U
(1)
T (i) =

∑T
t=0 λ

T−t (aWt (i) + aRt (i)) where λ is the discount

factor.

This usage definition is incorporated within Dense Access Memory (DAM), a

dense-approximation to SAM that is used for experimental comparison in Sec-

tion 3.4.

The second usage definition, used by SAM, is simply the number of time-steps

since a non-negligible memory access: U
(2)
T (i) = T −max { t : aWt (i)+aRt (i) > δ} .

Here, δ is a tuning parameter that we typically choose to be 0.005. We maintain

this usage statistic in constant time using a custom data-structure (described in

Section 3.3). Finally we also use the least recently accessed word to calculate the

erase matrix. Rt = IUt 1T is defined to be the expansion of this usage indicator

where 1 is a vector of ones. The total cost of the write is constant in time and

space for both the forwards and backwards pass, which improves on the linear

space and time dense write.
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3.2.4 Setting the Memory Size N vs T

We denote N to be the maximum memory size, this value does not need to equal

the sequence length T . In general the dense models which we compare to, such

as DAM, the NTM, and DNC choose N to be much smaller than T due to com-

putational and space limitations, however for SAM we can set N to be equal to

T , and dynamically allocate memory slots as they are needed. The sparsity of the

write scheme allows us to distinguish between unwritten memory slots and written

memory slots, which means after ten time-steps the model knows to only attend

to the first ten slots in memory, even if the total sequence length and memory

capacity is in the thousands.

In this chapter we always consider episodic tasks where the memory is reset be-

tween episodes and we backpropagate-through-time over the whole sequence. If

this were not the case, we would also posit that SAM would be well-suited to

non-episodic tasks where memory is preserved across many episode boundaries as

this would require a large memory slot budget.

3.2.5 Controller

We use a one layer LSTM for the controller throughout. At each time step, the

LSTM receives a concatenation of the external input, xt, the word, rt−1 read in

the previous time step. The LSTM then produces a vector, pt = (qt, wt, αt, γt), of

read and write parameters for memory access via a linear layer. The word read

from memory for the current time step, rt, is then concatenated with the output

of the LSTM, and this vector is fed through a linear layer to form the final output,

yt. The full control flow is illustrated in Figure 3.1.
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Figure 3.1: Schematic showing how the controller interfaces with the external
memory in our experiments. The controller (LSTM) output ht is used (through
a linear projection, pt) to read and write to the memory. The result of the read
operation rt is combined with ht to produce output yt, as well as being feed into
the controller at the next timestep (rt−1).

3.2.6 Efficient backpropagation through time

We have already demonstrated how the forward operations in SAM can be effi-

ciently computed inO(T logN) time. However, when considering space complexity

of MANNs, there remains a dependence on Mt for the computation of the deriva-

tives at the corresponding time step. A naive implementation requires the state of

the memory to be cached at each time step, incurring a space overhead of O(NT ),

which severely limits memory size and sequence length.

Fortunately, this can be remedied. Since there are onlyO(1) words that are written

at each time step, we instead track the sparse modifications made to the memory

at each timestep, apply them in-place to compute Mt in O(1) time and O(T )

space. During the backward pass, we can restore the state of Mt from Mt+1 in

O(1) time by reverting the sparse modifications applied at time step t. As such the

memory is actually rolled back to previous states during backpropagation (Figure

3.2).
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At the end of the backward pass, the memory ends rolled back to the start state.

If required, such as when using truncating BPTT, the final memory state can be

restored by making a copy of MT prior to calling backwards in O(N) time, or by

re-applying the T sparse updates in O(T ) time.

3.2.7 Approximate nearest neighbours

When querying the memory, we can use an approximate nearest neighbour index

(ANN) to search over the external memory for the K nearest words. Where a linear

KNN search inspects every element in memory (taking O(N) time), an ANN index

maintains a structure over the dataset to allow for fast inspection of nearby points

in O(logN) time.

In our case, the memory is still a dense tensor that the network directly operates

on; however the ANN is a structured view of its contents. Both the memory

and the ANN index are passed through the network and kept in sync during

writes. However there are no gradients with respect to the ANN as its function is

fixed.

We considered two types of ANN indexes: FLANN’s randomised k-d tree imple-

mentation (Muja and Lowe, 2014) that arranges the data points in an ensemble

of structured (randomised k-d) trees to search for nearby points via comparison-

based search, and one that uses locality sensitive hash (LSH) functions that map

points into buckets with distance-preserving guarantees. We used randomised k-d

trees for small word sizes and LSHs for large word sizes. For both ANN imple-

mentations, there is an O(logN) cost for insertion, deletion and query. We also

rebuild the ANN from scratch every N insertions to ensure it does not become
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Figure 3.2: A schematic of the memory efficient backpropagation through time.
Each circle represents an instance of the SAM core at a given time step. The grey
box marks the dense memory. Each core holds a reference to the single instance of
the memory, and this is represented by the solid connecting line above each core.
We see during the forward pass, the memory’s contents are modified sparsely,
represented by the solid horizontal lines. Instead of caching the changing memory
state, we store only the sparse modifications — represented by the dashed white
boxes. During the backward pass, we “revert” the cached modifications to restore
the memory to its prior state, which is crucial for correct gradient calculations.

105



imbalanced.

3.3 Time and space complexity

In this section we show that SAM requires O(log n) time and O(1) space per

training step. We argue that under a reasonable class of content addressable

memory architectures, SAM is optimal in time and space complexity.

3.3.1 Initialisation

Upon initialisation, SAM consumes O(N) space and time to instantiate the mem-

ory and the memory Jacobian. Furthermore, it requires O(N) time and space to

initialise auxiliary data structures which index the memory, such as the approxi-

mate nearest neighbour which provides a content-structured view of the memory,

and the least accessed ring, which maintains the temporal ordering in which mem-

ory words are accessed. These initialisations represent an unavoidable one-off cost

that does not recur per step of training, and ultimately has little effect on training

speed. For the remainder of the analysis we will concentrate on the space and time

cost per training step.

3.3.2 Complexity of read

Recall the sparse read operation,

r̃t =
K∑
i=1

w̃Rt (si)Mt(si) . (3.5)
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As K is chosen to be a fixed constant, it is clear we can compute (3.5) in O(1) time

despite having a much larger O(N) capacity. It’s worth noting that N could be

constrained to be of constant size, which means the read would also be constant-

time, however the resulting memory would only be able to store a small number

of inputs. During the backward pass, we see the gradients are sparse with only K

non-zero terms,

∂L

∂ãRt
(i) =

 Mt(i) · ∂L∂r̃t if i ∈ {s1, s2, . . . , sK}

0 otherwise.

and

∂L

∂Mt

(i) =

 ãRt (i) ∂L
∂r̃t

if i ∈ {s1, s2, . . . , sK}

0 otherwise.

where 0 is a vector of M zeros. Thus they can both be computed in constant

time by skipping the computation of zeros. Furthermore by using an efficient

sparse matrix format to store these matrices and vectors, such as the CSR, we can

represent them using at most 3K values. Since the read word r̃t and its respective

error gradient is the size of a single word in memory (M elements), the overall

space complexity is O(1) per time step for the read.

3.3.3 Complexity of write

Recall the write operation,

Mt ←Mt−1 − Et + At, , (3.6)
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where At = aWt w
T
t is the add matrix, Et = Mt−1 � Rt is the erase matrix, and

Rt = IUt 1T is defined to be the erase weight matrix. We chose the write weights to

be an interpolation between the least recently accessed location and the previously

read locations,

aWt = αt
(
γt ã

R
t−1 + (1− γt) IUt

)
. (3.7)

For sparse reads where aRt = ãRt is a sparse vector with K non-zeros, the write

weights aWt is also sparse with K + 1 non-zeros: 1 for the least recently accessed

location and K for the previously read locations. Thus the sparse-dense outer

product At = aWt w
T
t can be performed in O(1) time as K is a fixed constant.

Since Rt = IUt 1T can be represented as a sparse matrix with one single non-zero,

the erase matrix Et can also. As At and Et are sparse matrices we can then add

them component-wise to the dense Mt−1 in O(1) time. By analogous arguments

the backward pass can be computed in O(1) time and each sparse matrix can be

represented in O(1) space.

We avoid caching the modified memory, and thus duplicating it, by applying the

write directly to the memory. To restore its prior state during the backward pass,

which is crucial to gradient calculations at earlier time steps, we roll the memory

back by reverting the sparse modifications with an additional O(1) time overhead

(displayed in Figure 3.2).

The location of the least recently accessed memory can be maintained in O(1) time

by constructing a circular linked list that tracks the indices of words in memory,

and preserves a strict ordering of relative temporal access. This uses O(1) space
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per time-step. The first element in the ring is the least recently accessed word in

memory, and the last element in the ring is the most recently modified. We keep a

“head” pointer to the first element in the ring. When a memory word is randomly

accessed, we can push its respective index to the back of the ring in O(1) time by

redirecting a small number of pointers. When we pop the least recently accessed

memory (and write to it) we move the head to the next element in the ring in

O(1) time.

3.3.4 Content-based addressing in O(logN) time

As discussed in Section 3.2.7 we can calculate the content-based attention, or read

weights aRt , in O(logN) time using an approximate nearest neighbour index that

views the memory. We keep the ANN index synchronised with the memory by

passing it through the network as a non-differentiable member of the network’s

state (so we do not pass gradients for it), and we update the index upon each

write or erase to memory in O(logN) time. Maintaining and querying the ANN

index represents the most expensive part of the network, which is reasonable as

content-based addressing is inherently expensive (Motwani et al., 2007; Arya et al.,

1998).

For the backward pass computation, specifically calculating ∂L
∂qt

and ∂L
∂Mt

with

respect to aRt , we can once again compute these using sparse matrix operations in

O(1) time. This is because the K non-zero locations have been determined during

the forward pass.

Thus to conclude, SAM consumes in total O(1) space for both the forward and

backward step during training, O(logN) time per forward step, and O(1) per
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backward step.

3.3.5 Optimality

We remark that SAM is optimal in terms of space and time complexity, within the

class of content addressable memory architectures that are able to retieve memories

that are within some ε distance away from a given query.

This follows from existing lower bounds, Motwani et al. (2007); Arya et al. (1998)

assert that for any data structure which stores N elements and is able to return

the memory that is within a factor of ε off from the truly nearest neighbour, it

must require O(logN) time per query. The optimality of SAM falls from the fact

that it uses an asymptotically optimal approximate nearest neighbour search, and

all other operations are constant space and time per unit memory.

What would it mean for an alternative memory-augmented neural network to

improve upon this, and have constant-time per unit memory? This would imply

it cannot find the approximate nearest neighbour in general. It is plausible this

could be enough for a reasonable class of problems, i.e. auto-association would

be possible if the query could only vary from a given memory in a small discrete

number of ways that was independent of the memory capacity. The nework would

learn a constant number of transformations over the query to determine if it exactly

matches a known memory. Alternatively it would be a memory that retains only

the recent O(1) memories in practice, however in that case the constant-time

query mechanism is a misnomer, and the memory does not truly store O(N)

memories.
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3.4 Results

3.4.1 Speed and memory benchmarks

We measured the forward and backward times of the SAM architecture versus the

dense DAM variant and the original NTM and plot the results in Figure 3.3 when

run on a multi-core CPU. The full details of the benchmark setup are detailed in

Appendix A.2). We find SAM is over 100 times faster than the NTM when the

memory contains one million words and an exact linear-index is used, and 1600

times faster with the k-d tree (Figure 3.3a). With an ANN the model runs in sub-

linear time with respect to the memory size. SAM’s memory usage per time step

is independent of the number of memory words (Figure 3.3b), which empirically

verifies the O(1) space claim from Section 3.3. For 64 K memory words SAM uses

53 MiB of physical memory to initialise the network and 7.8 MiB to run a 100 step

forward and backward pass, compared with the NTM which consumes 29 GiB.
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Figure 3.3: (a) Wall-clock time of a single forward and backward pass. The k-
d tree is a FLANN randomised ensemble with 4 trees and 32 checks. For 1M
memories a single forward and backward pass takes 12 s for the NTM and 7 ms for
SAM, a speedup of 1600×. (b) Memory used to train over sequence of 100 time
steps, excluding initialisation of external memory. The space overhead of SAM
is independent of memory size, which we see by the flat line. When the memory
contains 64,000 words the NTM consumes 29 GiB whereas SAM consumes only
7.8 MiB, a compression ratio of 3700.
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3.4.2 Learning with sparse memory access

We have established that SAM reaps a huge computational and memory advantage

of previous models, but can we really learn with SAM’s sparse approximations? We

investigated the learning cost of inducing sparsity, and the effect of placing an ap-

proximate nearest neighbour index within the network, by comparing SAM with its

dense variant DAM and some established models, the NTM and the LSTM.

We trained each model on three of the original NTM tasks (Graves et al., 2014).

1. Copy: copy a random input sequence of length 1–20, 2. Associative Recall:

given 3-6 random (key, value) pairs, and subsequently a cue key, return the associ-

ated value. 3. Priority Sort: Given 20 random keys and priority values, return

the top 16 keys in descending order of priority. We chose these tasks because

the NTM is known to perform well on them. Full hyper-parameter details are in

Appendix A.1.

Figure 3.4 shows that sparse models are able to learn with comparable efficiency to

the dense models and, surprisingly, learn more effectively for some tasks — notably

priority sort and associative recall. This shows that sparse reads and writes can

actually benefit early-stage learning in some cases. This may be because sparsity

can reduce the variance of precision of writes and reads, which makes it easier

to precisely read back stored content. In contrast to soft writes and reads where

every row is written to by every memory with some weight (potentially very close

to zero), and every row is read from by every query with some weight, there is

more interference and noise.
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Figure 3.4: Training curves for sparse (SAM) and dense (DAM, NTM) models.
SAM trains comparably for the Copy task, and reaches asymptotic error signifi-
cantly faster for Associative Recall and Priority Sort. Light colours indicate one
standard deviation over 30 random seeds.

3.4.3 Scaling with a curriculum

The computational efficiency of SAM opens up the possibility of training on tasks

that require storing a large amount of information over long sequences. Here we

show this is possible in practice, by scaling tasks to a large scale via an exponen-

tially increasing curriculum.

We parametrised three of the tasks described in Section 3.4.2: associative recall,
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copy, and priority sort, with a progressively increasing difficulty level which char-

acterises the length of the sequence and number of entries to store in memory. For

example, level specifies the input sequence length for the copy task.

Since the time taken for a forward and backward pass scales O(T ) with the se-

quence length T , following a standard linearly increasing curriculum could poten-

tially take O(T 2), if the same amount of training was required at each step of the

curriculum. As such we used an exponentially-increasing curriculum.

Specifically, h was doubled whenever the average training loss dropped below a

threshold for a number of episodes. The level was sampled for each minibatch

from the uniform distribution over integers U(0, h). We compared the dense mod-

els, NTM and DAM, with both SAM with an exact nearest neighbour index (SAM

linear) and with locality sensitive hashing (SAM ANN). The dense models con-

tained 64 memory words, while the sparse models had 2× 106 words. These sizes

were chosen to ensure all models use approximately the same amount of physical

memory when trained over 100 steps.

For all tasks, SAM was able to advance further than the other models, and in

the associative recall task, SAM was able to advance through the curriculum to

sequences greater than 4000 (Figure 3.5). Note that we did not use truncated

backpropagation, so this involved BPTT for over 4000 steps with a memory size

in the millions of words.

To investigate whether SAM was able to learn algorithmic solutions to tasks, we

investigated its ability to generalise to sequences that far exceeded those observed

during training. We trained SAM on the associative recall task up to sequences
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Figure 3.5: Curriculum training curves for sparse and dense models on (a) Asso-
ciative recall, (b) Copy, and (c) Priority sort. Difficulty level indicates the task
difficulty (e.g. the length of sequence for copy). We see SAM train (and backprop-
agate over) episodes with thousands of steps, and tasks which require thousands
of words to be stored to memory. Each model is averaged across 5 replicas of
identical hyper-parameters (light lines indicate individual runs).
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L

Figure 3.6: We tested the generalisation of SAM on the associative recall task. We
train each model up to a difficulty level, which corresponds to the task’s sequence
length, of 10, 000, and evaluate on longer sequences. The SAM models (with and
without ANN) are able to perform much better than chance (48 bits) on sequences
of length 200, 000.

of length 10, 000, and found it was then able to generalise to sequences of length

200,000 (Figure 3.6).

3.4.4 Few-Shot Image Classification

We demonstrate that SAM is capable of learning in a non-synthetic dataset via a

few-shot learning image classification task originally proposed by (Santoro et al.,

2016a). We few-shot classify Omniglot (Lake et al., 2015) images; Omniglot is a

dataset of 1623 characters taken from 50 different alphabets, with 20 examples of

each character. This dataset is used to test rapid, or one-shot learning, since there

are few examples of each character but many different character classes.

Following Santoro et al. (2016a), we generate episodes where the class labels are

permuted, and a subset of characters are randomly selected from the dataset and

presented sequentially with their permuted class label. For each episode we sam-
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ple 50 character classes and we show ten images from each class, thus the total

sequence length is 500. We can track the model’s performance throughout the

sequence as it observes more and more characters. In order to succeed at the task

the model must learn to implicitly classify images by character and rapidly asso-

ciate a novel character with the correct label, such that it can correctly classify

subsequent examples of the same character class. Again, we used an exponential

curriculum, doubling the number of additional characters provided to the model

whenever the cost was reduced under a threshold. After training all MANNs for

the same length of time, a validation task with 500 characters was used to select

the best run, and this was then tested on a test set, containing all novel characters

for different sequence lengths (Figure 3.7). All of the MANNs were able to per-

form much better than chance, even on sequences ≈ 4× longer than seen during

training. SAM outperformed other models, presumably due to its much larger

memory capacity. Previous results on the Omniglot curriculum (Santoro et al.,

2016a) task are not identical, since we used 1-hot labels throughout and the train-

ing curriculum scaled to longer sequences, but our results with the dense models

are comparable (≈ 0.4 errors with 100 characters), while the SAM is significantly

better (0.2 < errors with 100 characters).
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Figure 3.7: Test errors for few-shot image classification on Omniglot, for the best
runs (as chosen by the validation set). The characters used in the test set were not
used in validation or training. All of the MANNs were able to perform much better
than chance with ≈ 500 characters (sequence lengths of ≈ 5000), even though they
were trained, at most, on sequences of ≈ 130 (chance is 0.002 for 500 characters).
This indicates they are learning solutions that generalise in the sequence length of
observations. SAM is able to outperform other approaches, presumably because
it can utilise a much larger memory.

119



3.5 Sparse Differentiable Neural Computer

Graves et al. (2016) proposed a novel MANN the Differentiable Neural Computer

(DNC) which extends the Neural Turing Machine in two principal ways. The

two innovations proposed by this model are a new approach to tracking memory

freeness (dynamic memory allocation) and a mechanism for associating memories

together (temporal memory linkage). We demonstrate here that the approaches

enumerated in this chapter can be adapted to new models by outlining a sparse

version of this model, the Sparse Differentiable Neural Computer (SDNC), which

learns with similar data efficiency while retaining the computational advantages

of sparsity.

3.5.1 Architecture

For brevity, we will only explain the sparse implementations of these two items,

for the full model details refer to the original paper (Graves et al., 2016). The

mechanism for sparse memory reads and writes was implemented identically to

SAM.

It is possible to implement a scalable version of the dynamic memory allocation

system of the DNC avoiding any O(N) operations by using a heap. However,

because it is practical to run the SDNC with many more memory words, reusing

memory is less crucial so we did not implement this and used the same usage

tracking as in SAM.

The temporal memory linkage in the DNC is a system for associating and recalling

memory locations which were written in a temporal order, for exampling storing
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and retrieving a list. In the DNC this is done by maintaining a temporal linkage

matrix Lt ∈ [0, 1]N×N . Lt[i, j] represents the degree to which location i was written

to after location j. This matrix is updated by tracking the precedence weighting

pt, where pt(i) represents the degree to which location i was written to.

p0 = 0 (3.8)

pt = (1−
∑
i

wWt (i)) pt−1 + wWt (3.9)

The memory linkage is updated according to the following recurrence

L0 = 0 (3.10)

Lt(i, j) =

 0 i = j

(1− wWt (i)− wWt (j))Lt−1(i, j) + wWt (i)pt−1(j) i 6= j
(3.11)

(3.12)

The temporal linkage Lt can be used to compute read weights following the tem-

poral links either forward

f rt = Lta
r
t−1 (3.13)

or backward

brt = LT
t a

r
t−1 (3.14)

The read head then uses a 3-way softmax to select between a content-based read

or following the forward or backward weighting.

Naively, the link matrix requires O(N2) memory and computation although Graves
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et al. (2016) proposes a method to reduce the computational cost to O(N logN)

and O(N) memory cost.

In order to maintain the scaling properties of the SAM, we wish to avoid any

computational dependence on N . We do this by maintaining two sparse matrices

Nt,Pt ∈ [0, 1]N×DKL that approximate Lt and LT
t respectively. We store these

matrices in Compressed Sparse Row format. They are defined by the following

updates:

N0 = 0 (3.15)

P0 = 0 (3.16)

Nt(i, j) = (1− wWt (i)) Nt−1(i, j) + wWt (i) pt−1(j) (3.17)

Pt(i, j) = (1− wWt (j)) Pt−1(i, j) + wWt (j) pt−1(i) (3.18)

Additionally, pt is, as with the other weight vectors maintained as a sparse vector

with at most KL non-zero entries. This means that the outer product of wtp
T
t−1 has

at most K2
L non-zero entries. In addition to the updates specified above, we also

constrain each row of the matrices Nt and Pt to have at most KL non-zero entries

— this constraint can be applied in O(K2
L) because at most KL rows change in

the matrix.

Once these matrices are applied the read weights following the temporal links can

be computed similar to before:

f rt = Nta
r
t−1 (3.19)

brt = Pta
r
t−1 (3.20)
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Note, the number of locations we read from, K, does not have to equal the number

of outward and inward links we preserve, KL. We typically choose KL = 8 as

this is still very fast to compute (100µs in total to calculate Nt,Pt, pt, f
r
t , b

r
t on

a single CPU thread) and we see no learning benefit with larger KL. In order

to compute the gradients, Nt and Pt need to be stored. This could be done by

maintaining a sparse record of the updates applied and reversing them, similar

to that performed with the memory as described in Section 3.2.6. However, for

implementation simplicity we did not pass gradients through the temporal linkage

matrices.

3.5.2 Results

We benchmarked the speed and memory performance of the SDNC versus a naive

DNC implementation (details of setup in Appendix A.2). The results are displayed

in Figure 3.8. Here, the computational benefits of sparsity are more pronounced

due to the expensive (quadratic time and space) temporal transition table op-

erations in the DNC. We were only able to run comparative benchmarks up to

N = 2048, as the DNC quickly exceeded the machine’s physical memory for larger

values; however even at this modest memory size we see a speed increase of ≈ 440×

and physical memory reduction of ≈ 240×. Unlike the SAM memory benchmark

in Section 3.4 we plot the total memory consumption, i.e. the memory overhead

of the initial start state plus the memory overhead of unrolling the core over a

sequence. This is because the SDNC and DNC do not have identical start states.

The sparse temporal transition matrices N0,P0 ∈ [0, 1]N×N{K} consume much less

memory than the corresponding L0 ∈ [0, 1]N×N in the DNC. In order to compare
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the models on an externally-defined benchmark, we ran the DNC and SDNC on

the bAbI task. The results are described in Section 3.5.3 and demonstrate the

SDNC is capable of learning competitively. In particular, it achieves the best

report result on the bAbI task at the time of its release (2016).
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Figure 3.8: Performance benchmarks between the DNC and SDNC for small to
medium memory sizes. Here the SDNC uses a linear KNN. (a) Wall-clock time of
a single forward and backward pass. (b) Total memory usage (including initiali-
sation) when trained over sequence of 10 time steps. When the memory contains
64,000 words the NTM consumes 29 GiB whereas SAM consumes only 7.8 MiB, a
compression ratio of 3700.
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3.5.3 Question answering on the bAbI tasks

Weston et al. (2015) introduced a set of toy tasks that are considered a prerequisite

to agents which can reason and understand natural language as introduced in

Section 2.4.4. The task was encoded using straightforward 1-hot word encodings

for both the input and output. We trained a single model on all of the tasks, and

used the 10,000 examples per task version of the training set (a small subset of

which we used as a validation set for selecting the best run and hyperparameters).

Previous work has reported best results (Table 3.1), which with only 15 runs is

a noisy comparison, so we additionally report the mean and variance for all runs

with the best selected hyperparameters (Table 3.2).

The MANNs, except the NTM, are able to learn solutions comparable to the

previous best results, failing at only 2 of the tasks. The SDNC manages to solve

all but 1 of the tasks, the best reported result on bAbI at the time of writing, when

a model is trained jointly on all tasks or even trained singularly on each task in

turn. The task that resisted being solved was Task 16: Basic Induction. Whilst

this task is simple from the outset, we believe it was considered difficult by models

because of an implementation bug that sometimes lead to ambiguous or incorrect

result. A regular example and a ‘buggy’ example of this task is shown below:

Task 16: Basic Induction (regular):

Lily is a swan.

Lily is white.

Bernhard is green.

Greg is a swan.

What color is Greg? A:white

Task 16: Basic Induction (bug):

Lily is a swan.

Lily is white.

Bernhard is green.

Bernhard is a swan.

What color is Bernhard? A:white

Essentially the bug was that the distractor statement sampled a person with re-
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placement, so people could occasionally be directly associated with an attribute

(e.g. colour) but also associated with a class object (e.g. swan) that was asso-

ciated with a different colour via another person. The natural response to the

buggy example above would be green, however the correct answer in the bench-

mark is white. After discussion with the benchmark creators it was decided to not

fix the task, as there still was a uniformly correct strategy to solve the problem,

which is to always follow the inductive path, even if the distractor statement is

contradictory. Perhaps these models which rely on content-based attention find

this almost impossible to discover, especially since they are jointly trained on other

tasks such as Task 15: Basic Deduction which would encourage the answer to be

‘green’.

Notably the best prior results have been obtained by using supervising the mem-

ory retrieval (during training the model is provided annotations which indicate

which memories should be used to answer a query). More directly compara-

ble previous work with end-to-end memory networks, which did not use super-

vision (Sukhbaatar et al., 2015), fails at 6 of the tasks. Both the sparse and dense

perform comparably at this task, again indicating the sparse approximations do

not impair learning. We believe the NTM may perform poorly since it lacks a

mechanism which allows it to allocate memory effectively.
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3.6 Conclusion

We demonstrate that you can train neural networks with large memories via a

sparse read and write scheme that makes use of efficient data structures within

the network, and obtain significant speedups during training. Although we have

focused on a specific MANN (SAM), which is closely related to the NTM, the

approach taken here is general and can be applied to many differentiable memory

architectures, such as Memory Networks (Weston et al., 2014).

It should be noted that there are multiple possible routes toward scalable mem-

ory architectures. For example, prior work aimed at scaling Neural Turing Ma-

chines (Zaremba and Sutskever, 2015) used reinforcement learning to train a dis-

crete addressing policy. This approach also touches only a sparse set of memories

at each time step, but relies on higher variance estimates of the gradient during

optimisation. Though we can only guess at what class of memory models will

become staple in machine learning systems of the future, we argue in Section 3.3

that they will be no more efficient than SAM in space and time complexity if they

address memories based on content.

We have experimented with randomised k-d trees and LSH within the network

to reduce the forward pass of training to sub-linear time, but there may be room

for improvement here. K-d trees were not designed specifically for fully online

scenarios, and can become imbalanced during training. Recent work in tree en-

semble models, such as Mondrian forests (Lakshminarayanan et al., 2014), show

promising results in maintaining balanced hierarchical set coverage in the online

setting. An alternative approach which may be well-suited is LSH forests (Bawa

et al., 2005), which adaptively modifies the number of hashes used. It would be an
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interesting empirical investigation to more fully assess different ANN approaches

in the challenging context of training a neural network.

One limitation of this study is that the experiments were run on CPU machines

due to a lack of availability, at time of writing, to more powerful accelerators

such as GPUs and TPUs. We see the asymptotic analysis translate to meaning-

ful wall-clock speedups for our CPU benchmarks, where we see an O(logN) time

sparse operation quickly outperform brute force search. However for accelerated

hardware specialised to high throughput matrix multiplications, the constant fac-

tors in these asymptotic statements will favour dense operations. It will be an

interesting challenge to realise these same speed gains with sparsity structures

that map well to GPUs. Some progress has been made in this area following

this study with libraries such as FAISS (Johnson et al., 2017) which incorporate

k-means LSH nearest neighbour search and contains implementations for various

accelerators.

One key component to scaling towards very large sequences and memory sizes

has been the use of a curriculum. It is unlikely one could learn these various

algorithmic tasks such as copying and associative recall in the 99.9% sparse setting

if one started with long sequences, because the model would frequently not attend

to the right input. By starting small and then scaling up, the model frequently

attends to the right inputs and roughly learns the algorithm. Then in the course

of scaling up, the model already knows the types of inputs to attend to, and we

see empirically the sparsity helps reduce noise. In this chapter the curriculum

essentially helps the model learn what to attend to, but this is not guaranteed in

real world tasks.
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Humans are able to retain a large, task-dependent set of memories obtained in

one pass with a surprising amount of fidelity (Brady et al., 2008). Here we have

demonstrated architectures that may one day compete with humans at these kinds

of tasks; progressing this on to more challenging real world problems is the clear

future direction.
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Chapter 4

Compressive Memory for

Identifying Rare Classes

Neural networks trained with backpropagation often struggle to identify classes

that have been observed a small number of times. In applications where most

class labels are rare, such as language modelling, this can become a performance

bottleneck. One potential remedy is to augment the network with a fast-learning

non-parametric model which stores recent activations and class labels into an ex-

ternal memory. We explore a simplified architecture where we treat a subset of the

model parameters as fast memory stores. This can help retain information over

longer time intervals than a traditional memory, and does not require additional

space or compute. In the case of image classification, we display faster binding

of novel classes on an Omniglot image curriculum task. We also show improved

performance for word-based language models on news reports (GigaWord), books

(Project Gutenberg) and Wikipedia articles (WikiText-103) — the latter achieving
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a state-of-the-art perplexity of 29.2.

4.1 Motivation

Neural networks can be trained to classify discrete outputs by appending a softmax

output layer. This is a linear map projecting the d-dimensional hidden output of

the network to m outputs, where m is the number of distinct classes. A softmax

operator (Bridle, 1990) is then applied to produce a probability distribution over

classes. The parameters in this softmax layer are typically optimised with the

network’s parameters by gradient descent.

We can think of the weights in the softmax layer θ ∈ Rm×d as a set of m vectors

θ[i]; i = 1, . . . ,m that each correspond to a given class. When trained with

a supervised loss, such as cross-entropy, each step of gradient descent pulls the

parameter θ[y], corresponding to the class label y, towards having a greater inner

product with the network output h, and pushes all other parameters θ[j] , j 6= y

towards having a smaller inner product with h.

One shortcoming of neural network classifiers trained with backpropagation is that

they require many input examples for a given class in order to predict it with rea-

sonable accuracy. That is, many positive class examples and optimisation steps are

required to pull θ[i] towards a point in space where class i can then be recognised.

While the learner will have many opportunities to organise θ[i] parameters asso-

ciated with frequent classes, infrequent class parameters will be poorly estimated.

In domains where new classes are frequently introduced, or large-scale classifica-

tion problems where some classes are very infrequently observed, this estimation
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problem is potentially quite serious.

One approach to speed up learning, which has received revived interest, is meta-

learning. Here, meta-learning refers to algorithms which learn to produce or ma-

nipulate learning algorithms (Thrun, 1998; Hochreiter et al., 2001), and it operates

by learning over a distribution of tasks or datasets. A meta-learner applies knowl-

edge from the global distribution of tasks to produce or optimise algorithms which

specialise to a given task instance. Meta-learning of neural networks has seen

promising results for applications such as parameter optimisation (Andrychowicz

et al., 2016; Ravi and Larochelle, 2016; Finn et al., 2017) and classification (San-

toro et al., 2016a; Vinyals et al., 2016; Zhou et al., 2018a). For classification, the

networks are augmented with a differentiable external memory, and are trained

with many rounds of data — with class labels permuted between episodes.

Meta-learning can be very powerful for few-shot learning in cases where there is

a set of similar prior data to meta-learn over, however it may not be practical for

standalone datasets. For example, if one wants to model the grammar of computer

code, it is unclear that a meta-learning system trained over natural language will

be useful. Also memory-based meta-learning requires backpropagating from the

read time to the original write time, which is not well suited to applications where

writes and reads are separated by many time steps. In the case of modelling

language, for example, infrequent words will not occur for large time intervals —

rendering memory-based meta-learning challenging.

The task of statistical language modelling itself is interesting to investigate issues

with binding new or infrequent classes, because most classes (words) are infre-

quent (Zipf, 1935) and new classes naturally emerge over time. Recent approaches
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Figure 4.1: Mixture model of parametric and non-parametric classifiers connected
to a recurrent language model. The non-parametric model (right hand side) stores
a history of past activations and associated labels as key, value pairs. The para-
metric model (left hand side) contains learnable parameters θ for each class in the
output vocabulary V . We can view both components as key, value memories —
one slow-moving, optimised with gradient descent, and one rapidly updating but
ephemeral.

to improve neural language models have involved augmenting the network with

a non-parametric cache, which stores past hidden activations ht−n, . . . , ht−1 and

corresponding labels, yt−n, . . . , yt−1 (Vinyals et al., 2015; Merity et al., 2016; Grave

et al., 2016b; Kawakami et al., 2017; Grave et al., 2017). Attention over this cache

provides better modelling of infrequent words that occur in a recent context, in-

cluding previously unknown words (Gulcehre et al., 2016). However there is a

diminishing return to increasing the cache size (Grave et al., 2016b), and once

rare words fall outside the recent context the boost in predictive performance

expires.
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Motivated from these memory systems, we explore a very simple optimisation

procedure where the network accumulates activations ht directly into the softmax

layer weights θ[yt] when a class yt has been seen a small number of times, and uses

gradient descent otherwise. Accumulating or smoothing network activations into

the weights actually corresponds to the well-known Hebbian learning update rule

W [i, j]← 1
n

∑n
t=1 x

i
tx
j
t (Hebb, 1949) in the special case of classification on the out-

put layer, where W,xit, x
j
t correspond to θ, ht, yt respectively. We see that mixing

the two rules provides better initial representations and can also preserve these

representations for much longer time spans. This is because memorised activa-

tions for one class are not competing for space with activations from other (more

frequent, say) classes — unlike a conventional external memory. In this sense,

the parameters become an instance of a quickly updated compressed memory, we

explore this idea in Section 4.2.3

We demonstrate this model adapts quickly to novel classes in a simple image

classification task using handwritten characters from Omniglot (Lake et al., 2015).

We then show it improves overall test perplexity for two medium-scale language

modelling corpora, WikiText103 (Wikipedia articles) from Merity et al. (2016) and

Project Gutenberg1 (books), alongside a large-scale corpus GigaWord v5 (news

articles) from Parker et al. (2011). By splitting accuracy over word frequency

buckets, we see improved perplexity for less frequent words.

1Project Gutenberg. (n.d.). Retrieved January 2, 2018, from www.gutenberg.org
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4.2 Model

We propose the Hebbian Softmax , a modification of the traditional softmax layer

with an updated learning rule. The Hebbian Softmax contains the same linear

map from the hidden state to the output vocabulary, but learns by smoothing

hidden activations into the weight parameters for novel classes whilst concurrently

applying gradient descent. This is to facilitate faster binding of novel classes, and

improve learning of infrequent classes. We note this corresponds to a learning

rule that transitions from Hebbian learning to gradient descent, and we will show

that the combination of the two learning rules works better than either one in

isolation.

Many of the features of the Hebbian Softmax are motivated from memory systems,

and the theory of Complementary Learning Systems in the brain McClelland et al.

(1995). During training, the weights corresponding to a given class will initially

correspond to a compressed2 episodic memory store — with new activations mem-

orised and older activations eventually forgotten.

The parameters of the softmax layer are treated both as regular slow-adapting

network parameters through which gradients flow to the rest of the network,

and fast-adapting memory slots which are updated sparsely without altering the

rest of the network. In comparison to an external memory, the advantage of

Hebbian Softmax is that it is simple to implement and requires almost no addi-

tional space or computation.

We will describe the learning rule in detail, and contrast the conditional proba-

2The memory is denoted ‘compressed’ because multiple activations corresponding to the same
class are smoothed into one vector, instead of being stored separately.
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Figure 4.2: Update rule. Here the vector θ̂t+0.5 denotes the parameters θt[yt]
of the final layer softmax corresponding to the active class yt after one step of
gradient descent. This is interpolated with the hidden activation at the time
of class occurrence, ht. The remaining parameters are optimised with gradient
descent. Here, I{yt} is the one-hot target vector, V denotes the vocabulary of
classes, and ct is defined to be a counter of class occurrences during training —
which is used to anneal λt as described in (4.3).

bilities from Hebbian Softmax to those generated by a non-parametric cache. We

also generalise the memorisation procedure in Section 4.2.4 as an instance of a sec-

ondary fast-learning overfitting procedure with respect to a Euclidean objective,

and explore several promising variant objective functions.

4.2.1 Update Rule

Given the weights of a linear projection θ ∈ Rd×m in the final softmax layer of a

network, we calculate the gradient descent update with respect to a cross-entropy

loss,

θ̂t+0.5[i]←


θt[i]− α (pi − 1)ht i = yt

θt[i]− α pi ht i 6= yt

(4.1)

where pi = eh
T
t θi/

∑n
j=1 e

hTt θj is the probability output from the softmax, and α is

the learning rate. In practice the gradient descent update θ̂t+0.5 can be calculated
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with adaptive optimisers, such as RMSProp (Tieleman and Hinton, 2012). This

is interpolated with the previous layer’s hidden activation ht for the active class

yt,

θt+1[i]←


λt ht + (1− λt) θ̂t+0.5[i] i = yt

θ̂t+0.5[i] i 6= yt ,

(4.2)

as illustrated in Figure 4.2. When λt = 1 this corresponds to the rule θt+1 ←

ht · I{yt} where I{yt} ∈ [0, 1]m is a one-hot target vector. In this case Hebbian

update rule, Wij ← xixj for xi = ht the hidden output and xj = I{yt} the target.

Naturally when λ = 0 this is gradient descent, and so we see Hebbian Softmax is

mixture of the two learning rules. All remaining parameters in the model are

optimised with gradient descent as usual.

When mixing the two learning rules, we benefit from fast initial learning of classes

that have not been seen many times, along with the eventual consolidation of

frequently seen classes. As such we do not want λt to be constant, but instead

something that is eventually annealed to zero. We add an additional counter array

c ∈ Zm which counts class occurrences, and propose an annealing function of

λt = max(1 / c[yt], γ) · I{c[yt] < T} (4.3)

where γ, T are tuning parameters. T is the number of class occurrences before

switching completely to gradient descent and γ is the minimum activation mixing

parameter. Although heuristic, we found this worked well in practice vs. a constant

λ or pure annealing λt = 1/c[yt]. If training from scratch, we suggest setting
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Algorithm 1 Hebbian Softmax batched update

— At iteration 0
γ ← min. discount (hyper-parameter)
T ← smoothing limit (hyper-parameter)
M ← num. classes
B ← batch size
c0[i]← 0; i = 1, . . . ,M
— At iteration t
ht,1:B ← softmax inputs
pt,1:B ← softmax outputs
yt,1:B ← target labels

θ̂t+0.5 ←SGD(θt,ht,1:B,pt,1:B,y1:B)
for i = 1, . . . ,M do
nt,i ←

∑B
j=1 I{yt,j = i}

if nt,i > 0 then
λt,i ← max(1/ct[i], γ) I{ct[i] < T}
h̄t,i ← 1

nt,i

∑B
j=1 ht,jI{yt,j = i}

θt+1 ← λt,ih̄t,i + (1− λt,i)θ̂t+0.5[i]
else
θt+1 ← θ̂t+0.5[i]

end if
ct+1[i]← ct[i] + nt,i

end for

γ = 1/Nmin and T = Nmin × (# epochs until convergence) where Nmin is the

minimum number of occurrences of any class in a training epoch. This is to ensure

we smooth over many class examples in a given epoch, and the memorisation of

activations continues until the representation of ht stabilises. We describe the full

algorithm in Algorithm 1, including details for training with minibatches.

The final layer trains with a two-speed dynamic. For some training steps the full

network will be optimised slowly via gradient descent as usual (when frequently-

encountered classes are observed), and for other time steps a sparse subset of

parameters will rapidly change. The remaining network parameters are optimised
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with gradient descent.

It is worth noting that simply increasing the learning rate of the softmax layer,

or running multiple steps of optimisation on rare class inputs, would not achieve

the same effect. The value θ[yt] would indeed be pulled towards a large inner

product with ht, however neighbouring parameters θ[i]; i 6= yt would be pushed

towards a large negative inner product with ht and this could lead to catastrophic

forgetting of previously consolidated classes. Instead we allow gradient descent to

slowly push neighbouring parameters away, and thus disambiguate similar classes

in a gradual fashion.

4.2.2 Relation to weight decay

We can combine the updates (4.1) and (4.2) for the parameter θ[yt] relating to the

observed class:

θt+1[yt] = λtht + (1− λt)θ̂t+0.5 (4.4)

= λtht + (1− λt)(θt[yt]− α(pi − 1)ht) (4.5)

= θt[yt] + ht (λt + (1− λt)α(1− pi))− λtθt[yt] . (4.6)

This takes the form of stochastic gradient descent with weight decay, with a dif-

ferent step size towards ht. Instead of the α(1 − pi) multiplier on ht we have

λt + (1 − λt)α(1 − pi). For a learning rate less than one (0 ≤ α ≤ 1), λt + (1 −

λt)α(1−pi) ≥ α(1−pi) so can consider this step size to be at least as large as s.g.d

for all values of λt ∈ [0, 1]. Thus for 0 < λt ≤ 1 we have an update that resembles

a faster-learning s.g.d. with weight decay, however for λt = 0 we reduce to exactly
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s.g.d. We comment next on how we can interpret the update as a cache memory

store.

4.2.3 Relation to cache models

We can consider the weights constructed from the above optimisation procedure as

a compressed memory, storing historic activations. We contrast the output prob-

abilities of Hebbian Softmax with those produced from a non-parametric cache

model.

Recall the conditional probability of a class, w, given a cache of previous activations

(2.7). If we set Iw(j) to be the time step of j-th most recent occurrence of w, then

we can re-write the cache probability,

pc(w | ht) ∝
t−1∑
i=t−n

eh
T
t hiI{yi = w}

=
Nw∑
j=1

eg(j)h
T
t hIw(j) (4.7)

where g(j) = −∞ if j < t−n and 1 otherwise, is a weighting function which places

uniform weight to the attention over classes in the past n time steps. However if

we wish to characterise infrequent classes, we may want a weighting scheme with

a larger time horizon that has a smooth decay.

If we modified the cache to have infinite memory capacity and used a geometric

weighting scheme to decay the contribution of the j-th most recent activation

corresponding to the given class, e.g. g(j) = λ (1 − λ)j−1, then the resulting
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conditional probability is,

p̃c(w | ht) ∝
Nw∑
j=1

eλ (1−λ)j−1 hTt hIw(j) (4.8)

where Nw is the total number of occurrences of class w. Let us now consider

the conditional probability from Hebbian Softmax for class w, where w has been

observed less than T times. If the gradient with respect to θi is zero and we fix

λt = λ over time, then (4.2) gives

θi ≈
Nw∑
j=1

λ (1− λ)j−1hIw(j) ,

plugging this into our softmax conditional probability,

pθ(w | ht) ∝ eh
T
t θw ≈ eh

T
t

∑Nw
j=1 λ (1−λ)j−1hIw(j)

=
Nw∏
j=1

eλ (1−λ)j−1hTt hIw(j) .

we see the parametric Hebbian Softmax actually becomes a proxy for the con-

ditional probability output by the non-parametric infinite cache model p̃c. Past

activations now have a geometric contribution to the probability, versus the cache’s

arithmetic reduction (4.8). This form is useful because we can compute psm much

more efficiently than p̃c and it does not require storing the entire history of past

activations.
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4.2.4 Alternate Objective Functions

We briefly discuss a generalisation of the Hebbian Softmax update by casting it

as an overfitting procedure to an inner objective function. Recall equation (4.2)

for parameters corresponding to the active class,

θt+1[i]← λt ht + (1− λt) θ̂t+0.5[i].

We can re-phrase this as smoothing θ̂t+0.5[i] with the trivial solution to a Euclidean

objective function, which we overfit to.

θt+1[i]← λw∗ + (1− λ) θ̂t+0.5[i]

w∗ ← arg max
w

−||w − ht||2

From this perspective we are performing a two-level optimisation procedure. The

outer optimisation loop is the mixture of gradient descent and exponential smooth-

ing, and the inner optimisation loop determines a good value for w∗ based on the

activation ht and the current parameters.

We consider several other objective functions that are more expensive to compute,

but may be preferable to a simple Euclidean distance. Notably, switching to inner

product similarity (IP), and also incorporating a cost to parameter similarity (SVM,

Smax) to push w∗ towards ht but away from neighbouring parameters — to avoid

confusion or interference with other classes. Whilst the optimizer update in (4.1)

would also push the parameter away from neighbouring classes, in the setting

where we are purely relying on the inner objective loop, i.e. when λt = 1 then this

does not have an effect. As we keep neighbouring parameters fixed, we hope to
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avoid the catastrophic forgetting typically associated with model overfitting. We

list the set of objectives considered,

w∗ ← arg max
w

g(w)

gL2(w) = −||w − ht||2 (4.9)

gIP(w) = wTht (4.10)

gSVM(w) = wTht −
∑

θj∈Nk(ht)

ξ wT θj · I(wT θj > ε) (4.11)

gSmax(w) = ew
T ht/

∑
θj∈Nk(ht)

ew
T θj (4.12)

where Nk(ht) refers to the k nearest parameters to the activation ht that do not

correspond to yt, the class label. Including all M parameters in θt would make the

inner optimisation loop very slow, so we choose a sparse subset k �M . These are

all optimised under the hard norm constraint ||w||2 < 10 with gradient descent for

multiple steps, typically 20, at a given point in training.

4.3 Results

4.3.1 Image Curriculum

We apply Hebbian Softmax to the problem of image classification. We create a

simple curriculum task using Omniglot data (Lake et al., 2015), where a subset

of classes (30) are initially provided, and 5 new classes are added when test per-

formance exceeds a threshold (60%). Although this is a toy setup, it allows us

to investigate the basic properties of fast class binding without other confounding
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Figure 4.3: Learning rate comparison. Omniglot curriculum performance versus
learning rate for a regular softmax architecture using RMSProp. Values of 0.006
to 0.008 are similarly fast to learn and are stable. Stability breaks down for larger
values.

factors, found in real-world problems.

Omniglot contains handwritten characters from 50 alphabets, totalling 1623 unique

character classes. There are 20 examples per class. We partition the first 5 ex-

amples per class to a test set, and assign the rest for training. We use the same

architectural setup as Matching Networks (Vinyals et al., 2016) where the images

are re-sized to 28 × 28 and a 4 layer convolutional neural network is used. Each

layer has 64 filters, 3 × 3 convolutions, batch normalisation, ReLU activations,

and 2× 2 max pooling. Each channel maps the input to a scalar, so the resulting

hidden size is 64. All weight parameter in the softmax are initialised with Glorot

initialisation (Glorot and Bengio, 2010). Models were trained with 20% dropout

on the final layer and a small amount of data augmentation was applied to train-

ing examples (rotation ∈ [−30, 30], translation) to avoid over-fitting. Otherwise

the models quickly plateau on a low level. For the Hebbian Softmax update, we
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store the pristine hidden activation pre-dropout. Unlike many one-shot Omniglot

studies, we do not train in a meta-learning setup — namely, labels are not shuffled

between episodes. We do this to emulate the truly low-data regime, where we

cannot pre-train on many similar instances of the task. However it could be an in-

teresting extension to evaluate the Hebbian Softmax in the meta-learning setting

where one would back-propagate through both the hidden activations ht and the

learning update.

We trained the convnet classifier with RMSProp (Tieleman and Hinton, 2012),

Adam (Kingma and Ba, 2014), and AdaGrad (Duchi et al., 2011). We swept

over learning rates to find the fastest-learning baseline softmax model, as dis-

played in Figure 4.3. We then compared the regular softmax layer with the

Hebbian Softmax , both placed on top of the convnet encoder. It is worth notin

that when we use optimisers with trailing statistics such as RMSProp, Adam and

AdaGrad we maintain gradient statistics that do not correspond to the originally-

defined update, which could potentially create instability. If we inspect the number

of steps spent on each level averaged over 10 seeds, focusing on RMSProp for sim-

plicity, we see in Figure 4.4 that the model is noticeably more data efficient after

80 total classes. In Figure 4.5 we see this faster curriculum progression is consis-

tent across RMSProp, Adam, and AdaGrad. Although the models are far from

one-shot, there is a 1− 2X data efficiency gain on average.
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Figure 4.4: Number of training steps taken to complete each level on the Omniglot
curriculum task. Comparisons between the Hebbian Softmax and softmax baseline
are averaged over 10 independent seeds. As classes are sampled uniformly, we
expect the number of steps taken to level completion to rise linearly with the
number of classes.
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Figure 4.5: Omniglot curriculum task. Starting from 30 classes, 5 new classes
are added when total test error exceeds 60%. Each line shows a 2-σ confidence
band obtained from 10 independent seed runs. The Hebbian Softmax uses hyper-
parameters T = 10 and γ = 0.1. The learning rate chosen for AdaGrad was 0.08,
and 0.006 for RMSProp and Adam — these were obtained from a prior sweep with
the baseline softmax model.
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Figure 4.6: Validation perplexity for WikiText-103 over 9 billion words of training
(≈ 90 epochs). The LSTM drops to a perplexity of 36.4 with a regular softmax
layer, and 34.3 with the Hebbian Softmax , T = 500, when representations from
the LSTM begin to settle. For tuning parameter T ; T = 100 converges quicker,
but begins to overfit after 5.5B training words (coinciding when all classes have
been observed at least 100 times).

4.3.2 Language Modelling

We evaluate the Hebbian Softmax in the context of a large-scale classification task,

where some classes are infrequently observed. Word-level language modelling is an

ideal fit because it satisfies both criteria, and there are established performance

benchmarks. Some large-scale language modelling corpora require the use of effi-

cient softmax approximations, such as the adaptive softmax (Grave et al., 2016a)

or hierarchical softmax (Goodman, 2001) due to the very large vocabulary size.

To reduce confounding factors, we restrict ourselves to applications where the full

softmax can be used. We investigate two medium-sized corpora, WikiText-103

which contains just over 100M tokens derived from Wikipedia articles (Merity

et al., 2016), and Gutenberg which contains a subset of open-access texts from
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Project Gutenberg. The idea is that Wikipedia articles should cover factual in-

formation, where the style of writing is somewhat consistent and named entities

may appear across many articles; whereas books should be more self-contained

(unique named entities) and stylistically different. We also consider a very large

corpus, GigaWord v5, which is a collection of articles from eight press associations

exceeding a decade’s worth of global news.

We selected the baseline model to be a single-layer LSTM with 2048 units, tied in-

put/output embedding parameters, and an embedding dropout rate of 0.3. These

were selected from a baseline sweep on WikiText-103. Hyper-parameters and fur-

ther training details are described in Appendix B.1.

WikiText-103

The WikiText-103 corpus contains 267, 735 unique words and each word occurs at

least three times in the training set. We take the best LSTM parameter configu-

ration (described above) as a baseline, and compare it to an identical model where

the final layer is replaced with Hebbian Softmax . We swept over the insertion

limit parameter T ∈ {100, 500, 1000} and discount factor γ ∈ {0.05, 0.1, 0.25} us-

ing the validation set. We found T = 500, γ = 0.25 worked best, achieving a test

perplexity of 34.3 on this dataset (Table 4.1). Inspecting the validation curves in

Figure 4.6 we see the Hebbian Softmax initially hampers validation performance,

until around 2–3B training tokens have been consumed. This makes sense, as stor-

ing activations from prior layers of the network is only an effective strategy once

the network has rich intermediate representations of its inputs. Table 4.2 shows

the test perplexity broken down by word frequency, we see the gain in overall
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Table 4.1: Validation and test perplexities on WikiText-103.

Valid. Test

LSTM (Grave et al., 2016b) - 48.7
Temporal CNN (Bai et al., 2018a) - 45.2
Gated CNN (Dauphin et al., 2016) - 37.2
LSTM (ours) 36.0 36.4
LSTM + Cache 34.5 34.8
LSTM + Hebbian 34.1 34.3
LSTM + Hebbian + Cache 29.7 29.9
LSTM + Hebbian + Cache + MbPA 29.0 29.2

performance is obtained from less frequent vocabulary.

We also investigate the model evaluated dynamically on the test using (a) a Neu-

ral Cache (Grave et al., 2016b) and (b) Memory-based Parameter Adaptation

(MbPA) (Sprechmann et al., 2018). Hyper-parameter details for these models are

detailed in Appendix B.2. The cache reduces the test perplexity by 1.6 for the

LSTM and 4.4 for LSTM + Hebbian Softmax . The addition of MbPA reaches a

test perplexity of 29.2 which is, to the authors’ knowledge, state-of-the-art at time

of writing.

We inspected whether this gain was optimisation-specific by also training a model

using the AdaGrad optimiser, however we found this degraded performance, ob-

taining a perplexity of 60 after 20B steps.

Gutenberg

Books provide several different linguistic challenges to articles. The style of writing

is intentionally varied between authors, and named entities can be wholly fictional

— confined to a single text. We extract a subset of English-language books from
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Table 4.2: Test perplexity versus training word frequency.
Hebbian Softmax models less frequent words with better accuracy. Note
the training set size of WikiText is smaller than Gutenberg, which is itself much
smaller than GigaWord; so the > 10K bucket includes an increasing number
of unique words. This explains GigaWord’s larger perplexity in this bucket.
Furthermore there were no words observed < 100 times within the GigaWord
250K vocabulary. A random model would have a perplexity of |V | ≈ 2.5e5 for all
frequency buckets.

> 10K 1K-10K 100-1K < 100 All

WikiText-103
softmax 12.1 2.2e2 1.2e3 9.7e3 36.4
Hebbian Softmax 12.1 1.8e2 7.6e2 5.2e3 34.3

Gutenberg
softmax 19.0 9.8e2 6.9e3 8.6e4 47.9
Hebbian Softmax 18.1 9.4e2 6.6e3 5.9e4 45.5

GigaWord
softmax 39.4 6.5e3 3.7e4 - 53.5
Hebbian Softmax 33.2 3.2e3 1.6e4 - 43.7

the corpus, strip the Gutenberg headers and tokenise the text. We select a dataset

of comparable size to WikiText-103; 2, 042 books in total with 2, 017 training

books (175, 181, 505 tokens), 12 validation books (609, 545 tokens), and 13 test

books (526, 646 tokens). We select all words that occur at least five times in the

training set, a total vocabulary of 242, 621 and map the remainder to an ‘unk’

token.

We use the same LSTM hyper-parameters as those chosen from the Wikipedia

sweep, and compare against Hebbian Softmax with T = 100, T = 500 and

γ = 0.1. Figure 4.7 shows the validation performance after 15B steps of train-

ing, equating to roughly 80 epochs and 6 days of training with 8 P100s training

synchronously. After approximately 4B steps of training the softmax performance

is surpassed, and this gap widens even up to 15B steps to a gap of 2-3 points in
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perplexity. Similar to WikiText-103, we see in Table 4.2 the gain in perplexity is

more pronounced over less frequent words.
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Figure 4.7: Validation perplexity on Gutenberg. All word classes have been
observed after around 4B training tokens and we observe the performance of
Hebbian Softmax return to that of the vanilla LSTM thereafter, as all parame-
ters are optimised by gradient descent.

GigaWord v5

We evaluate Hebbian Softmax on a large-scale language modelling corpus. Giga-

Word is interesting because it is a vast collection of news articles, and there is a

natural temporal order. We pre-process the dataset, select all articles from 2000-

2009 for the training set, and test on all articles from 2010. The total number

of training tokens is 4.0B and the total number of test tokens is 260M. The total

unique tokens (after pre-processing) for the training set reaches 6M, however for

parity with the other experiments we choose a vocabulary size of 250K. We use the

same LSTM hyper-parameters and Hebbian Softmax hyper-parameters, and train
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the model for 6B steps, after which the models plateau in evaluation performance.

We observe a 9.8-point drop in perplexity, from 53.5 to 43.7, illustrated in Table

4.2.
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Figure 4.8: Test perplexity on GigaWord v5. Each model is trained on all arti-
cles from 2000 − 2009 and tested on 2010. Because the test set is very large, a
random subsample of articles are used per evaluation cycle. For this reason, the
measurements are more noisy.

4.3.3 Softmax Approximations

So far we have always used the full softmax as a baseline. This is to make exper-

imental comparisons straightforward, however in many applications the full soft-

max is too expensive to compute. We now consider the interaction between the

Hebbian Softmax update rule and computationally efficient softmax approxima-

tions, namely the sampled softmax (Jean et al., 2014). When the baseline language

model is trained on WikiText-103 with a sampled softmax (using 8192 samples)

we see in Figure 4.9 that the learning update from Hebbian Softmax improves
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Figure 4.9: Interaction with Sampled Softmax. Validation curve on WikiText-103
when using a sampled softmax (Jean et al., 2014) with 8192 samples. Due to the
smaller memory overhead, we trained with a batch size of 256 (vs 64 when using
the full softmax) using 2 P100 GPUs instead of 8. The total batch size of 512 is
kept the same, however training wall time is reduced from 6 days to 2. We see
an improvement when using the Hebbian Softmax however both models plateau
at 2− 3 perplexity points higher than the exact softmax.

upon the sampled softmax by approximately 2 perplexity points, however both

models plateau 2− 3 perplexity points higher than the exact softmax models from

Section 4.3.2.

4.3.4 Alternate Objective Functions

We test out some of the alternate inner objective functions described in (4.9) from

Section 4.2.4. The inner objective functions include Euclidean, Inner Product,

SVM, (sparse) Softmax. These could be applied to any of the described exper-

iments, we chose the WikiText-103 language modelling task because it is more

comparable to prior work.
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Figure 4.10: Objective Function Comparison. Validation learning curves for
WikiText-103 comparing different overfitting objectives as illustrated in (4.9). We
observe there is not a significant improvement in performance by choosing inner
objectives which relate to the overall training objective, e.g. Softmax, vs L2.

Although more expressive objective functions appear promising, in practice we

find that validation performance is roughly equivalent between all inner objective

functions (Figure 4.10). This suggests the network activation ht naturally do not

land too close to other class parameters, and the norm of activations is not too

large or small, in comparison to the model parameters θ. The latter may be due

to the use of layer normalisation from the LSTM.

4.4 Related Work

Few-shot classification has been investigated in a meta-learning setup with a mix-

ture model of a parametric neural network and a non-parametric memory (Santoro

et al., 2016a; Vinyals et al., 2016). Here, a subset of classes are used with per-
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muted labels per episode, activations are stored to memory, and gradients are

passed through the memory. This allows the network to shape its activations

to be conducive to accurate retrieval and classification. In this study we do not

meta-learn the activations stored into network parameters and instead rely on their

representation being rich enough from regular training. We do this to avoid back-

propagating through time to the point of memory write, which is impractical when

memories are stored millions of time steps ago, such as in the case of modelling

rare words.

In natural language processing memory-augmented models have been shown to

improve the modelling of unknown words and adaptation to new domains (Grave

et al., 2016b; Merity et al., 2016; Kawakami et al., 2017). However in these works

the memory is typically small and models the recent past. During evaluation the

test activations and corresponding labels are stored in memory, and the model is

evaluated dynamically — adapting to the test data on the fly. Whilst dynamic

evaluation provides insights into domain transfer, it is limited in applicability as the

model may not receive ground-truth labels when launched into production.

More recent work has investigated methods of memorising and searching over the

training set to enhance performance (Kaiser et al., 2017; Grave et al., 2017; Gu

et al., 2017). These approaches typically require complex engineering to efficiently

index this memory store. Part of the benefit of the Hebbian Softmax is implemen-

tation simplicity.

Prior literature on the softmax operator for language modelling computational

efficiency (Chen et al., 2015; Grave et al., 2016a) or tricks such as smoothing

across many softmax layers (Yang et al., 2017). However these do not focus on
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increasing the data-efficiency or faster learning of infrequent classes.

Other architectures have been considered for fast learning, such as the ‘fast weights’

auto-associative memory (Ba et al., 2016a). This focuses on fast adaptation to

recent information that persists over a short window of time. The LEABRA

architecture (O’Reilly, 1996a) contains a mixture of contrastive Hebbian learning

(GENEREC) (O’Reilly, 1996b) and gradient descent for fast and slow learning,

however this cognitively-inspired model has not been shown to scale to large-scale

classification problems.

4.5 Conclusion

This chapter explores one way in which we can achieve fast parametric learning in

neural networks, and preserve this knowledge over time. We show that activation

memorisation is useful for vision in the binding of newly introduced classes, beating

well tuned adaptive learning rate optimisers, RMSProp and AdaGrad.

For language we show improvement in the modelling of text with an extensive

vocabulary. In the latter we show the model beats a very strong LSTM bench-

mark on three stylistically different corpora, and achieves state of the art on

WikiText-103. This is achieved with effectively no additional compute or mem-

ory resources. Breaking down perplexity over word frequency bucket, we see that

less frequent words are better modelled, as hypothesised. We suggest that the

Hebbian Softmax could be applied to any classification domain with infrequent

classes, or non-stationary data. It may also be useful in quickly adapting a pre-

trained classifier to a new task / set of classes — however this is beyond the scope
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of our initial investigation.

It would also be interesting to explore activation memorisation deeper within the

network, and thus in more general scenarios to classification. More recent work

that has occurred since this study has investigated Hebbian update rules through-

out the entire network (Miconi et al., 2018) and this has been incorporated for

networks to solve sequence learning tasks where memory is required. However

this has not yet been demonstrated to improve fast continual learning or better

transfer, thus there is an exciting opportunity to create networks which mix slow

learning with fast activation memorisation across all layers towards this goal.
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Chapter 5

Compressive Memory for Data

Structures

There has been a recent trend in training neural networks to replace data struc-

tures that have been crafted by hand, with an aim for faster execution, better

accuracy, or greater compression. In this setting, a neural data structure is in-

stantiated by training a network over many epochs of its inputs until convergence.

In applications where inputs arrive at high throughput, or are ephemeral, train-

ing a network from scratch is not practical. This motivates the need for few-shot

neural data structures. In this chapter we explore the learning of approximate set

membership over a set of data in one-shot via meta-learning. We propose a novel

memory architecture, the Neural Bloom Filter, which is able to achieve significant

compression gains over classical Bloom Filters and existing memory-augmented

neural networks.
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5.1 Motivation

One of the simplest questions one can ask of a set of data is whether or not a given

query is contained within it. Is q, our query, a member of S, our chosen set of

observations? This set membership query arises across many computing domains;

from databases, network routing, and firewalls. One could query set membership

by storing S in its entirety and comparing q against each element. However, more

space-efficient solutions exist.

The original and most widely implemented approximate set membership data-

structure is the Bloom Filter (Bloom, 1970). It works by storing sparse distributed

codes, produced from randomized hash functions, within a binary vector. The

Bloom-filter trades off space for an allowed false positive rate, which arises due

to hash collisions. However its error is one-sided; if an element q is contained in

S then it will always be recognized. It never emits false negatives. One can find

Bloom Filters embedded within a wide range of production systems; from network

security (Geravand and Ahmadi, 2013), to block malicious IP addresses; databases,

such as Google’s Bigtable (Chang et al., 2008), to avoid unnecessary disk lookups;

cryptocurrency (Hearn and Corallo, 2012), to allow clients to filter irrelevant trans-

actions; search, such as Facebook’s typeahead search (Adams, 2010), to filter pages

which do not contain query prefixes; and program verification (Dillinger and Mano-

lios, 2004), to avoid recomputation over previously observed states.

While the main appeal of Bloom Filters is favourable compression, another impor-

tant quality is the support for dynamic updates. New elements can be inserted in

O(1) time. This is not the case for all approximate set membership data struc-

tures. For example, perfect hashing saves ≈ 40% space over Bloom Filters but
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requires a pre-processing stage that is polynomial-time in the number of elements

to store (Dietzfelbinger and Pagh, 2008). Whilst the static set membership prob-

lem is interesting, it limits the applicability of the algorithm. For example, in a

database application that is serving a high throughput of write operations, it may

be intractable to regenerate the full data-structure upon each batch of writes.

We thus focus on the data stream computation model (Muthukrishnan et al.,

2005), where input observations are assumed to be ephemeral and can only be

inspected a constant number of times — usually once. This captures many real-

world applications: network traffic analysis, database query serving, and reinforce-

ment learning in complex domains. Devising an approximate set membership data

structure that is not only more compressive than Bloom Filters, but can be applied

to either dynamic or static sets, could have a significant performance impact on

modern computing applications. In this chapter we investigate this problem using

memory-augmented neural networks and meta-learning.

We build upon the recently growing literature on using neural networks to replace

algorithms that are configured by heuristics, or do not take advantage of the data

distribution. For example, Bloom Filters are indifferent to the data distribution.

They have near-optimal space efficiency when data is drawn uniformly from a uni-

verse set (Carter et al., 1978) (maximal-entropy case) but (as we shall show) are

sub-optimal when there is more structure. Prior studies on this theme have inves-

tigated compiler optimization (Cummins et al., 2017), computation graph place-

ment (Mirhoseini et al., 2017), and data index structures such as b-trees (Kraska

et al., 2018). In the latter work, Kraska et al. (2018) explicitly consider the prob-

lem of static set membership. By training a neural network over a fixed S (in their
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case, string inputs) along with held-out negative examples, they observe 36% space

reduction over a conventional Bloom Filter.1 Crucially this requires iterating over

the storage set S a large number of times to embed its salient information into the

weights of a neural network classifier. For a new S this process would have to be

repeated from scratch.

Instead of learning from scratch, we draw inspiration from the few-shot learning

advances obtained by meta-learning memory-augmented neural networks (Santoro

et al., 2016b; Vinyals et al., 2016). In this setup, tasks are sampled from a common

distribution and a network learns to specialize to (learn) a given task with few

examples. This matches very well to applications where many Bloom Filters are

instantiated over different subsets of a common data distribution. For example, a

Bigtable database usually contains one Bloom Filter per SSTable file. For a large

table that contains Petabytes of data, say, there can be over 100, 000 separate

instantiated data-structures which share a common row-key format and query

distribution. Meta-learning allows us to exploit this common redundancy. We

design a database task with similar redundancy to investigate this exact application

in Section 5.6.4.

The main contributions of this chapter are (1) A new memory-augmented neural

network architecture, the Neural Bloom Filter, which learns to write to memory

using a distributed write scheme, and (2) An empirical evaluation of the Neu-

ral Bloom Filter meta-learned on one-shot approximate set membership prob-

lems of varying structure. We compare with the classical Bloom Filter along-

1The space saving increases to 41% when an additional trick is incorporated, in discretizing
and re-scaling the classifier outputs and treating the resulting function as a hash function to a
bit-map.
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side other memory-augmented neural networks such as the Differentiable Neural

Computer (Graves et al., 2016) and Memory Networks (Sukhbaatar et al., 2015).

We find when there is no structure, that differentiates the query set elements

and queries, the Neural Bloom Filter learns a solution similar to a Bloom Filter

derivative — a Bloom-g filter (Qiao et al., 2011) — but when there is a lot of struc-

ture the solution can be considerably more compressive (e.g. 30× for a database

task).

5.2 Compression in Memory-Augmented Neural

Networks

Recurrent neural networks such as LSTMs retain a small amount of memory via

the recurrent state. However this is usually tied to the number of trainable param-

eters in the model. There has been recent interest in augmenting neural networks

with a larger external memory. The method for doing so, via a differentiable

write and read interface, was first popularized by the Neural Turing Machine

(NTM) (Graves et al., 2014) and its successor the Differentiable Neural Computer

(DNC) (Graves et al., 2016) in the context of learning algorithms, and by Memory

Networks (Sukhbaatar et al., 2015) in the context of question answering. Memory

Networks store embeddings of the input in separate rows of a memory matrix M .

Reads are performed via a differentiable content-based addressing operation. The

NTM and DNC use the same content-based read mechanism, but also learns to

write based upon content (content-based writes), temporally ordered locations, or

unused memory. The soft write schemes do distribute write words across all slots
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in memory however in practice they have a very peaked distribution around certain

slots. The sparse extensions of these models that we explore in Chapter 3 have

even more selective allocations of write words to memory slots. Memory Networks

allocate a single memory slot to a given memory — the most selective scheme

across all models. Thus there is very little emphasis on distributing write words

across many slots, and having a joint compression of past memories across the

different rows in M our memory matrix.

When it comes to capacity, there has been consideration to scaling both the DNC

and Memory Networks to very large sizes using sparse read and write operations,

as covered in Chapter 3. However another way to increase the capacity is to

increase the amount of compression which occurs in memory. The Kanerva Ma-

chine (Wu et al., 2018a,b) tackles memory-wide compression using a distributed

write scheme to jointly compose and compress its memory contents. The model

uses content-based addressing over a separate learnable addressing matrix A, in-

stead of the memory M , and thus learns where to write. Alongside the general

motivation from data-structures, we take inspiration from this Kanerva Machine

write scheme.

5.3 Model

One approach to learning set membership in one-shot would be to use a recurrent

neural network, such as an LSTM or DNC. Here, the model sequentially ingests

the N elements to store, answers a set of queries using the final state, and is

trained by BPTT. Whilst this is a general training approach, and the model may

learn a compressive solution, it does not scale well to larger number of elements.
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Figure 5.1: Overview of the Neural Bloom Filter architecture.

Even when N = 1000, backpropagating over a sequence of this length induces

computational and optimization challenges. For larger values this quickly becomes

intractable. Alternatively one could store an embedding of each element xi ∈ S in a

slot-based Memory Network. This is more scalable as it avoids BPTT, because the

gradients of each input can be calculated in parallel. However Memory Networks

are not a space efficient solution (as shown in in Section 5.6.2) because there is no

joint compression of inputs.

Algorithm 2 Neural Bloom Filter

1: def controller(x):
2: z ← fenc(x) {Input embedding}
3: q ← fq(z) {Query word}
4: a← σ(qTA) {Memory address}
5: w ← fw(z) {Write word}

6: def write(x):
7: a, w ← controller(x)
8: Mt+1 ←Mt + waT {Additive write}

9: def read(x):
10: a, w, z ← controller(x)
11: r ← flatten(M� a) {Read words}
12: o← fout([r, w, z]) {Output logit}

This motivates the proposed memory model, the Neural Bloom Filter. Briefly, the

network is augmented with a real-valued memory matrix. The network addresses
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memory by classifying which memory slots to read or write to via a softmax,

conditioned on the input. We can think of this as a continuous analogue to the

Bloom Filter’s hash function; because it is learned the network can co-locate or

separate inputs to improve performance. The network updates memory with a

simple additive write operation — i.e. no multiplicative gating or squashing — to

the addressed locations. An additive write operation can be seen as a continuous

analogue to the the Bloom Filter’s logical OR write operation.

Crucially, the additive write scheme allows us to train the model without BPTT

— this is because gradients with respect to the write words ∂L/∂w = (∂L/∂M)Ta

can be computed in parallel. Reads involve a component-wise multiplication of

address and memory (analogous to the selection of locations in the Bloom Filter

via hashing), but instead of projecting this down to a scalar with a fixed function,

we pass this through an MLP to obtain a scalar familiarity logit. The network is

fully differentiable, allows memories to be stored in a distributed fashion across

slots, and is quite simple e.g. in comparison to DNCs.

The full architecture depicted in Figure 5.1 consists of a controller network which

encodes the input to an embedding z ← fenc(x) and transforms this to a write

word w ← fw(z) and a query q ← fq(z). The address over memory is computed via

a softmax a← σ(qTA) over the content-based attention between q and a learnable

address matrix A. Here, σ denotes a softmax. All components of the network are

differentiable and are trained end-to-end. The network thus learns where to place

elements or overlap elements based on their content, we can think of this as a soft

and differentiable relaxation of the uniform hashing families incorporated by the

Bloom Filter (see Section 5.4.1 for further discussion).
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A write is performed by running the controller to obtain a write word w and address

a, and then additively writing w to M , weighted by the address a, Mt+1 ← Mt +

waT . The simple additive write ensures that the resulting memory is invariant to

input ordering (as addition is commutative) and we do not have to backpropagate-

through-time (BPTT) over sequential writes — gradients can be computed in

parallel.

A read is performed by also running the controller network to obtain z, w, and a

and component-wise multiplying the address a with M , r ← M � a. The read

words r are fed through an MLP along with the residual inputs w and z, and are

projected to a single scalar logit, indicating the familiarity signal. These write

words are used during the read operation to provide signal for familiarity, as they

tell the network whether a retrieved word bears resemblance to what would have

been written from a given input. We found this read scheme to be more powerful

than the conventional read operation r ← aTM used by the DNC and Memory

Networks, as it allows for non-linear interactions between rows in memory at the

time of read. See Algorithm 2 for an overview of the operations.

To give an example network configuration, we chose fenc to be a 3-layer CNN in the

case of image inputs, and a 128-hidden-unit LSTM in the case of text inputs. We

chose fw and fq to be an MLP with a single hidden layer of size 128, followed by

layer normalization, and fout to be a 3-layer MLP with residual connections. We

used a leaky ReLU as the non-linearity. Although the described model uses dense

operations that scale linearly with the memory size m, we discuss how the model

could be implemented for O(logm) time reads and writes using sparse attention

and read/write operations, in Section 5.9. Furthermore the model’s relation to
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uniform hashing is discussed in Section 5.4.1.

5.4 Space Complexity

In this section we discuss space lower bounds for the approximate set membership

problem when there is some structure to the storage or query set. This can help

us formalise why and where neural networks may be able to beat classical lower

bounds to this problem.

The n log2 (1/ε) lower bound from Carter et al. (1978) assumes that all subsets

S ⊂ U of size n, and all queries q ∈ U have equal probability. Whilst it is

instructive to bound this maximum-entropy scenario, which we can think of as

‘worst case’, most applications of approximate set membership e.g. web cache

sharing, querying databases, or spell-checking, involve sets and queries that are

not sampled uniformly. For example, the elements within a given set may be highly

dependent, there may be a power-law distribution over queries, or the queries and

sets themselves may not be sampled independently.

A more general space lower bound can be defined by an information theoretic

argument from communication complexity (Yao, 1979). Namely, approximate set

membership can be framed as a two-party communication problem between Alice,

who observes the set S and Bob, who observes a query q. They can agree on a

shared policy Π in which to communicate. For given inputs S, q they can produce

a transcript AS,q = Π(S, q) ∈ Z which can be processed g : Z → 0, 1 such that

P (g(AS,q) = 1|q 6∈ S) ≤ ε. This transcript can be thought of as some piece of

communication between Alice and Bob which is optimally space efficient, and can
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be used to make a decision over whether q ∈ S. Bar-Yossef et al. (2004) shows

that the maximum transcript size, over all possible sets and queries, is greater

than the mutual information between the inputs and transcript: maxS,q |AS,q| ≥

I(S, q;AS,q) = H(S, q) − H(S, q|AS,q). Thus we note problems where we may be

able to use less space than the classical lower bound are cases where the entropy

H(S, q) is small, e.g. our sets are highly non-uniform, or cases where H(S, q|AS,q)

is large, which signifies that many query and set pairs can be solved with the same

transcript.

5.4.1 Relation to uniform hashing

We can think of the decorrelation of s, along with the sparse content-based atten-

tion with A, as a hash function that maps s to several indices in M . For moderate

dimension sizes of s (256, say) we note that the Gaussian samples in A lie close to

the surface of a sphere, uniformly scattered across it. If q, the decorrelated query,

were to be Gaussian then the marginal distribution of nearest neighbours rows in

A will be uniform. If we chose the number of nearest neighbours k = 1 then this

implies the slots in M are selected independently with uniform probability. This

is the exact hash function specification that Bloom Filters assume. Instead we

use a continuous (as we choose k > 1) approximation (as we decorrelate s→ q vs

Gaussianize) to this uniform hashing scheme, so it is differentiable and the network

can learn to shape query representations.
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5.5 Backup Bloom Filters

For each task we compare the model’s memory size, in bits, at a given false positive

rate — usually chosen to be 1%. This memory size is measured as the size of the

network’s memory state. For our neural networks which output a probability

p = f(x) one could select an operating point τε such that the false positive rate is

ε. In all of our experiments the neural network outputs a memory (state) s which

characterizes the storage set. Let us say SPACE(f, ε) is the minimum size of s,

in bits, for the network to achieve an average false positive rate of ε. We could

compare SPACE(f,ε) with SPACE(Bloom Filter,ε) directly, but this would not

be a fair comparison as our network f can emit false negatives.

To remedy this, we employ the same scheme as Kraska et al. (2018) where we use a

‘backup’ Bloom Filter with false positive rate δ to store all false negatives. When

f(x) < τε we query the backup Bloom Filter. Because the overall false positive

rate is ε + (1 − ε)δ, to achieve a false positive rate of at most α (say 1%) we can

set ε = δ = α/2. Thus the total space can be calculated,

TOTAL SPACE(f, α) = SPACE(f,
α

2
) + nfn ∗ SPACE(Bloom Filter,

α

2
)

Where nfn is the number of false negatives, i.e. the number of elements stored

in the backup bloom filter. We compare this quantity for different storage set

sizes.
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Algorithm 3 Meta-Learning Training

1: Let Strain denote the distribution over sets to store.
2: Let Qtrain denote the distribution over queries.
3: for i = 1 to max train steps do
4: Sample task:
5: Sample set to store: S ∼ Strain
6: Sample t queries: x1, . . . , xt ∼ Qtrain

7: Targets: yj = 1 if xj ∈ S else 0; j = 1, . . . , t
8: Write entries to memory: M ← fwriteθ (S)
9: Calculate logits: oj = f readθ (M,xj); j = 1, . . . , t

10: XE loss: L =
∑t

j=1 yj log oj + (1− yj)(1− log oj)
11: Backprop through queries and writes: dL/dθ
12: Update parameters: θi+1 ← Optimizer(θi, dL/dθ)
13: end for

5.6 Experiments

Our experiments explore scenarios where set membership can be learned in one-

shot with improved compression over the classical Bloom Filter. We consider

tasks with varying levels of structure in the storage sets S and queries q. We

compare the Neural Bloom Filter with three memory-augmented neural networks,

the LSTM, DNC, and Memory Network, that are all able to write storage sets in

one-shot.

For the Bloom Filter baselines we consider the optimal storage space of Bloom

Filters instead of relying on a specific implementation, which provides it a very

slight advantage. However if we were to rely on a particular implementation,

it’s worth noting the data-structure receives and hashes the raw input instead of

processing the input from an encoder network. For the neural network models,

the training setup follows the memory-augmented meta-learning training scheme

of Vinyals et al. (2016), only here the task is familiarity classification versus image
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classification. The network samples tasks which involve classifying familiarity for

a given storage set. Meta-learning occurs as a two-speed process, where the model

quickly learns to recognize a given storage set S within a training episode via

writing to a memory or state, and the model slowly learns to improve this fast-

learning process by optimizing the model parameters θ over multiple tasks. We

detail the training routine in Algorithm 3.

For the RNN baselines (LSTM and DNC) the write operation corresponds to

unrolling the network over the inputs and outputting the final state. For these

models, the query network is simply an MLP classifier which receives the concate-

nated final state and query, and outputs a scalar logit. For the Memory Network,

inputs are stored in individual slots and the familiarity signal is computed from

the maximum content-based attention value. The Neural Bloom Filter read and

write operations are defined in Algorithm 2.

5.6.1 Method of Space Comparison

Comparing models in terms of the size of their memory and their resulting perfor-

mance requires careful thinking. We compared the space (in bits) of the model’s

memory (or state) to a Bloom Filter at a given false positive rate and 0% false neg-

ative rate. The false positive rate is measured empirically over a sample of 50, 000

queries for the learned models; for the Bloom Filter we employ the analytical false

positive rate. Beating a Bloom Filter’s space usage with the analytical false pos-

itive rate implies better performance for any given Bloom Filter library version

(as actual Bloom Filter hash functions are not uniform), thus the comparison is

reasonable.
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For each model we sweep over hyper-parameters relating to model size to obtain

their smallest operating size at the desired false positive rate (for the full set,

see Appendix C.2). Because the neural models can emit false negatives, we store

these in a (ideally small) backup Bloom Filter, as proposed by Kraska et al. (2018);

Mitzenmacher (2018a). We account for the space of this backup Bloom Filter, and

add it to the space usage of the model’s memory for parity (See Section 5.5 for

further discussion).

The neural network must learn to output a small state in one-shot that can serve

set membership queries at a given false positive rate, and emit a small enough

number of false negatives such that the backup filter is also small, and the total

size is considerably less than a Bloom Filter.

5.6.2 Sampling Strategies on MNIST

To understand what kinds of scenarios neural networks may be more (or less)

compressive than classical Bloom Filters, we consider three simple set membership

tasks that have a graded level of structure to the storage sets and queries. Con-

cretely, they differ in the sampling distribution of storage sets Strain and queries

Qtrain. However all problems are approximate set membership tasks that can be

solved by a Bloom Filter.

The tasks are (1) Class-based familiarity, a highly structured task where each set

of images is sampled with the constraint that they arise from the same randomly-

selected class. This task emulates when there are implicit class attributes that set

elements share in common. (2) Non-uniform instance-based familiarity, a mod-

erately structured task where the images are sampled non-uniformly without re-
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Figure 5.2: Sampling strategies on MNIST. Space consumption at 1% FPR.

placement. This task represents settings where heavy hitters exist in the data, that

are more likely to be present. (3) Uniform instance-based familiarity, a completely

unstructured task where each subset contains images sampled uniformly without

replacement. This represents the adversarial setting when there is no structure in

the storage sets.

For each task we varied the size of the sample set to store, and calculated the

space (in bits) of each model’s state at a fixed false positive rate of 1% and a false

negative rate of 0%. We used relatively small storage set sizes (e.g. 100− 1000) to

start with, as this highlights that some RNN-based approaches struggle to train

over larger set sizes, before progressing to larger sets in subsequent sections. See

Appendix C.3 for further details on the task setup and Appendix C.1 for further

details on the convnet image encoder.

In the class-based sampling task we see in Figure 5.2a that the DNC, LSTM and

Neural Bloom Filter are able to significantly outperform the classical Bloom Filter

when images are sampled by class. The Memory Network is able to solve the task

with a word size of only 2, however this corresponds to a far greater number of
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bits per element, 64 versus the Bloom Filter’s 9.8 (to a total size of 4.8kb), and

so the overall size was prohibitive. The DNC, LSTM, and Neural Bloom Filter

are able to solve the task with a storage set size of 500 at 1.1kb , 217b, and 382b;

a 4.3×, 22×, and 12× saving respectively. One could remark, in this setting the

Bloom Filter would perform much more strongly if it were given a hash function

that received the class label instead of the image. The idea behind this task, is

that it represents a setting where there exists an implicit class label that perhaps

is not known. The Neural Bloom Filter can find this implicit label and exploit it

to perform strongly with a small amount of space, where the Bloom Filter is fixed

in its approach to solving the problem.

For the non-uniform sampling task in Figure 5.2b we see the Bloom Filter is

preferable for less than 500 stored elements, but is overtaken thereafter. At 1000

elements the DNC, LSTM, and Neural Bloom Filter consume 7.9kb, 7.7kb, and

6.8kb respectively which corresponds to a 17.6%, 19.7%, and 28.6% reduction over

the 9.6kb Bloom Filter. In the uniform sampling task shown in Figure 5.2c, there

is no structure to the sampling of S.

The two architectures which rely on BPTT essentially fail to solve the task at some

threshold of storage size. The Neural Bloom Filter solves it with 6.8kb (using a

memory size of 50 and word size of 2). The overall conclusion from these sets of

experiments is that the classical Bloom Filter works best when there is no structure

to the data, however when there is (e.g. skewed data, or highly dependent sets

that share common attributes) we do see significant space savings.
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Memory
Contents
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Full Model Constant write words:

Figure 5.3: Memory access analysis. Three different learned solutions to class-
based familiarity. We train three Neural Bloom Filter variants, with a succession
of simplified read and write mechanisms. Each model contains 10 memory slots
and the memory addressing weights a and contents M̄ are visualised, broken down
by class. Solutions share broad correspondence to known algorithms: (a) Bloom-g
filters, (b) Bloom Filters, (c) Perfect hashing.

5.6.3 Memory Access Analysis

We wanted to understand how the Neural Bloom Filter uses its memory, and

in particular how its learned solutions may correspond to classical algorithms.

We inspected the memory contents (what was stored to memory) and addressing

weights (where it was stored) for a small model of 10 memory slots and a word

size of 2, trained on the MNIST class-based familiarity task.

We plot this for each class label, and compare the pattern of memory usage to

two other models that use increasingly simpler read and write operations: (1) an

ablated model with constant write words w ← 1, and (2) an ablated model with

w ← 1 and a linear read operator r ← aTM .

The full model, shown in Figure 5.3a learns to place some classes in particular

slots, e.g. class 1→ slot 5, however most are distributed. Inspecting the memory
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contents, it is clear the write word encodes a unique 2D token for each class.

This solution bears resemblance with Bloom-g Filters (Qiao et al., 2011) where

elements are spread across a smaller memory with the same hashing scheme as

Bloom Filters, but a unique token is stored in each slot instead of a constant 1-

bit value. With the model ablated to store only 1s in Figure 5.3b we see it uses

semantic addressing codes for some classes (e.g. 0 and 1) and distributed addresses

for other classes. E.g. for class 3 the model prefers to uniformly spread its writes

across memory slot 1, 4, and 8.

The model solution is similar to that of Bloom Filters, with distributed addressing

codes as a solution — but no information in the written words themselves. When

we force the read operation to be linear in Figure 5.3c, the network maps each

input class to a unique slot in memory. This solution has a correspondence with

perfect hashing. In conclusion, with small changes to the read/write operations

we see the Neural Bloom Filter learn different algorithmic solutions.

5.6.4 Database Queries

We look at a task inspired by database interactions. NoSQL databases, such as

Bigtable and Cassandra, use a single string-valued row-key, which is used to index

the data. The database is comprised of a union of files (e.g. SSTables) storing

contiguous row-key chunks. Bloom Filters are used to determine whether a given

query q lies within the stored set. We emulate this setup by constructing a universe

of strings, that is alphabetically ordered, and by sampling contiguous ranges (to

represent a given SSTable). Queries are sampled uniformly from the universe set of

strings. We choose the 2.5M unique tokens in the GigaWord v5 news corpus to be
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Table 5.1: Database task. Storing 5000 row-key strings for a target false positive
rate.

5% 1% 0.1%
Neural Bloom Filter 871b 1.5kb 24.5kb

Bloom Filter 31.2kb 47.9kb 72.2kb
Cuckoo Filter 33.1kb 45.3kb 62.6kb

our universe as this consists of structured natural data and some noisy or irregular

strings. We consider the task of storing sorted string sets of size 5000. We train

the Neural Bloom Filter to several desired false positive rates (5%, 1%, 0.1%) and

used a backup Bloom Filter to guarantee 0% false negative rate. We also trained

LSTMs and DNCs for comparison, but they failed to learn a solution to the task

after several days of training; optimizing insertions via BPTT over a sequence

of length 5000 did not result in a remotely usable solution. The Neural Bloom

Filter avoids BPTT via its simple additive write scheme, and so it learned to solve

the task quite naturally. As such, we compare the Neural Bloom Filter solely to

classical data structures: Bloom Filters and Cuckoo Filters. In Table 5.1 we see

a significant space reduction of 3− 40×, where the margin grows with increasing

permitted false positive rates. Since memory is an expensive component within

production databases (in contrast to disk, say), this memory space saving could

translate to a non-trivial cost reduction. We note that a storage size of 5000 may

appear small, but is relevant to the NOSQL database scenario where disk files

(e.g. SSTables) are typically sharded to be several megabytes in size, to avoid

issues with compaction. E.g. if the stored values were of size 10kB per row, we

would expect 5000 unique keys or less in an average Bigtable SSTable.
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5.7 Database Extrapolation Task

Figure 5.4: Database extrapolation task. Models are trained up to sets of size 200
(dashed line). We see extrapolation to larger set sizes on test set, but performance
degrades. Neural architectures perform best for larger allowed false positive rates.

One further consideration for production deployment is the ability to extrapolate

to larger storage set sizes during evaluation. Whilst a classical Bloom Filter has

guarantees on performance as a function of storage set size, and thus can be

trusted to extrapolate, the same does not hold true for neural networks. Crucially,

larger sets can create out-of-distribution mismatch which degrades performance.

investigate whether neural models are able to extrapolate to larger test sizes using

the database task setup. Each set contains a contiguous set of sorted strings;

we train both the Neural Bloom Filter and LSTM on sets of sizes 2 - 200. We

then evaluate on sets up to 250, i.e. a 25% increase over what is observed during

training. This is to emulate the scenario that we train on a selection of database

tablets, but during evaluation we may observe some tablets that are slightly larger

than those in the training set. We display the results in Figure 5.4.

Both the LSTM and Neural Bloom Filter are able to solve the task, with the Neural

Bloom Filter using significantly less space for the larger allowed false positive

rate of 5% and 1%. We do see the models’ error increase as it surpasses the

maximum training set size, however it is not catastrophic. Another interesting

180



Table 5.2: Latency for a single query, and throughput for a batch of 10,000 queries.
*Query-efficient Bloom Filter from Chen et al. (2007), †Learned Index from Kraska
et al. (2018).

Query + Insert Latency Query Throughput(/s) Insert Throughput(/s)
CPU GPU CPU GPU CPU GPU

Bloom Filter∗ 0.02ms - 61K - 61K -
Neural Bloom Filter 5.1ms 13ms 3.5K 105K 3.2K 101K

LSTM 5.0ms 13ms 3.1K 107K 2.4K 4.6K
Learned Index† 780ms 1.36s 3.1K 107K 25 816

trend is noticeable; the neural models have higher utility for larger allowed false

positive rates. This may be because of the difficulty in training the models to an

extremely low accuracy.

5.7.1 Timing benchmark

We have principally focused on space comparisons, we now consider speed for the

database task described in the prior section. We measure latency as the wall-clock

time to complete a single insertion or query of a row-key string of length 64. We

also measure throughput as the reciprocal wall-clock time of inserting or querying

10, 000 strings. We use a common encoder architecture for the neural models,

a 128-hidden-unit character LSTM. We benchmark the models on the CPU (In-

tel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz) and on the GPU (NVIDIA Quadro

P6000) with models implemented in TensorFlow without any model-specific opti-

mizations.

We compare to empirical timing results published in a query-optimized Bloom

Filter variant (Chen et al., 2007). We include the Learned Index from Kraska et al.

(2018) to contrast timings with a model that is not one-shot. The architecture is

simply the LSTM character encoder; inserts are performed via gradient descent.
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The number of gradient-descent steps to obtain convergence is domain-dependent,

we chose 50 steps in our timing benchmarks. The Learned Index queries are

obtained by running the character LSTM over the input and classifying familiarity

— and thus query metrics are identical to the LSTM baseline.

We see in Table 5.2. that the combined query and insert latency of the Neural

Bloom Filter and LSTM sits at 5ms on the CPU, around 400× slower than the

classical Bloom Filter. The Learned Index contains a much larger latency of 780ms

due to the sequential application of gradients. For all neural models, latency is

not improved when operations are run on the GPU.

However for production databases serving thousands of queries per second, the

batched performance is of more importance than individual latency. When multi-

ple queries are received, the throughput of GPU-based neural models surpasses the

classical Bloom Filter due to efficient concurrency of the dense linear algebra oper-

ations. This leads to the conclusion that a Neural Bloom Filter could be deployed

in scenarios with high query load without a catastrophic decrease in throughput, if

GPU devices are available. This is not to claim that Bloom Filters could not have

an improved throughput on the GPU. The claim is that the CPU-based through-

put for Bloom Filters is sufficient in all known database applications and thus a

hardware-accelerated Neural Bloom Filter which matches this throughput could

be feasible in the same setting.

For insertions we see a bigger separation between the one-shot models: the LSTM

and Neural Bloom Filter. The Neural Bloom Filter surpasses the Bloom Filter’s

insertion throughput when placed on the GPU, with 101K insertions per second

(IPS). The LSTM runs at 4.6K IPS, one order of magnitude slower, because writes
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are serial, and the Learned Index structure is two orders of magnitude slower at 816

IPS due to sequential gradient computations. The benefits of the Neural Bloom

Filter’s simple write scheme are apparent here.

It is worth noting, in several Bloom Filter applications, the actual query latency is

not in the critical path of computation. For example, for a distributed database,

the network latency and disk access latency for one tablet can be orders of magni-

tude greater than the in-memory latency of a Bloom Filter query. For this reason,

we have not made run-time a point of focus in this study, and it is implicitly

assumed that the neural network is trading off greater latency for less space.

5.8 Related Work

There have been a large number of Bloom Filter variants published; from Counting

Bloom Filters which support deletions (Fan et al., 2000), Bloomier Filters which

store functions vs sets (Chazelle et al., 2004), Compressed Bloom Filters which

use arithmetic encoding to compress the storage set (Mitzenmacher, 2002), and

Cuckoo Filters which use cuckoo hashing to reduce redundancy within the storage

vector (Fan et al., 2014). Although some of these variants focus on better com-

pression, they do not achieve this by specializing to the data distribution.

One of the few works which address data-dependence are Weighted Bloom Fil-

ters (Bruck et al., 2006; Wang et al., 2015). They work by modulating the number

of hash functions used to store or query each input, dependent on its storage and

query frequency. This requires estimating a large number of separate storage and

query frequencies. This approach can be useful for imbalanced data distributions,
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such as the non-uniform instance-based MNIST familiarity task. However it cannot

take advantage of dependent sets, such as the class-based MNIST familiarity task,

or the database query task. We see the Neural Bloom Filter is more compressive

in all settings.

Sterne (2012) proposes a neurally-inspired set membership data-structure that

works by replacing the randomized hash functions with a randomly-wired compu-

tation graph of OR and AND gates. The false positive rate is controlled analyt-

ically by modulating the number of gates and the overall memory size. However

there is no learning or specialization to the data with this setup. Bogacz and

Brown (2003) investigates a learnable neural familiarity module, which serves as a

biologically plausible model of familiarity mechanisms in the brain, namely within

the perirhinal cortex. However this has not shown to be empirically effective at

exact matching.

Kraska et al. (2018) consider the use of a neural network to classify the member-

ship of queries to a fixed set S. Here the network itself is more akin to a perfect

hashing setup where multiple epochs are required to find a succinct holistic repre-

sentation of the set, which is embedded into the weights of the network. In their

case this search is performed by gradient-based optimization. We emulate their ex-

perimental comparison approach but instead propose a memory architecture that

represents the set as activations in memory, versus weights in a network.

Mitzenmacher (2018a) discusses the benefits and draw-backs of a learned Bloom

Filter; distinguishing the empirical false positive rate over the distribution of sets

S versus the conditional false positive rate of the model given a particular set

S. In this chapter we focus on the empirical false positive rate because we wish
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to exploit redundancy in the data and query distribution. Mitzenmacher (2018b)

also considers an alternate way to combine classical and learned Bloom Filters

by ‘sandwiching’ the learned model with pre-filter and post-filter classical Bloom

Filters to further reduce space.

5.9 Efficient addressing

We discuss some implementation tricks that could be employed for a production

system.

Firstly the original model description defines the addressing matrix A to be train-

able. This ties the number of parameters in the network to the memory size. It

may be preferable to train the model at a given memory size and evaluate for

larger memory sizes. One way to achieve this is by allowing the addressing matrix

A to be non-trainable. We experiment with this, allowing A ∼ N (0, I) to be a

fixed sample of Gaussian random variables. We can think of these as point on a

sphere in high dimensional space, the controller network must learn to organize

inputs into separate buckets across the surface of the sphere.

To make the addressing more efficient for larger memory sizes, we experiment with

sparsification of the addressing softmax by preserving only the top k components.

We denote this sparse softmax σk(·). When using a sparse address, we find the

network can fixate on a subset of rows. This observation is common to prior sparse

addressing work (Shazeer et al., 2017). We find sphering the query vector, often

dubbed whitening, remedies this. This is done by maintaining a moving average

of the principal components of the query q. see Section 5.9.2 for an ablation). The
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modified sparse architecture variant is illustrated in Algorithm 4.

Algorithm 4 Sparse Neural Bloom Filter

1: def sparse controller(x):
2: z ← fenc(x)
3: s← fq(z) {Raw query word}
4: q ← moving zca(q) {Spherical query}
5: a← σk(q

TA) {Sparse address}
6: w ← fw(z)

7: def sparse write(x):
8: a, w ← sparse controller(x)
9: Mt+1[aidx]←Mt[aidx] + waTval

10: def sparse read(x):
11: a, w, z ← sparse controller(x)
12: r ←M [aidx]� aval
13: o← fout([r, w, z])

One can avoid the linear-time distance computation qTA in the addressing opera-

tion σk(q
TA) by using an approximate k-nearest neighbour index, such as locality-

sensitive hashing (Datar et al., 2004), to extract the nearest neighbours from A in

O(logm) time. The use of an approximate nearest neighbour index has been em-

pirically considered for scaling memory-augmented neural networks in Chapter 3

and also in (Kaiser et al., 2017) however this was used for attention on M directly.

As M is dynamic the knn requires frequent re-building as memories are stored or

modified. This architecture is simpler — A is fixed and so the approximate knn

can be built once.

To ensure the serialized size of the network (which can be shared across many

memory instantiations) is independent of the number of slots in memory m we

can avoid storing A. In the instance that it is not trainable, and is simply a
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fixed sample of random variables that are generated from a deterministic random

number generator — we can instead store a set of integer seeds that can be used to

re-generate the rows of A. We can let the i-th seed ci, say represented as a 16-bit

integer, correspond to the set of 16 rows with indices 16i, 16i+ 1, . . . , 16i+ 15. If

these rows need to be accessed, they can be regenerated on-the-fly by ci. The total

memory cost of A is thus m bits, where m is the number of memory slots. If there

are more than one million slots, the same argument applies by replacing 16 with

32.

Putting these two together it is possible to query and write to a Neural Bloom

Filter with m memory slots in O(logm) time, where the network consumes O(1)

space. It is worth noting, however, the Neural Bloom Filter’s memory is often much

smaller than the corresponding classical Bloom Filter’s memory, and in many of

our experiments is even smaller than the number of unique elements to store.

Thus dense matrix multiplication can still be preferable - especially due to its

acceleration on GPUs and TPUs (Jouppi et al., 2017) - and a dense representation

of A is not inhibitory. As model optimization can become application-specific, we

do not focus on these implementation details and use the model in its simplest

setting with dense matrix operations.

5.9.1 Moving ZCA

We found sphering the query helped avoid mode collapse where the same O(1)

slots were always written to and read from. This was done by efficiently com-

puting the ZCA transform (Bell and Sejnowski, 1996) in an online setting. ZCA

was computed by taking moving averages over the first and second moments re-
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spectively, calculating the ZCA matrix and updating a moving average projection

matrix θzca. This is only done during training, at evaluation time θzca is fixed. We

describe the update below for completeness.

Input: s← fq(z) (5.1)

µt+1 ← γµt + (1− γ)s̄ 1st moment EMA (5.2)

Σt+1 ← γΣt + (1− γ) sT s 2nd moment EMA (5.3)

U, s, ← svd(Σ− µ2) Singular values (5.4)

W ← UUT/
√

(s) ZCA matrix (5.5)

θzca ← ηθzca + (1− η)W ZCA EMA (5.6)

q ← s θzca Projected query (5.7)

In practice we do not compute the singular value decomposition at each time step

to save computational resources, but instead calculate it and update θ every T

steps. We scale the discount in this case η′ = η/T .

5.9.2 Query Sphering

We see the benefit of sphering sparse addressing mechanisms in Figure 5.5 where

the converged validation performance ends up at a higher state. Investigating the

proportion of memory filled after all elements have been written in Figure 5.6, we

see the model uses quite a small proportion of its memory slots. This is likely

due to the network fixating on rows it has accessed with sparse addressing, and

ignoring rows it has otherwise never touched — a phenomena noted in Shazeer

et al. (2017). The model finds a local minima in continually storing and accessing
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the same rows in memory. The effect of sphering is that the query now appears

to be Gaussian (up to the first two moments) and so the nearest neighbour in the

address matrix A (which is initialized to Gaussian random variables) will be close

to uniform. This results in a more uniform memory access (as seen in Figure 5.6)

which significantly aids performance (as seen in Figure 5.5).
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Figure 5.5: For sparse addresses, sphering enables the model to learn the task of
set membership to high accuracy.

5.10 Conclusion

In many situations neural networks are not a suitable replacement to Bloom Filters

and their variants. The Bloom Filter is robust to changes in data distribution

because it delivers a bounded false positive rate for any sampled subset. However in

this chapter we consider the questions, “When might a single-shot neural network

provide better compression than a Bloom Filter?”. We see that a model which uses

an external memory with an adaptable capacity, avoids BPTT with a feed-forward

write scheme, and learns to address its memory, is the most promising option in
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Figure 5.6: For sparse addresses, sphering the query vector leads to fewer collisions
across memory slots and thus a higher utilization of memory.

contrast to popular memory models such as DNCs and LSTMs. We term this

model the Neural Bloom Filter due to the analogous incorporation of a hashing

scheme, commutative write scheme, and multiplicative read mechanism.

The Neural Bloom Filter relies on settings where we have an off-line dataset (both

of stored elements and queries) that we can meta-learn over. In the case of a

large database we think this is warranted, a database with 100K separate set

membership data structures will benefit from a single (or periodic) meta-learning

training routine that can run on a single machine and sample from the currently

stored data, generating a large number of efficient data-structures. We envisage the

space cost of the network to be amortized by sharing it across many neural Bloom

Filters, and the time-cost of executing the network to be offset by the continuous

acceleration of dense linear algebra on modern hardware, and the ability to batch

writes and queries efficiently. A promising future direction would be to investigate

the feasibility of this approach in a production system.
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Chapter 6

Compressive Memory for

Sequence Modelling

We present the Compressive Transformer, an attentive sequence model which com-

presses past memories for long-range sequence learning. We find the Compressive

Transformer obtains state-of-the-art language modelling results in the WikiText-

103 and Enwik8 benchmarks, achieving 17.1 ppl and 0.97 bpc respectively. We

also find it can model high-frequency speech effectively and can be used as a mem-

ory mechanism for RL, demonstrated on an object matching task. To promote

the domain of long-range sequence learning, we propose a new open-vocabulary

language modelling benchmark derived from books, PG-19.
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6.1 Motivation

Humans have a remarkable ability to remember information over long time hori-

zons. When reading a book, we build up a compressed representation of the past

narrative, such as the characters and events that have built up the story so far.

We can do this even if they are separated by thousands of words from the cur-

rent text, or long stretches of time between readings. During daily life, we make

use of memories at varying time-scales: from locating the car keys, placed in the

morning, to recalling the name of an old friend from decades ago. These feats of

memorisation are not achieved by storing every sensory glimpse throughout one’s

lifetime, but via lossy compression. We aggressively select, filter, or integrate input

stimuli based on factors of surprise, perceived danger, or repetition — amongst

other signals (Richards and Frankland, 2017).

Memory systems in artificial neural networks began with very compact represen-

tations of the past. Recurrent neural networks (RNNs, Rumelhart et al. (1986))

learn to represent the history of observations in a compressed state vector. The

state is compressed because it uses far less space than the history of observations

— the model only preserving information that is pertinent to the optimisation

of the loss. The LSTM (Hochreiter and Schmidhuber, 1997) is perhaps the most

ubiquitous RNN variant; it uses learned gates on its state vector to determine

what information is stored or forgotten from memory.

However since the LSTM, there has been great benefit discovered in not bottleneck-

ing all historical information in the state, but instead in keeping past activations

around in an external memory and attending to them. The Transformer (Vaswani

et al., 2017) is a sequence model which stores the hidden activation of every time-
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step, and integrates this information using an attention operator (Bahdanau et al.,

2014). The Transformer will thus represent the past with a tensor (depth × mem-

ory size × dimension) of past observations that is, in practice, an order of magni-

tude larger than an LSTM’s hidden state. With this granular memory, the Trans-

former has brought about a step-change in state-of-the-art performance, within

machine translation (Vaswani et al., 2017), language modelling (Dai et al., 2019;

Shoeybi et al., 2019), video captioning (Zhou et al., 2018b), and a multitude of lan-

guage understanding benchmarks (Devlin et al., 2019; Yang et al., 2019) amongst

others.

One drawback in storing everything is the computational cost of attending to every

time-step and the storage cost of preserving this large memory. Sparse attention

mechanisms, such as SAM presented in Chapter 3 address this, along with more

recent contemporary works applying sparsity to transformers (Child et al., 2019;

Sukhbaatar et al., 2019; Lample et al., 2019). However sparse attention does not

solve the storage problem, and often requires custom sparse kernels for efficient

implementation. Instead we look back to the notion of compactly representing

the past. We show this can be built with simple dense linear-algebra components,

such as convolutions, and can reduce both the space and compute cost of our

models.

We propose the Compressive Transformer, a simple extension to the Transformer

which maps past hidden activations (memories) to a smaller set of compressed rep-

resentations (compressed memories). The Compressive Transformer uses the same

attention mechanism over its set of memories and compressed memories, learning

to query both its short-term granular memory and longer-term coarse memory.
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We observe this improves the modelling of text, achieving state-of-the-art results

in character-based language modelling — 0.97 bpc on Enwik8 from the Hutter

Prize (Hutter, 2012) — and word-level language modelling — 17.1 perplexity on

WikiText-103 (Merity et al., 2016). Specifically, we see the Compressive Trans-

former improves the modelling of rare words.

We show the Compressive Transformer works not only for language, but can also

model the waveform of high-frequency speech with a trend of lower likelihood than

the TransformerXL and Wavenet (Oord et al., 2016) when trained over 400,000

steps. We also show the Compressive Transformer can be used as a memory com-

ponent within an RL agent, IMPALA (Espeholt et al., 2018), and can successfully

compress and make use of past observations.

Furthermore we present a new book-level language-modelling benchmark PG-19,

extracted from texts in Project Gutenberg,1 to further promote the direction of

long-context sequence modelling. This is over double the size of existing LM

benchmarks and contains text with much longer contexts.

6.2 Related Work

For character-level neural machine translation, Lee et al. (2017) propose a hy-

brid model containing compressed long-range memory of the source sentence,

and granular short-range memory. Namely the source sentence is encoded at

the character-level using a stack of convolutional neural networks with pooling,

to temporally compress the input from characters to segments, followed by an

1https://www.gutenberg.org/
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attention-augmented GRU. The authors find this setup outperforms translation

over byte-pair-encoded BPE text, where BPE typically reduces the sequence length

by 4x. These experiments were confined to relatively short-range sentence-level

translation, however they show the promise in learned temporal compression for

modelling natural language.

There have been a variety of recent attempts to extend the range of attention

with Transformer models, or to replace the attention operation with something

less expensive. Wu et al. (2019) show that a convolution-like operator that runs in

linear time can actually exceed the performance of the quadratic-time self-attention

layer in the Transformer at sentence-to-sentence translation and sentence-level

language modelling. However such a mechanism inhibits the flow of information

across a large number of time-steps for a given layer, and has not shown to be

beneficial for long-range sequence modelling.

Dai et al. (2019) propose the TransformerXL, which keeps past activations around

in memory. They also propose a novel relative positional embedding scheme which

they see outperforms the Transformer’s original absolute positional system. Our

model incorporates both of these ideas, the use of a memory to preserve prior

activations and their relative positional embedding scheme.

The Sparse Transformer (Child et al., 2019) uses fixed sparse attention masks to

attend to roughly
√
n locations in memory. This approach still requires keeping

all memories around during training, however with careful re-materialization of

activations and custom kernels, the authors are able to train the model with a

reasonable budget of memory and compute. When run on Enwik8, the much larger

attention window of 8, 000 improves model performance, but overall it does not
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significantly outperform a simpler TransformerXL with a much smaller attention

window.

The use of dynamic attention spans is explored in Sukhbaatar et al. (2019). Differ-

ent attention heads can learn to have shorter or longer spans of attention — and

they observe this achieves state-of-the-art in character-based language modelling.

This idea could easily be combined with our contribution — a compressive memory.

However an efficient implementation is not possible on current dense-linear-algebra

accelerators, such as Google’s TPUs, due to the need for dynamic and sparse com-

putation. Our approach builds on simple dense linear algebra components, such

as convolutions.

The most similar model which has been published slightly after this study is the

Funnel Transformer (Dai et al., 2020) which also considers temporal compres-

sion via convolutions, pooling, and maximum-attention selection in a sequence-

to-sequence setup. This specifically compresses information in the encoder of an

encoder-decoder transformer for tasks such as machine translation. The key differ-

ence is the encoder processes the whole input bi-directionally, however we consider

the case of auto-regressive modelling where causality must be preserved. We can

think of the Funnel Transformer as an instance of the Compressive Transformer if

we applied the encoder to past memories, and the decoder to the current sequence

of activations to be modelled.
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Figure 6.1: The Compressive Transformer keeps a fine-grained memory of past
activations, which are then compressed into coarser compressed memories. The
above model has three layers, a sequence length ns = 3, memory size nm = 6,
compressed memory size ncm = 6. The highlighted memories are compacted, with
a compression function fc per layer, to a single compressed memory — instead of
being discarded at the next sequence. In this example, the rate of compression
c = 3.

6.3 Model

We present the Compressive Transformer, a long-range sequence model which com-

pacts past activations into a compressed memory. The Compressive Transformer is

a variant of the Transformer (Vaswani et al., 2017), a deep residual network which

only uses attention to propagate information over time (namely multi-head at-

tention). We build on the ideas of the TransformerXL (Dai et al., 2019) which

maintains a memory of past activations at each layer to preserve a longer his-

tory of context. The TransformerXL discards past activations when they become

sufficiently old (controlled by the size of the memory). The key principle of the

Compressive Transformer is to compress these old memories, instead of discarding

them, and store them in an additional compressed memory.

197



6.3.1 Description

We define nm and ncm to be the number of respective memory and compressive

memory slots in the model per layer. The overall input sequence S = x1, x2, . . . , x|s|

represents input observations (e.g. tokens from a book). These are split into fixed-

size windows of size ns for the model to process in parallel. The model observes

x = xt, . . . , xt+ns at time t, which we refer to as the sequence (e.g. in Figure 6.1).

As the model moves to the next sequence, its ns hidden activations are pushed into

a fixed-sized FIFO memory (like the TransformerXL). The oldest ns activations

in memory are evicted, but unlike the TransformerXL we do not discard them.

Instead we apply a compression operation, fc : Rns×d → Rb
ns
c
c×d, mapping the ns

oldest memories to bns

c
c compressed memories which we then store in a secondary

FIFO compressed memory. d denotes the hidden size of activations and c refers

to the compression rate, a higher value indicates more coarse-grained compressed

memories. The full architecture is described in Algorithm 5.

6.3.2 Compression Functions and Losses

For choices of compression functions fc we consider (1) max/mean pooling,

where the kernel and stride is set to the compression rate c; (2) 1D convolution

also with kernel & stride set to c; (3) dilated convolutions; (4) most-used

where the memories are sorted by their average attention (usage) and the most-

used are preserved. The pooling is used as a fast and simple baseline. The most-

used compression scheme is inspired from the garbage collection mechanism in the

Differentiable Neural Computer (Graves et al., 2016) where low-usage memories

are erased. The convolutional compression functions contain parameters which
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Algorithm 5 Compressive Transformer
At time zero

1: m0 ← 0 {Initialise memory to zeros (l × nm × d)}
2: cm0 ← 0 {Initialise compressed memory to zeros (l × ncm × d)}

At time t
3: h(1) ← xWemb {Embed input sequence(ns × d)}
4: for layer i = 1, 2, . . . , l do
5: mem(i) ← concat(cm

(i)
t ,m

(i)
t ) {((ncm + nm)× d)}

6: ã(i) ← multihead attention(i)(h(i),mem
(i)
t ) {MHA over both mem types}

(ns × d)
7: a(i) ← layer norm(ã(i) + h(i)) {Regular skip + layernorm (ncm × d)}
8: old mem(i) ←m

(i)
t [: ns] {Oldest memories to be forgotten (ns × d)}

9: new cm(i) ← f
(i)
c (old mem(i)) {Compress oldest memories by factor c

(bns

c
c × d)}

10: m
(i)
t+1 ← concat(m

(i)
t ,h

(i))[−nm :] {Update memory (nm × d)}
11: cm

(i)
t ← concat(cm

(i)
t ,new cm(i))[−ncm :] {Update compressed memory

(ncm × d)}
12: h(i+1) ← layer norm(mlp(i)(a(i)) + a(i)) {Mixing MLP (ns × d)}
13: end for

Algorithm 6 Attention-Reconstruction Loss

1: Lattn ← 0
2: for layer i = 1, 2, . . . , l do
3: h(i) ← stop gradient(h(i)) {Stop compression grads from passing... }
4: old mem(i) ← stop gradient(old mem(i)) {...into transformer network.}
5: Q,K,V ← stop gradient(attention params at layer i) {Re-use attention

weight matrices.}
6: def attn(h,m)← sigm((hQ) (mK))(mV) {Use content-based attention (no

relative).}
7: new cm(i) ← f

(i)
c (old mem(i)) {Compression network (to be optimised).}

8: Lattn ← Lattn + ||attn(h(i),old mem(i))− attn(h(i),new cm(i))||2
9: end for
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require training.

One can train the compression network using gradients from the loss; however

for very old memories this requires backpropagating-through-time (BPTT) over

long unrolls. As such we also consider some local auxiliary compression losses.

We consider an auto-encoding loss where we reconstruct the original memories

from the compressed memories Lae = ||old mem(i) − g(new cm(i))||2, where g :

Rns
c
×d → Rns×d is learned. This is a lossless compression objective — it attempts to

retain all information in memory. We also consider an attention-reconstruction

loss described in Algorithm 6 which reconstructs the content-based attention over

memory, with content-based attention over the compressed memories. This is a

lossy objective, as information that is no longer attended to can be discarded, and

we found this worked best. We stop compression loss gradients from passing into

the main network as this prevents learning. Instead the Transformer optimises the

task objective and the compression network optimises the compression objective

conditioned on task-relevant representations; there is no need to mix the losses

with a tuning constant.

6.3.3 Temporal Range

The TransformerXL with a memory of size n has a maximum temporal range of

l × n with an attention cost of O(n2
s + nsn) (see Dai et al. (2019) for a detailed

discussion). The Compressive Transformer now has a maximum temporal range

of l× (nm + c ∗ncm) with an attention cost of O(n2
s +ns(nm +ncm)). For example,

setting ncm = nm = n/2 and c = 3 we obtain a maximum temporal range that is

two times greater than the TransformerXL with an identical attention cost. Thus
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if we can learn in the c > 1 compressed setting, the temporal range of the model

can be significantly increased.

6.4 PG-19 Benchmark

As models begin to incorporate longer-range memories, it is important to train

and benchmark them on data containing larger contexts. Natural language in

the form of text provides us with a vast repository of data containing long-range

dependencies, that is easily accessible. We propose a new language modelling

benchmark, PG-19, using text from books extracted from Project Gutenberg.2

We select Project Gutenberg books which were published over 100 years old, i.e.

before 1919 (hence the name PG-19) to avoid complications with international

copyright, and remove short texts. The dataset contains 28, 752 books, or 11GB

of text — which makes it over double the size of BookCorpus and Billion Word

Benchmark.

6.4.1 Preprocessing

The raw texts from the Gutenberg project were minimally pre-processed by re-

moving boilerplate license text. We then also replaced discriminatory words with

a unique 〈DWx〉 token using the Ofcom list of discriminatory words. 3

2https://github.com/deepmind/pg19
3https://www.ofcom.org.uk/__data/assets/pdf_file/0023/91625/OfcomQRG-AOC.pdf
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6.4.2 Related Datasets

The two most benchmarked word-level language modelling datasets either stress

the modelling of stand-alone sentences (Billion Word Benchmark from Chelba et al.

(2013)) or the modelling of a small selection of short news articles (Penn Treebank

processed by Mikolov et al. (2010)). Merity et al. (2016) proposed the WikiText-

103 dataset, which contains text from a high quality subset of English-language

wikipedia articles. These articles are on average 3, 600 words long. This dataset

has been a popular recent LM benchmark due to the potential to exploit longer-

range dependencies in text, such as those explored in Chapter 4 and contemporary

works (Grave et al., 2016b; Bai et al., 2018b). However recent Transformer models,

such as the TransformerXL (Dai et al., 2019) appear to be able to exploit temporal

dependencies on the order of several thousand words. This motivates a larger

dataset with longer contexts.

Books are a natural choice of long-form text, and provide us with stylistically rich

and varied natural language. Texts extracted from books have been used for prior

NLP benchmarks; such as the Children’s Book Test (Hill et al., 2015) and LAM-

BADA (Paperno et al., 2016). These benchmarks use text from Project Gutenberg,

an online repository of books with expired US copyright, and BookCorpus (Zhu

et al., 2015), a prior dataset of 11K unpublished (at time of authorship) books.

CBT and LAMBADA contain extracts from books, with a specific task of predict-

ing held-out words. In the case of LAMBADA the held-out word is specifically

designed to be predictable for humans with access to the full textual context —

but difficult to guess with only a local context.

CBT and LAMBADA are useful for probing the linguistic intelligence of models,
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Table 6.1: Comparison to existing popular language modelling benchmarks.

Avg. length (words) Train Size Vocab Type

1B Word 27 4.15GB 793K News (sentences)
Penn Treebank 355 5.1MB 10K News (articles)

WikiText-103 3.6K 515MB 267K Wikipedia (articles)

PG-19 69K 10.9GB (open) Books

but are not ideal for training long-range language models from scratch as they

truncate text extracts to at most a couple of paragraphs, and discard a lot of the

books’ text. There has been prior work on training models on book data using

BookCorpus directly (e.g. BERT from Devlin et al. (2019)) however BookCorpus is

no longer distributed due to licensing issues, and the source of data is dynamically

changing — which makes exact benchmarking difficult over time.

The NarrativeQA Book Comprehension Task (Kočiskỳ et al., 2018) uses Project

Gutenberg texts paired with Wikipedia articles, which can be used as summaries.

Due to the requirement of needing a corresponding summary, NarrativeQA con-

tains a smaller selection of books: 1,527 versus the 28,752 books in PG-19. How-

ever it is reasonable that PG-19 may be useful for pre-training book summarisation

models.

6.4.3 Statistics

A brief comparison of PG-19 to other LM datasets can be found in Table 6.1.

We intentionally do not limit the vocabulary by unk-ing rare words, and release

the dataset as an open-vocabulary benchmark. To compare models we propose

to continue measuring the word-level perplexity. This can still be computed for

any chosen character-based, byte-based or subword-based scheme. To do this, one
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calculates the total cross-entropy loss L = −∑t log(pt|p<t) over the given valida-

tion or test subset using a chosen tokenisation scheme, and then one normalises

this value by the number of words: L/nwords where nwords is the total number of

words in the given subset, taken from Table 6.3. The word-level perplexity is thus

eL/nwords .

For sake of model comparisons, it is important to use the exact number of words

computed in Table 6.3 as the normalisation constant. It’s worth noting only open-

vocabulary approaches should be compared, that is it would be considered cheating

on this benchmark to restrict the support of the model to include only the train

and test set. It is also worth noting most open-vocabulary approaches, such as

BPE, use a greedy segmentation of the text and thus the model’s log likelihood

is actually an under-estimate of the true likelihood that would be obtained by

marginalising over all segmentations. Nevertheless comparing lower bounds is still

a valid methodology, and is common in the vision literature for Variational Auto-

Encoders, for example, where exact likelihoods cannot be computed.

6.4.4 Topics

We present top-words for some of the topics on the PG-19 corpus. These were

generated with LDA topic model (Blei et al., 2003). These topics include art,

education, naval exploration, geographical description, war, ancient civilisations,

and more poetic topics concerning the human condition — love, society, religion,

virtue etc. This contrasts to the more objective domains of Wikipedia and news

corpora.
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Table 6.2: Examples of top topics on PG-19 corpus.

Geography War Civilisations Human Condition Naval Education Art

water people roman love island work poet
river emperor rome religion ship school music
feet war greek religious sea life one

miles army city life men children poetry
north death gods moral captain may work
south battle king human coast social literature

mountains city first society land child art
sea soldiers caesar man great education great
lake power great virtue found conditions poem
rock thousand romans nature islands well written

mountain arms athens marriage shore study english
country empire greece women voyage best author
valley upon temple christian vessels years play

ice country son age time possible genius
west time egypt law english class style

6.5 Experiments

We optimised all models with Adam (Kingma and Ba, 2014). We used a learn-

ing rate schedule with a linear warmup from 1e-6 to 3e-4 and a cosine decay

back down to 1e-6. For character-based LM we used 4, 000 warmup steps with

100, 000 decay steps, and for word-based LM we used 16, 000 warmup steps with

500, 000 decay steps. We found that decreasing the optimisation update frequency

helped (see Section 6.5.5). We only applied parameter updates every 4 steps after

60, 000 iterations. However we found the models would optimise well for a range of

warmup/warm-down values. We clipped the gradients to have a norm of at most

0.1, which was crucial to successful optimisation.

6.5.1 PG-19

We benchmark the Compressive Transformer against the TransformerXL on the

newly proposed PG-19 books dataset. Because it is open-vocabulary, we train a

subword vocabulary of size 32000 with SubwordTextEncoder from TensorFlow and
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Table 6.3: PG-19 statistics split by subsets.

Train Valid. Test

# books 28,602 50 100
# words 1,973,136,207 3,007,061 6,966,499

Table 6.4: Text perplexity on PG-19.

Valid. Test

36L TransformerXL 45.5 36.3
36L Compressive Transformer 43.4 33.6

use the dataset statistics to compute word-level perplexity, as described in Sec-

tion 6.4.3. We train a 36 layer Compressive Transformer with a window size of 512,

both memory and compressed memory size of 512, and compression rate C = 2.

We compare this to a 36 layer TransformerXL trained with window size 512 and

attention window 1024. The model was trained on 256 TPUv3 cores with a to-

tal batch size of 512 and converged after processing around 100 billion subword

tokens. We display the results in Table 6.4 where we see the Compressive Trans-

former obtains a test perplexity of 33.6 versus the TransformerXL’s 36.3. Despite

the dataset size, it is clearly a challenging domain. This can suit as a first base-

line on the proposed long-range language modelling benchmark. We show samples

from this model in Section 6.5.6. The model is able to generate long-form samples

of varying styles: character dialogue, first person diary entries, and third-person

narrative.
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Table 6.5: State-of-the-art results on Enwik8.

Model Bits per Character

7L LSTM (Graves, 2013) 1.67
HyperNetworks Ha et al. (2016) 1.34
HM-LSTM Chung et al. (2016) 1.32
ByteNet (Kalchbrenner et al., 2016) 1.31
RHN Zilly et al. (2017) 1.27
mLSTM Krause et al. (2016) 1.24
64L Transformer Al-Rfou et al. (2019) 1.06
24L TransformerXL (Dai et al., 2019) 0.99
Sparse Transformer (Child et al., 2019) 0.991
Adaptive Transformer (Sukhbaatar et al., 2019) 0.98

24L TransformerXL (ours) 0.98
24L Compressive Transformer 0.97

6.5.2 Enwik8

We compare the TransformerXL and the Compressive Transformer on the stan-

dard character-level language modelling benchmark Enwik8 taken from the Hutter

Prize (Hutter, 2012), which contains 100M bytes of unprocessed Wikipedia text.

We select the first 90MB for training, 5MB for validation, and the latter 5MB for

testing — as per convention. We train 24-layer models with a sequence window

size of 768. During training, we set the TransformerXL’s memory size to 2304, and

for the Compressive Transformer we use memory of size 768 and compressed mem-

ory of size 1152 with compression rate C = 3. During evaluation, we increased the

TransformerXL memory size to 4096 and the compressed memory in our model to

3072 (after sweeping over the validation set), obtaining the numbers reported in

Table 6.5. The proposed model achieves the new state-of-the-art on this dataset

with 0.97 bits-per-character.
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Memory Size

We compare the best test perplexity obtained for the Compressive Transformer trained

on WikiText-103 and Enwik8 across a range of compressed memory sizes. For both

models, the best model used a 1D convolution compression network with a com-

pression rate of 3. The Enwik8 model was trained with an embedding size of 1024,

8 attention heads, 24 layers, an mlp hidden size of 3072, a sequence window size

of 768, and a memory size of 768. We see the best compressed memory size is

3, 072 in this sweep, facilitating a total attention window of 3840. The WikiText-

103 model was trained with an embedding size of 1024, adaptive inputs using the

same parameters as (Sukhbaatar et al., 2019), 16 attention heads, 18 layers, an

mlp hidden size of 4096, a sequence window of size 512 and a memory of size 512.

The best compressed memory size is 1536 resulting in a total attention window of

c. 2048.

Compressed Memory Size 512 1024 2048 3072 4096
Enwik8 BPC 1.01 0.99 0.98 0.97 1.00

Table 6.6: Compressed memory size vs test performance for Enwik8

Compressed Memory Size 256 512 1024 1536 2048
WikiText-103 Perplexity 18.2 17.9 17.6 17.1 17.7

Table 6.7: Compressed memory size vs test performance for WikiText-103

Compression Functions

We compare compression functions and the use of auxiliary losses in Table 6.8.

We sweep over compression rates of 2, 3, and 4 and report results with the best

performing value for each row. BPTT signifies that no auxiliary compression loss

208



Table 6.8: Compression approaches on Enwik8.

Compression fn Compression loss BPC

Convolution BPTT 0.996
Max Pooling N/A 0.986
Convolution Auto-encoding 0.984
Mean Pooling N/A 0.982
Most-used N/A 0.980
Dilated convolution Attention 0.977
Convolution Attention 0.973

was used to train the network other than the overall training loss. To feed gradients

into the compression function we unrolled the model over double the sequence

length and halved the batch size to fit the larger unroll into memory.

6.5.3 Wikitext-103

We train an eighteen-layered Compressive Transformer on the closed-vocabulary

word-level language modelling benchmark WikiText-103, which contains articles

from Wikipedia. We train the model with a compressed memory size, memory

size, and a sequence window size all equal to 512. We trained the model over 64

Tensor Processing Units (TPU) v3 with a batch size of 2 per core — making for a

total batch size of 128. The model converged in a little over 12 hours. We found

the single-layer convolution worked best, with a compression rate of c = 4. This

model obtained 17.6 perplexity on the test set. By tuning the memory size over

the validation set — setting the memory size to 500, and compressed memory size

to 1, 500 — we obtain 17.1 perplexity. This is 1.2 perplexity points over prior

state of the art, and means the model places a ≈ 5% higher probability on the

correct word over the prior SotA TransformerXL. Whilst 5% may seem like a small

improvement which may not be statistically significant, it is worth noting that the
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language models trained with different initialisation seeds and different shuffled

orderings of the training data obtain the same best perplexity to a single decimal

place. Thus these experiments are highly reproducible and the difference is not

due to noise.

It is worth noting that in Table 6.9 we do not list methods that use additional

training data, or that make use of test-time labels to continue training the model

on the test set (known as dynamic evaluation (Graves, 2013)). If we incorporate

a very naive dynamic evaluation approach of loading a model checkpoint and con-

tinuing training over one epoch of the test set, then we obtain a test perplexity of

16.1. This is slightly better than the published 16.4 from Krause et al. (2019) —

which uses a more sophisticated dynamic evaluation approach on top of the Trans-

formerXL. However in most settings, one does not have access to test-time labels

— and thus we do not focus on this setting. Furthermore there has been great

progress in showing that more data equates to much better language modelling;

Shoeybi et al. (2019) find a large transformer 8B-parameter transformer trained

on 170GB of text obtains 10.7 word-level perplexity on WikiText-103. However it

is not clear to what extent the WikiText-103 test set may be leaked inside these

larger training corpora. For clarity of model comparisons, we compare to published

results trained on the WikiText-103 training set. Certainly the direction of larger

scale and more data appear to bring immediate gains to the quality of existing

language models. Both data scale and quality alongside intelligent model design

are complementary lines of research towards better sequence modelling.

We break perplexity down by word frequency in Table 6.10 and see the Compressive

Transformer makes only a small modelling improvement for frequent words (2.6%
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Table 6.9: Validation and test perplexities on WikiText-103.

Valid. Test

LSTM (Graves et al., 2014) - 48.7
Temporal CNN (Bai et al., 2018a) - 45.2
GCNN-14 (Dauphin et al., 2016) - 37.2
Quasi-RNN (Bradbury et al., 2016) 32 33
RMC (Santoro et al., 2018) 30.8 31.9
LSTM+Hebb. (Rae et al., 2018) 29.0 29.2
Transformer (Baevski and Auli, 2019) - 18.7
18L TransformerXL, M=384 (Dai et al., 2019) - 18.3

18L TransformerXL, M=1024 (ours) - 18.1
18L Compressive Transformer, M=1024 16.0 17.1

Table 6.10: WikiText-103 test perplexity broken down by word frequency buckets.
The most frequent bucket is words which appear in the training set more than
10, 000 times, displayed on the left. For reference, a uniform model would have
perplexity |V | = 2.6e5 for all frequency buckets. *LSTM comparison obtained
from Chapter 4 Table 4.1

> 10K 1K−10K 100− 1K < 100 All

LSTM* 12.1 219 1,197 9,725 36.4
TransformerXL (ours) 7.8 61.2 188 1,123 18.1
Compressive Transformer 7.6 55.9 158 937 17.1

Relative gain over TXL 2.6% 9.5% 21% 19.9% 5.8%

over the TransformerXL baseline) but obtains a much larger improvement of≈ 20%

for infrequent words. Furthermore, we see 10X improvement in modelling rare

words over the prior state-of-the-art LSTM language model published in 2018 —

which demonstrates the rate of progress in this area.

6.5.4 Compressibility of layers

We can use compression to better understand the model’s mode of operation. We

inspect how compressible Transformer’s activations are as they progress through

higher layers in the network.
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Figure 6.2: Model analysis. Compression loss, via attention reconstruction,
broken down by layer.

We monitor the compression loss at each layer of our best-performing Compres-

sive Transformer models trained on Enwik8 and WikiText-103 and display these

in Figure 6.2. The compression loss here refers to the attention-reconstruction

attention loss. We plot this for a 24 layer trained model on Enwik8, and an 18

layer model trained on WikiText-103. The compression loss for character-based

language modelling is about one order of magnitude lower than that of word-level

language modelling. The first layer’s representations are highly compressible, how-

ever from then on there is no fixed trend. Some non-contiguous layers have a very

similar compression loss (e.g. 4 & 6, 5 & 7) which suggests information is being

routed from these layer pairs via the skip connection.

We note that the compression loss is about one order of magnitude higher for word-

level language modelling (WikiText-103) over character-level language modelling

(Enwik8). Furthermore the first layer of the Transformer is highly compressible.

However there is not a clear trend of compression cost increasing with layer depth.
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6.5.5 Attention

We inspect where the network is attending to on average, to determine whether it

is using its compressed memory. We average the attention weight over a sample of

20, 000 sequences from a trained model on Enwik8. We aggregate the attention into

eighteen buckets, six for each of the compressed memory, memory, and sequence

respectively. We set the size of the sequence, memory and compressed memory all

to be 768. We plot this average attention weight per bucket in Figure 6.3 with a

1σ standard error. We see most of the attention is placed on the current sequence;

with a greater weight placed on earlier elements of the sequence due to the causal

self-attention mechanism which masks future attention weights. We also observe

there is an increase in attention from the oldest activations stored in the regular

memory, to the activations stored in the compressed memory. This goes against

the trend of older memories being accessed less frequently — and gives

evidence that the network is learning to preserve salient information.

Optimisation Schedule

We make an observation about an interesting but undesirable meta-learning phe-

nomenon during long-context training. When the learning rate is tuned to be

much smaller (or set to zero) during training, performance degrades drastically

both for the TransformerXL and the Compressive Transformer. This is displayed

in Figure 6.4.

Usually we consider distributional shift from the training data to the test data,

but we can also observe a shift in the model when transferring from a training
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Figure 6.3: Attention weight on Enwik8. Average attention weight from the
sequence over the compressed memory (oldest), memory, and sequence (newest)
respectively. The sequence self-attention is causally masked, so more attention is
placed on earlier elements in the sequence. There is an increase in attention at the
transition from memory to compressed memory.
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Figure 6.4: Learning rate analysis. Reducing the learning rate (e.g. to zero)
during training (on Enwik8) harms training performance. Reducing the frequency
of optimisation updates (effectively increasing the batch size) is preferable.
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to evaluation mode (even when the model is evaluated on the training data). In

this case, this is due to the online updating of parameters whilst processing long

contiguous articles. We would like the model to generalise well to scenarios where it

is not continuously optimised. Updating the parameters only at article boundaries

(and then resetting the state) could be one solution for long-range memory models,

but this would slow down learning significantly.

Instead, we propose reducing the frequency of optimisation updates during train-

ing. We find this allows for the best of both worlds — fast initial learning with

frequent updates, and better generalisation near the end of training with less fre-

quent updates (e.g. every 4 steps). Reducing the optimisation frequency increases

the effective batch size, which has also been shown to be preferable to learning rate

decay in image modelling (Smith et al., 2018). We observed a final performance

improvement in our TransformerXL baseline on Enwik8, from 0.995 — which ap-

proximately replicates the published result — to 0.984 — which matches the most

recent SotA architecture. We note, the additional space and compute cost of ac-

cumulating gradients is negligible across iterations, so there was no performance

regression in using this scheme.

6.5.6 PG-19 Samples

We show a few different samples from the Compressive Transformer trained on

PG-19. We use Nucleus Sampling with p = 0.98 (Holtzman et al., 2019). We

choose extracts of books from the test set as prefixes. We see the model is able

to continue in the style of the text, creating artificial dialogue or descriptive text,

and remembering the names of characters over hundreds of words.
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As the Compressive Transformer is trained without state resetting, it is actually

slightly out of sample when provided with the (relatively) short contexts. This is

because its memory and compressed memory may be still empty (whereas they

are always full during training). However we see a trend of the samples usually

improving towards the end.
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Context from Baby Mine by Maragaret Mayo:

CHAPTER I

Even in college Alfred Hardy was a young man of fixed ideas and high ideals and proud of it.

His friend, Jimmy Jinks, had few ideas and no ideals, and was glad of it, and before half of
their first college term had passed, Jimmy had ridded himself of all such worries as making up his
own mind or directing his own morals. Alfred did all these things so much better, argued Jimmy,
furthermore, Alfred LIKED to do them–Jimmy owed it to his friend to give him that pleasure.

Compressive Transformer:

He did not like doing them in the most elegant of all possible marble walks–where freshmen and sophomores
stand and talk and laugh and chatter till evening falls and look cool and still and cool and beautifully white in
spite of the hot sun, but had to go there for a month before going home. It happened one day that he and Jimmy
were strolling together in the green shade of St. Martin’s, and Jimmy naturally asked why he was so silent. He
was very talkative as most boys are who have once got the habit of it on shore, so the need for answering was
soon supplied.

”I am wondering,” he said, ”why my old friend and chum, Jimmy Jinks, is living a single life and so has no boys.
Have you not noticed that many of his old friends had their own boys to follow in their footsteps and help, and
often helped successfully too?”

”Oh, yes,” said Alfred, ”it was plain enough then that he liked to live by himself and got none of his present
pleasures or entertainments because of the other fellow’s giving it to him.”

”Then it IS sad,” said Jimmy, ”that an old friend like the friend of Big Lights, Jimmy Reynolds, should be living
the single life and having no boys.”

”And it is pretty true, too,” said Alfred, ”yet I believe it is the best thing that could happen even now.”

”And so do I,” said Jimmy, ”and I also believe that it is time someone did something to make the things worse
for the other’s partner.”

”And so do I,” said Alfred, ”and so do I, and so do I.”

”What can we do?” asked Jimmy.

”I don’t know,” said Alfred, ”but if someone will come down to the valley and go through a regular mill with
the old forces at work, doing the work of the two, and doing it better than any other Miller he ever saw or ever
hoped to see, I think there will be a good deal of change in the things and things to be cared for for and for
driven and counter-driven.”

”I will come and do that mill,” said Jimmy.
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Context from The Diary of Samuel Pepys:

June 1st. Having taken our leaves of Sir W. Batten and my Lady, who are gone this morning to keep their
Whitsuntide, Sir W. Pen and I and Mr. Gauden by water to Woolwich, and there went from ship to ship
to give order for and take notice of their forwardness to go forth, and then to Deptford and did the like,
having dined at Woolwich with Captain Poole at the tavern there. From Deptford we walked to Redriffe,
calling at the half-way house, and there come into a room where there was infinite of new cakes placed
that are made against Whitsuntide, and there we were very merry. By water home, and there did busi-
nesses of the office. Among others got my Lord’s imprest of L1000 and Mr. Creed’s of L10,000 against
this voyage their bills signed. Having wrote letters into the country and read some things I went to bed.

Compressive Transformer:

So I rose and did some business at the office, and then to dinner, where great abundance of good things of the
kitchen I only being partaker in the feast. After dinner I went to look at the yard and found it in a very bad
condition, so I went home and there finding no delight in seeing things I should make shift to get in my way and
so I will leave off.

So I took leave of my great friend, and the next day being Sunday, my wife and I and a great number of friends
went by water to Deptford, and there took the oaths of allegiance and supremacy and promised such obedience
to the Lord as should hereafter turn to the advantage of our State. Being come back we found the shops and
warehouses in a pitiable condition, so my wife and I and all the rest of the friends went home and there did the
like and by Saturday day I being alone in my office I found myself in a very bad situation, for my Lord, and
Mr. Creed, and Pett were all standing ready to receive and receive the oaths of allegiance and right to make use
of the ten days’ licence I had allowed for this purpose by virtue of the law that was such a help to the servant.
Having looked at the ships, I told my wife what I had seen and that I was greatly troubled at my situation and,
I hope that will mend it.

So that is the end of a long and patient seeking after those things which in my opinion I deserve and may get if
I can only by fair means get them.
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Context from The Patrol of the Sun Dance Trail by Ralph Connor:

High up on the hillside in the midst of a rugged group of jack pines the Union Jack shook out its folds gallantly
in the breeze that swept down the Kicking Horse Pass. That gallant flag marked the headquarters of Superin-
tendent Strong, of the North West Mounted Police, whose special duty it was to preserve law and order along
the construction line of the Canadian Pacific Railway Company, now pushed west some scores of miles.

Along the tote-road, which ran parallel to the steel, a man, dark of skin, slight but wiry, came running,
his hard panting, his streaming face, his open mouth proclaiming his exhaustion. At a little trail that
led to the left he paused, noted its course toward the flaunting flag, turned into it, then struggled up
the rocky hillside till he came to the wooden shack, with a deep porch running round it, and surrounded
by a rustic fence which enclosed a garden whose neatness illustrated a characteristic of the British sol-
dier. The runner passed in through the gate and up the little gravel walk and began to ascend the steps.

Compressive Transformer:

As though by mutual consent, all the three members of the Superintendent Force were standing on the veranda
watching his progress, a man came strolling slowly down the path, stopping often to gaze curiously about him,
then stopping once more when he saw the four standing on the veranda. His face was dark, his eyes prominent,
and the lines that furrowed his forehead showed marks of many woes, yet his step was alert and he began to
mount the steps with steady strides.

The man’s attention was diverted by the unexpected appearance of the two policemen; a third man came slipping
up, grumbling under his breath, and stopped long enough to look doubtfully around him, then slipped away
again. In the meantime, the four on the veranda continued to watch the approach of the new arrival. In spite
of himself, the Superintendent Force became conscious of a curious feeling–uneasiness that was almost fear–in
the presence of that strange man. He would not allow himself to admit the fact, yet he felt it in his bones. But
to the watchers, the plain, everyday features of that stranger and his coming, seemed only just what the Seven
White Shee owed him–their weight, their hurry, their blast.

Had a chariot been made for the good of the three horses, and had the driver been given orders that he should
speed them that he might win, they would have been heartening things in the sight of the veteran and the
victor. To you they would have been unintelligible to the root of your understanding. When you gaze up in the
faces of those four gray horses, you can see clearly through the clouds of dust that rise from their hoofs, and
discern plainly where the banker is and where the hobo. Then you will understand why you shall not press the
bitter grapes and why you shall not spurn the generous doctrines. You will understand why you shall not praise
the lash or the spur, for you will know where the true would be and where the false would be. Then you will
understand why you, a man with reason and heart, need not tear your hair over-bitter and why you need not
laugh over the blunders of an ignorant man.

About nine o’clock that morning, two buggies, drawn by powerful horses, crossed the Rubicon and turned the
railroad from Sandhurst into the Hollow of the Mountains. And though the charioteers stood at their horses’
heads, and their drivers cried at their loudest, there was not a man in the four teams who did not feel that his
day was worth all the toil and all the peril that he had undergone. And if there were a man in them who did
not know that–who did not feel that the road through the Hollow of the Mountains is made easy by the arrival
of travelers and by the coming of government, there was one who did not at that moment care whether his day’s
work were worth all the toil and all the danger that he had had to endure or whether it were not worth more
than all.
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Figure 6.5: Speech Modelling. We see the Compressive Transformer is able to
obtain competitive results against the state-of-the-art WaveNet in the modelling
of raw speech sampled at 24kHz.

6.5.7 Speech

We train the Compressive Transformer on the waveform of speech to assess its

performance on different modalities. Speech is interesting because it is sampled at

an incredibly high frequency, but we know it contains a lot of information on the

level of phonemes and entire phrases.

To encourage long-term reasoning, we refrain from conditioning the model on

speaker identity or text features, but focus on unconditional speech modelling. We

train the model on 24.6 hours of 24kHz North American speech data. We chunk

the sequences into windows of size 3840, roughly 80ms of audio, and compare

a 20-layer Compressive Transformer to a 20-layer TransformerXL and a 30-layer

WaveNet model (Oord et al., 2016) — a state-of-the-art audio generative model

used to serve production speech synthesis applications at Google (Oord et al.,

2018). All networks have approximately 40M parameters, as WaveNet is more
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parameter-efficient per layer. We train each network with 32 V100 GPUs, and a

batch size of 1 per core (total batch size of 32) using synchronous training.

WaveNet processes an entire chunk in parallel, however the TransformerXL and

Compressive Transformer are trained with a window size of 768 and a total mem-

ory size of 1, 568 (for the Compressive Transformer we use 768 memory + 768

compressed). We thus unroll the model over the sequence. Despite this sequential

unroll, the attention-based models train at only half the speed of WaveNet. We see

the test-set negative-log-likelihood in Figure 6.5, and observe that a Compressive

Transformer with a compression rate of 4 is able to outperform the TransformerXL

and maintain a slim advantage over WaveNet. However we only trained models

for at most one week (with 32GPUs) and it would be advantageous to continue

training until full convergence — before definitive conclusions are made.

6.5.8 Reinforcement Learning

Compression is a good fit for video input sequences because subsequent frames have

high mutual information. Here we do not test out the Compressive Transformer on

video, but progress straight to a reinforcement learning agent task that receives a

video stream of visual observations — but must ultimately learn to use its memory

to reason over a policy. We test the Compressive Transformer as a drop-in replace-

ment to an LSTM in the IMPALA setup (Espeholt et al., 2018). Otherwise, we

use the same training framework and agent architecture as described in the orig-

inal work with a fixed learning rate of 1.5e-5 and entropy cost coefficient of 2e-3.

We test the Compressive Transformer on a challenging memory task within the

DMLab-30 (Beattie et al., 2016) domain, rooms select nonmatching object. This
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Figure 6.6: Vision and RL. We see the Compressive Transformer integrates
visual information across time within an IMPALA RL agent, trained on an object
matching task.

requires the agent to explore a room in a visually rich 3D environment and re-

member the object present. The agent can then advance to a second room where

it must select the object not present in the original room. This necessitates that

the agent both remember events far in the past, and also learn to efficiently reason

about them.

We fix both the memory and compressed memory sizes to 64. In Figure 6.6, we

present results for a range of compression rates, averaged over 3 seeds. We see that

the best performing agents endowed with the Compressive Transformer are able

to solve the task to human-level. We note that the model with compression rate

1 is unable to learn the task to the same proficiency. The speed of learning and

stability seem to increase proportionally with higher rates of compression (up to a

limit) – i.e. the effective memory window of the agent – and we find compression

rate 4 to once again be the best performing. We see this as a promising sign
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that the architecture is able to efficiently learn, and suitably use, compressed

representations of its visual input and hope to test this more widely in future

work.

6.6 Conclusion

In this chapter we explore the notion of compression as a means of extending the

temporal receptive field of Transformer-based sequence models. We see a benefit

to this approach in the domain of text, with the Compressive Transformer out-

performing existing architectures at long-range language modelling. To continue

innovation in this area, we also propose a new book-level LM benchmark, PG-19.

This may be used to compare long-range language models, or to pre-train on other

long-range reasoning language tasks, such as NarrativeQA (Kočiskỳ et al., 2018).

We see the idea of compressive memories is applicable not only to the modality of

text, but also audio, in the form of modelling the waveform of speech, and vision,

within a reinforcement-learning agent trained on a maze-like memory task. In

both cases, we compare to very strong baselines (Wavenet (Oord et al., 2016) and

IMPALA (Espeholt et al., 2018)).

The main limitation of this work is additional complexity, if the task one wishes to

solve does not contain long-range reasoning then the Compressive Transformer is

unlikely to provide additional benefit. However as a means of scaling memory and

attention, we do think compression is a simpler approach to dynamic or sparse

attention — which often requires custom kernels to make efficient. One can build

effective compression modules from simple neural network components, such as

convolutions. The compression components are immediately efficient to run on
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GPUs and TPUs.

Memory systems for neural networks began as compressed state representations

within RNNs. The recent wave of progress using attention-based models with deep

and granular memories shows us that it is beneficial to refrain from immediately

compressing the past. However we hypothesise that more powerful models will

contain a mixture of granular recent memories and coarser compressed memories.

Future directions could include the investigation of adaptive compression rates by

layer, the use of long-range shallow memory layers together with deep short-range

memory, and even the use of RNNs as compressors. Compressive memories should

not be forgotten about just yet.
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Chapter 7

Discussion

We have explored a variety of extensions to neural networks augmented with

content-based attention mechanism. We have shown that it is possible to scale

memory systems with attention that is very sparse (≥ 99.9%). We find that

this not only provides large speedups but, perhaps more surprisingly, can sta-

bilise learning and produce more generalisable solutions. For example, we see the

Sparse Access Memory model is considerably more data efficient than its dense

analogue (DAM). We also see the Sparse Differentiable Neural Computer (SDNC)

outperformed the Differentiable Neural Computer at the bAbI question answering

suite, halving the error rate and solving an additional task. This is despite having

an identical number of parameters. The SDNC remained state-of-the-art for the

jointly-trained bAbI task for over two years since its publication — demonstrating

that computational performance can be aligned with better memory systems.

We have also explored compacting slot-based memories into auto-associative mem-

ories, particularly for classification. Here the slot-based memory acts as a non-
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parametric classifier, collecting observation embeddings alongside corresponding

class labels. Such systems have been popular in combination with a parametric

neural network, as the non-parametric memory is able to learn fast and identify

previously unseen classes whereas the neural network can better capture statistical

regularities. To scale the potential history of such a system, we consider storing a

summation of observation embeddings in the output softmax parameters of a neu-

ral network. The softmax parameters now serve as an auto-associative memory of

observations corresponding to a given class. We show this can recover a similar

prediction to the original non-parametric memory, without using additional space

or compute. We term this the Hebbian Softmax as the resulting memory system

can be written as a learning rule that is a mixture of Hebbian learning and conven-

tional gradient descent. We show this can speed up the identification of previously

unseen classes and improve the modelling of rare classes. In the latter case, we

show a significant improvement in language modelling and obtain state-of-the-

art LSTM-based language model performance on a Wikipedia-text benchmark,

WikiText-103.

We continue the theme of memory compaction by considering a memory architec-

ture that is considerably more space-efficient than conventional memory systems

(such as the DNC, Memory Networks etc.) but is also scalable to large capacities

(unlike conventional RNNs). We take inspiration from memory systems in two dis-

joint fields; neuroscience and computer science. Namely we take inspiration from

the Hippocampal’s organisation of memories as distributed overlapping codes. We

also take inspiration from a data structure called a Bloom Filter which stores

data as a set of sparse distributed codes, and is primarily used as a space-efficient
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mechanism for determining familiarity.

We coin a neural variant of the Bloom Filter, termed the Neural Bloom Filter,

which we benchmark specifically for the task of familiarity against the Bloom

Filter, DNC, LSTM, and Memory Network. We train the neural networks using

meta-learning to perform familiarity in one-shot, and we find that the Neural

Bloom Filter can outperform both existing neural networks at scale; by solving

the task using considerably less memory, but also can outperform the production-

standard Bloom Filter data-structure. This has learning implications — we can

develop more compressive memory architectures via overlapping representations.

It also has systems applications — neural networks can significantly outperform

production-level data-structures at tasks they were designed, by taking advantage

of statistical structure in the underlying data.

We continue on the theme of compacting and compressing memories by applying

this idea to the Transformer, which has emerged as a very powerful general-purpose

sequence learning algorithm by incorporating many layers of attention to reason

over the past. The Transformer suffers from the same linear-time attention per

time-step as the baseline ‘Dense Access Memory’ models of Chapter 3, and thus

it can benefit from almost all of the technologies in this study — and make for a

great case-study. We specifically focus on extending its range of attention by com-

pressing old memories to coarser-grained memories, resulting in a linear increase in

its temporal receptive field without incurring additional compute. Rewardingly we

see this improves modelling performance across language modelling, audio mod-

elling, and memory-based reinforcement learning tasks — in comparison to some

of the strongest baseline models. Motivated from the lack of long-range language
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modelling tasks, we also propose a new book-level benchmark PG-19.

As a theme we have focused on mechanisms of improving the scalability of con-

ventional attention, focusing on supervised learning tasks using synthetic data

for interpretability and then moving to real-world tasks with practical application

such as language modelling. We have produced several state-of-the-art results on

competitive benchmarks, such as the question answering task bAbI and the long-

range language modelling benchmark WikiText-103. Such benchmarks encourage

the use of sound experimental setup, and the development of strong baselines.

However we have not optimised benchmarks as an endeavour in itself, they have

been used where appropriate to help us develop better long-range memory systems

for neural networks. The success of some of the ideas in this study can be analyzed

in terms of their incorporation across the community, which we can use as a sign-

post towards what remaining components are needed for life-long reasoning. We

first discuss the incorporation of content-based sparsity during the course of this

study and discuss how hardware has influenced sparse attention mechanisms.

7.1 Sparsity and Hardware

The development of neural-network-friendly hardware has had an important in-

fluence on the development of long-range memory during this study. Whilst the

author based many experiments on CPUs in Chapter 3, which have great support

for sparsity but relatively poor parallel-processing support for multiplying large

matrices, e.g. Intel(R) Xeon(R) CPU E5-1650 v2 with 172GFLOPs at single pre-

cision. The development of massively parallel but dense compute has changed the

course of network architectures. Google’s TPUv3 chip which was released nearer
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the end of this study, and was used in Chapter 6 has almost zero sparsity sup-

port but massive parallel-processing: 420 TFLOPs per chip, and 100+ PFLOPs

per pod. This has meant that even a linear-time dense attention operation has

become up to 2,000x faster by following progressions in hardware. This has lead

to motivations towards compressive memory systems, over sparse attention, which

continue to rely on simple dense linear algebra primitives and can run efficiently

on TPUs.

There have been some recent efforts to transfer the ideas of sparse access memory

to modern hardware and Transformer architectures, namely the use of an approx-

imate nearest neighbour KNN to speed up content-based attention, such as the

Reformer (Kitaev et al., 2019) which incorporates locality-sensitive hashing and

the Routing Transformer (Roy et al., 2020) which uses a k-means nearest-neighbour

search. However given the additional implementation difficulty in making these

algorithms work on accelerators has meant sparse content-based attention is not

ubiquitous.

One alternative, which has gained some traction, is the use of fixed-pattern sparsity

in the attention matrix. This has been proposed in various works: Sparse Trans-

formers (Child et al., 2019), Big Bird (Zaheer et al., 2020), LongFormer (Beltagy

et al., 2020), and LinFormers (Wang et al., 2020). The key idea is that if the spar-

sity pattern is fixed to a sparse selection of the past, such as local attention where

attention is restricted to the past 128 (say) time-steps and random attention where

attention may access a constant-number of fixed time-step locations of the past,

then this can be efficiently implemented on GPUs. The key argument in these pa-

pers is that the cost of attention has been reduced from linear-time per time-step,
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to constant-time; asymptotically this improves upon even the logarithmic-time

Sparse Access Memory from Chapter 3.

However the author is nonetheless skeptical that fixed-pattern sparsity could form

a valid solution to lifelong reasoning, and considers this a temporary state until

efficient sparse content-based attention can be efficiently implemented with modern

hardware. One reason for this, is that these fixed-pattern sparsity architectures

may have a very large temporal receptive field in theory, but do not appear to make

use of it in practice. This can be seen quantitatively from benchmark results. The

Sparse Transformer gains only a 0.5% improvement on the character modelling

task moving from a dense-memory baseline with an attention window of 1,500 to a

sparse attention over 12,000 tokens. In contrast the Compressive Transformer only

extends the receptive field to 4,000 tokens but obtained a 2.3% improvement from

the same baseline.

The need for sparse content-based attention over (or alongside) fixed-pattern at-

tention is also intuitive. We cannot only retrieve memories which occurred an odd

number of days ago, for example. It is important we can retrieve the information

that we search for, and this is what sparse content-based attention delivers. There

are signs that sparsity will gain a more mainstream re-entry though later editions

of neural network accelerators which incorporate sparse primitives, for example

Nvidia’s latest GPU release, the A100, incorporates a sparse tensor core instruc-

tion set (Krashinsky et al., 2020). This thesis supports the hypothesis that the

marriage of large-scale parallel processing with fine-grained dynamic sparsity will

lead to sparse content-based attention becoming ubiquitous.
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7.2 Compression versus Retrieval

However there remains an unresolved question over whether compressing the past

is truly necessary, versus storing the raw inputs from the past and efficiently at-

tending to them on the fly. From a philosophical perspective this question bears

resemblance to the famous Chinese Room Argument (Searle et al., 1980) where one

posits whether an agent that translates English to Chinese via a large rule-book

truly understands Chinese. Many would consider a system which relies on a giant

‘non-parametric’ book of rules to not contain true understanding. In this loose

analogy, storing the past in its raw format is alike to the rule-book. The agent can

scroll to individual points in the past and make a decision off the local information

to that time-point, but it never spent its cognitive energy to understand the higher

level details of the text.

We want our agents to understand and reason over the past, and compression is

one such approach to understanding (Legg and Hutter, 2007). If our agent reads

the book Life of Pi and is asked, “Is the narrator reliable?” we would like the

agent to reflect on the key events and form an opinion. We would like an agent that

understands the text. A retrieval-augmented model which jumps between pages

containing key-words from the query such as “reliable” and “narrator” will likely

form a confused response. However the question of compressing the past versus

retrieving over raw inputs can be framed empirically in terms of NLP benchmarks,

in this setting retrieval is very promising.

Retrieval systems such as the Retrieval-Augmented Generation (RAG) (Lewis

et al., 2020) are combining Transformer language models with approximate nearest

neighbour search and sparse attention — techniques proposed in Chapter 3 — to
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already attend over millions of tokens of text. One could argue such systems are

already attending over a lifetime’s worth of sensory input, or they certainly have

the potential to in the next few years with the advance of faster hardware. This

approach is currently state-of-the-art in open-domain question answering. Similar

approaches of storing the entire training set and attending to it on-the-fly are also

showing promise in language modelling, such as KNN-LM (Khandelwal et al., 2019)

and Semi-Parametric Language Models (Yogatama et al., 2021); these models ob-

tain performance that reaches or exceeds the Compressive Transformer. Retrieval

models can locally reason over their input as they re-encode their retrieved text

and — in the case of RAG — condition on this information throughout each layer

of the network.

Whilst QA benchmarks heavily favour retrieval systems, it may still be preferable

to query a large-scale compressive memory when more abstract reasoning is re-

quired. Let’s consider the scenario of a literature exam about a particular text

where factual questions concerning the plotline are posed. Two students take sep-

arate variants of the exam, one is closed-book and the other is open-book. For the

closed-book exam the student must first start by reading the entire book, closing

it and then approaching the questions. The open-book exam, the student skips

reading the book but begins with the questions and scans the book to find rele-

vant answers. Which student will perform best? Likely the open-book student;

if they have an efficient way to scan to the correct pages in the book then they

can inspect the relevant text without any loss of information or forgetting. Which

student will complete the exam fastest, and thus use less cognitive compute? This

will also be the open-book student, as they do not need to initially read the book.
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Thus from the question answering thought experiment, the open-book student

uses less compute and obtains better performance. However it intuitively appears

the closed-book student should have a better comprehension of the text as they

have read the entire book, and if the exam were switched to be progressively more

high-level, such as writing essays of analysis of the plot-line then the closed-book

student would struggle.

This hypothetical scenario represents the state of NLP comprehension benchmarks

where much progress is currently being made on open-domain question answering

but deeper comprehension tasks, the author would argue, are still in the stage

of infancy. On open-domain QA where RAG can be thought of as the open-

book student and a large language model such as GPT-3 (a Transformer with

175B parameters and 96 layers) can be thought of as the closed-book student,

open-book clearly wins. When compared on open-domain QA such as Natural

Questions, a few-shot primed GPT-3 obtains 29.9% whereas RAG obtains 44%, a

40% improvement. It is arguable that GPT-3 understands the web content that

it has been trained over to a greater extent however, as it can be applied few-shot

to many other problems with competitive performance.

Drawing out tasks which truly probe at higher-level comprehension is likely crucial

to seeing a benefit to compressed memory. Book summarisation, for example, has

been proposed as a task via the NarrativeQA benchmark (Kočiskỳ et al., 2018).

However the reality is that we do not have models which can learn to summarise

books via input-output examples, and our strongest pre-trained language models

such as GPT-3 (Brown et al., 2020) cannot attend to book-length contexts yet.

The task is essentially still too hard to measure real progress, and state-of-the-
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art models have so far relied on copying spans of text. Whilst open-domain QA

is currently a task that we can see large performance gains from large memory

retrieval systems over raw data, compressive memory may begin to shine once

long-context summarisation becomes more tractable.

In this thesis we have explored temporally compressing memories to a constant

factor, e.g. 3×. We next discuss how we may be able to exploit a much greater

temporal redundancy via weight-based episodic memories.

7.3 Memory as Weights

Where may the future lie in terms of groundbreaking new memory architectures

with very different properties to those discussed in this study? We have almost

always considered memory architectures that store hidden activations at some layer

of a deep neural network. These activations may be stored in entirety as ‘slots’ in

a large memory and accessed sparsely, as in Chapter 3 or they may be compacted,

or compressed, to a smaller set of slots using a learnable parametric function, as

in Chapter 5 & 6.

One interesting direction which moves away from memories as a simple collection of

past activations, is the storage of memories within the weights of a neural network

— stored in a highly compressed manner via an optimisation-based write. Of

course, neural networks already do store long-term memories in their parameter

weights, and this is most apparent for language models such as BERT that have

an auto-associative objective function and learn many facts and associations from

large corpora of text. However here we really mean an episodic memory from
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Tulving’s classification as introduced in the Background Section 2.1.1. We almost

touch upon such an architecture in Chapter 4 where we use the softmax linear

weights as an auto-associative memory for rarely observed classes. However the

write mechanism is essentially fixed as a moving average of past activations for

each class, we do not consider memories that are stored into the weights of a neural

network via an optimisation process such as gradient descent.

Despite the fact that biological episodic memory systems are known to be weight-

based (in the synaptic strengths of the CA3), weight-based memory systems appear

to be an under-explored research direction in the deep learning memory literature.

There have been a few notable works in this area. The notion of fast weights was

proposed by Hinton and Plaut (1987) and revisited by Ba et al. (2016a); Miconi

et al. (2018). Here, parametric linear maps in neural networks are replaced with

dual slow and fast weights

h(t+ 1) = f (h(t)Wh + x(t)Wx +M(t)hs(t+ 1))

where Wx,Wh indicate regular learnable slow-weights optimised via gradient de-

scent and M(t) represents a fast-weight matrix defined as the moving average of

activation outer products

Rd×d 3M(t) = λM(t) + (1− λ)h(t)h(t)T .

The term hs(t + 1) can be thought of as the output of s iterations of fast and
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slow-weight ‘reads’:

hs(t+ 1) = f (h(t)Wh + x(t)Wx +M(t)hs−1(t+ 1)) . . . h0(t+ 1) = h(t)

which allows it to converge its attention to a prior hidden activation. This iterative

read can be thought of as type of optimisation process where hs(t + 1) converges

to some attractor value, and the ‘fast weight’ memory is almost identical to the

Hopfield Network’s sum of outer products
∑

t hth
T
t . However this architecture has

not shown to improve the model’s performance on long-range modelling tasks, it

has been more so targeted towards fast adaptation. The capacity of the d × d

memory is potentially limiting, as is the fixed write scheme.

A weight-based memory which uses an optimisation process to write memories

was explored by Bartunov et al. (2020) and appears very promising as a highly-

compressed one-shot memory system. Here, the memories are stored into the

weights of an energy model Eθ(x) ∈ R e.g. a deep convolutional neural network,

which outputs a single scalar value: the energy. The energy model is meaningless

upon initialisation Eθ0 , however over time it is learned to be a useful optimisation

landscape for fast and compressed memory storage. For a training batch t the

training setup is informally as follows:

θ∗t ← minimize params Eθt(xt) Write (7.1)

y∗t ← minimize inputs Eθ∗t (x̃t) Read (7.2)

θt+1 ← θt − α
∂L

∂θt
Meta-learn θ (7.3)

where the write is defined to be an n-step gradient descent of the energy function
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with a clamped input xt, optimising the network’s parameters θ from an initial

value θt to a converged value θ∗t . These converged weights are the memory store

of xt. The read is also an n-step gradient descent of the energy but this time with

the weights clamped θ∗t and the query inputs x̃t optimised to provide an eventual

output y∗t . The whole read and write optimisations can be backpropagated through

to provide a gradient-based update to θt with respect to the task loss L. This whole

training setup can be thought of as an instance of model-agnostic meta-learning

(MAML) (Finn et al., 2017). The θt parameters slowly converge to shape the

energy landscape to serve a useful purpose (i.e. create an energy landscape that

defines a useful write) as well as find a good initial set of parameters that can be

optimised with a few steps.

Whilst the experiments in Bartunov et al. (2020) are largely focused on simple

auto-associative tasks on images with occlusion, it would be an interesting future

direction to apply this to sequence modelling. For example one could take the

approach in Chapter 6 and replace the compressive memory with this energy-based

memory. One would imagine such a memory to have very different properties, more

retrieval noise but a higher rate of compression. Furthermore because the write

operation is defined as a generic optimisation which is meta-learned to be task

specific, the network can choose what aspects of the inputs need to be stored and

which classes of inputs are more important to store.

Connections between recent memory models and Hopfield Networks have been

established to show that the multi-head attention operation used within Memory

Networks, the NTM, DNC and Transformer can be viewed as an update formula

to a continuous state-space Hopfield Network (Ramsauer et al., 2020). Thus there
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may also be avenues to renew weight-based episodic memory in neural networks via

differentiable Hopfield Networks that store memories in the weights and actually

use many of the known components to perform updates.

Exploring this very different class of memory architectures is a natural next step

to investigating compressive memory architectures which could supplement a more

granular short-term slot-based memory. Ideally this would be investigated in chal-

lenging natural-data tasks, where there are challenges of noisy gradients and chang-

ing representations.

7.4 Complexity of Memory-Based Reasoning

This study has endeavoured to build better long-range memory architectures, and

has achieved its goal as judged by a number of memory benchmarks and temporal

modelling tasks. The longer-term goal is for these to be used in an agent or

algorithm which will reason over time in a rich manner. We hope such a learning

system can learn many different function approximators over time to support many

types of queries, “when did I last see x?” “how many times have I spoken to y?”,

“what is the object which sounds like z?” versus a fixed set of simple operators

“is this scene familiar or not”.

The author has focused on the scaling of memory systems in this study, and has

not specified a research agenda for how complex memory interactions should best

arise. Partly this is due to a change in perspective during this study, both from

the author and, to some extent, from the wider research community.

One approach, which more closely aligns with the research into Sparse Access
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Memory, follows the idea that we should train on a set of memory tasks which

probe specific functions of memory we know to be important: auto-association,

repetition of sequences, arithmetic and algorithmic operations over time, and syn-

thetic question answering tasks probing different types of reasoning. Such a sys-

tem which trains well on this suite can then be incorporated into a reinforcement

learning agent which performs a more complex set of memory tasks inspired by

psychology experiments (such as the water maze task in Chapter 6). Then finally

an agent which integrates well with its memory on these tasks can be applied to

more open-ended continual reinforcement learning tasks, with the hope that mem-

ory will become a tool which it can use for many sub-tasks and we begin to see

the emergence of an agent with a prototypical intelligence and the ability for rich

reasoning over its stream of experience.

This research agenda is inspired by the course of development of the LSTM which

was originally designed and tuned from synthetic memory tasks, and has then

become naturally incorporated into many natural data supervised-learning tasks,

and into reinforcement learning agents such as A3C (Mnih et al., 2016). It also

fits the format of works including Memory Networks (Weston et al., 2015) which

proposed a suite of synthetic question answering tasks, bAbI (Weston et al., 2014)

along with the NTM and DNC (Graves et al., 2014, 2016), which proposed much

more complex algorithmic memory tasks and lead to memory-based RL agents

such as MERLIN (Wayne et al., 2018).

Whilst the author remains confident that these tasks remain an interesting way

to benchmark neural networks of their strengths and weaknesses, it is no longer

believed that the approach of training a neural network on synthetic memory tasks
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tabula rasa is effective at discerning neural network architectures. Namely, training

on a suite of orthogonal algorithmic tasks results in neural networks that learn to

use their memory for very narrow and fixed functionalities. It also depends on

several tricks for the neural network to learn; one which was imperative for scaling

was the use of a curriculum. A large amount of performance can be obtained

by hand-crafting curricula for these tasks, and whilst successively more advanced

curricula can result in successively better benchmark performance — it doesn’t

translate to neural networks with richer memory reasoning.

Instead the author has chosen to settle from Chapter 4-6 on natural-data tasks

which do not contain a set of explicit memory operations, but instead implicitly

require memory in many ways. Language modelling has been the best example

of this, and a recurring task over several chapters. To model natural language,

the network can benefit from a natural curriculum during learning. The network

can immediately observe progress by considering the previous word alongside the

current (thus modelling bi-grams); after some training it can eventually learning to

query distant named entities, conjugate verbs appropriately, and remain on topic

over paragraphs of text.

It was not clear at the beginning of this study that language modelling would be

a good benchmark for memory, nor a good task to learn long-range reasoning.

The most popular language modelling benchmarks operating at the beginning of

this study used short (e.g. sentence-level) stretches of text: Penn Treebank from

Marcus et al. (1993) and 1B benchmark from Chelba et al. (2013). Thus there was

no room for long-range memory to improve top-line performance. Furthermore

even with longer range benchmarks such as WikiText-103 (Merity et al., 2016),
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there was evidence that state-of-the-art neural language models would rarely fo-

cus beyond the past sentence of immediate context (Paperno et al., 2016; Daniluk

et al., 2017). One reservation was that the log-loss may be so dominated by local

context that one would not see any noticeable difference in the top-line perfor-

mance (such as perplexity) by improving or extending memory. However we have

seen demonstrably throughout this study that there is a significant amount of

long-range signal in language modelling, enough to discern memory architectures.

We hypothesise this will continue as book-level language modelling becomes more

widely adopted, and this thesis takes a large step in the direction of this future

research by releasing an openly available dataset and benchmark PG-19.

Language modelling as a rich pre-training task, for memory and language under-

standing, has been popularised by a contemporary set of works using Transformer-

based language models (either auto-regressive or in-filling). The most notable of

these are BERT (Devlin et al., 2019), GPT and GPT-2 (Radford et al., 2018, 2019);

by pre-training a large language modelling state-of-the-art performance has been

obtained either zero-shot or few-shot, i.e. with a small amount of fine-tuning.

More recently, by scaling up the dataset and model size GPT-3 (Brown et al.,

2020) has demonstrated the ability for very general and complex memory-based

reasoning. Most of these are in the form of demos and thus should be treated with

caution, but the model appears to be able to perform many tasks to a reasonable

performance level using a small number of demonstrations, such as generating web

widgets in Javascript from text description, processing invoices, or transferring the

style of text. We thus see the model using its memory as a sophisticated few-shot

learning system.
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If one took such a powerfully pre-trained language model such as GPT-3, and fine-

tuned it (or primed it with examples in memory) on the original set of algorithmic

memory tasks, then we hypothesize that the system will do much better than a

system trained tabula rasa, despite the architecture being the same.

One important path to complex memory systems appears to be via the further

scaling of models and datasets — a ‘bitter lesson’ that has recurred in many areas of

machine learning and reinforcement learning (Sutton, 2019). Indeed, the ingredient

of task selection is as important to the development of better memory systems as

architectural innovation. We have found rich unsupervised tasks such as language

modelling can be used to train and discern better memory architectures without

explicitly defining a benchmark of memory operations. It seems plausible this trend

will continue beyond text to architectures which reason over other modalities, such

as long streams of video. It will be interesting to see what forms of memory-based

learning and reasoning we can induce from such systems as the bandwidth of data

becomes larger and more aligned with the multimodal stream of data that humans

perceive.

Whilst we have not yet achieved human-level lifelong reasoning within our deep

temporal models, we have shown that learning is possible with highly sparse at-

tention mechanisms scanning over hundreds of thousands of timesteps, and the

huge cost of memory can be significantly decreased via compression.
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André FT Martins and Ramón Fernandez Astudillo. From softmax to sparse-

max: A sparse model of attention and multi-label classification. arXiv preprint

arXiv:1602.02068, 2016.

259



Ward Douglas Maurer and Theodore Gyle Lewis. Hash table methods. ACM

Computing Surveys (CSUR), 7(1):5–19, 1975.

James L McClelland, Bruce L McNaughton, and Randall C O’reilly. Why there

are complementary learning systems in the hippocampus and neocortex: insights

from the successes and failures of connectionist models of learning and memory.

Psychological review, 102(3):419, 1995.

ROBERTJ McEliece, Edwardc Posner, EUGENER Rodemich, and SANTOSHS

Venkatesh. The capacity of the hopfield associative memory. IEEE transactions

on Information Theory, 33(4):461–482, 1987.

Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation

in neural language models. arXiv preprint arXiv:1707.05589, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer

sentinel mixture models. arXiv preprint arXiv:1609.07843, 2016.

Thomas Miconi, Jeff Clune, and Kenneth O Stanley. Differentiable plastic-

ity: training plastic neural networks with backpropagation. arXiv preprint

arXiv:1804.02464, 2018.
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Appendix A

Scaling Memory with Sparsity

A.1 Training details

Here we provide additional details on the training regime used for our exper-

iments used in Figure 3.4. To avoid bias in our results, we chose the learn-

ing rate that worked best for DAM (and not SAM). We tried learning rates

{10−6, 5×10−5, 10−5, 5×10−4, 10−4} and found that DAM trained best with 10−5.

We also tried values of K {4, 8, 16} and found no significant difference in perfor-

mance across the values. We used 100 hidden units for the LSTM (including the

controller LSTMs), a minibatch of 8, 8 asynchronous workers to speed up training,

and RMSProp (Tieleman and Hinton, 2012) to optimise the controller. We used 4

memory access heads and configured SAM to read from only K = 4 locations per

head.
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A.2 Benchmarking details

Each model contained an LSTM controller with 100 hidden units, an external

memory containing N slots of memory, with word size 32 and 4 access heads. For

speed benchmarks, a minibatch size of 8 was used to ensure fair comparison - as

many dense operations (e.g. matrix multiplication) can be batched efficiently. For

memory benchmarks, the minibatch size was set to 1.

We used Torch7 (Collobert et al., 2011) to implement SAM, DAM, NTM, DNC

and SDNC. Eigen v3 (Guennebaud et al., 2010) was used for the fast sparse tensor

operations, using the provided CSC and CSR formats. All benchmarks were run

on a Linux desktop running Ubuntu 14.04.1 with 32GiB of RAM and an Intel

Xeon E5-1650 3.20GHz processor with power scaling disabled.
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Appendix B

Compressive Memory for

Identifying Rare Classes

B.1 Language Model details

For WikiText-103 we swept over LSTM hidden sizes {1024, 2048, 4096}, no. LSTM

layers {1, 2}, embedding dropout {0, 0.1, 0.2, 0.3}, use of layer norm (Ba et al.,

2016b) {True,False}, and whether to share the input/output embedding parame-

ters {True,False} totalling 96 parameters.

A single-layer LSTM with 2048 hidden units with tied embedding parameters

and an input dropout rate of 0.3 was selected, and we used this same model

configuration for the other language corpora. We trained the models on 8 P100

Nvidia GPUs by splitting the batch size into 8 sub-batches, sending them to each

GPU and summing the resulting gradients. The total batch size used was 512 and

a sequence length of 100 was chosen. Gradients were clipped to a maximum norm
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value of 0.1. We did not pass the state of the LSTM between sequences during

training, however the state is passed during evaluation.

B.2 Dynamic Evaluation Parameters

For the Neural Cache, we swept over the hyper-parameters:

• Softmax inverse temperature: θcache ∈ {0.1, 0.2, 0.3}

• Cache output interpolation: λcache ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}

• Cache size ncache ∈ {1000, 5000, 8000, 9000, 10000}

and chose θcache = 0.3, λcache = 0.1, ncache = 10000 by sweeping over the validation

set.

For the mixture of Neural Cache and MbPA we swept over the same cache param-

eters, alongside:

• MbPA output interpolation: λmbpa ∈ {0.02, 0.04, 0.06, 0.08, 0.10},

• Number of neighbours retrieved from memory: K ∈ {512, 1024},

• Number of MbPA steps: nmbpa ∈ {1, 2}

and selected λmbpa = 0.04, λcache = 0.1, θcache = 0.3, K = 1024, nmbpa = 1, ncache =

10000. We also selected the MbPA learning rate αlr = 0.3, and the L2-regularization

βmbpa = 0.5 on the MbPA-modified parameters. The memory size for MbPA was

chosen to be equal to the cache size.
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Appendix C

Compressive Memory for Data

Structures

C.1 Model Size

For the MNIST experiments we used a 3-layer convolutional neural network with

64 filters followed by a two-layer feed-forward network with 64&128 hidden-layers

respectively. The number of trainable parameters in the Neural Bloom Filter

(including the encoder) is 243, 437 which amounts to 7.8Mb at 32-bit precision. We

did not optimise the encoder architecture to be lean, as we consider it part of the

library in a sense. For example, we do not count the size of the hashing library that

an implemented Bloom Filter relies on, which may have a chain of dependencies,

or the package size of TensorFlow used for our experiments. Nevertheless we can

reason that when the Neural Bloom Filter is 4kb smaller than the classical, such as

for the non-uniform instance-based familiarity in Figure 5.2b, we would expect to
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see a net gain if we have a collection of at least 1, 950 data-structures. We imagine

this could be optimised quite significantly, by using 16-bit precision and perhaps

using more convolution layers or smaller feed-forward linear operations.

For the database experiments we used an LSTM character encoder with 256 hid-

den units followed by another 256 feed-forward layer. The number of trainable

parameters in the Neural Bloom Filter 419, 339 which amounts to 13Mb. One

could imagine optimising this by switching to a GRU or investigating temporal

convolutions as encoders.

C.2 Hyper-Parameters

We swept over the following hyper-parameters, over the range of memory sizes

displayed for each task. We computed the best model parameters by selecting

those which resulted in a model consuming the least space. This depends on

model performance as well as state size. The Memory Networks memory size was

fixed to equal the input size (as the model does not arbitrate what inputs to avoid

writing).

Memory Size (DNC, NBF) {2, 4, 8, 16, 32, 64}
Word Size (MemNets, DNC, NBF) {2, 4, 6, 8, 10}
Hidden Size (LSTM) {2, 4, 8, 16, 32, 64}
Sphering Decay η (NBF) {0.9, 0.95, 0.99}
Learning Rate (all) {1e-4, 5e-5}

Table C.1: Hyper-parameters considered
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C.3 Experiment Details

For the class-based familiarity task, and uniform sampling task, the model was

trained on the training set and evaluated on the test set. For the class-based task

sampling, a class is sampled at random and S is formed from a random subset of

images from that class. The queries q are chosen uniformly from either S or from

images of a different class.

For the non-uniform instance-based familiarity task we sampled images from an

exponential distribution. Specifically we used a fix permutation of the training

images, and from that ordering chose p(ith image) ∝ 0.999i for the images to

store. The query images were selected uniformly. We used a fixed permutation (or

shuffle) of the images to ensure most probability mass was not placed on images of

a certain class. I.e. by the natural ordering of the dataset we would have otherwise

almost always sampled 0 images. This would be confounding task non-uniformity

for other latent structure to the sets. Because the network needed to relate the

image to its frequency of occurrence for task, the models were evaluated on the

training set. This is reasonable as we are not wishing for the model to visually

generalise to unseen elements in the setting of this exact-familiarity task. We

specifically want the network weights to compress a map of image to probability

of storage.

For the database task a universe of 2.5M unique tokens were extracted from Giga-

Word v5. We shuffled the tokens and placed 2.3M in a training set and 250K in a

test set. These sets were then sorted alphabetically. A random subset, represent-

ing an SSTable, was sampled by choosing a random start index and selecting the

next n elements, which form our set S. Queries are sampled uniformly at random
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from the universe set. Models are trained on the training set and evaluated on the

test set.
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