124 research outputs found

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Accelerating ant colony optimization by using local search

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2015.Cataloged from PDF version of thesis report.Includes bibliographical references (page 42-45).Optimization is very important fact in terms of taking decision in mathematics, statistics, computer science and real life problem solving or decision making application. Many different optimization techniques have been developed for solving such functional problem. In order to solving various problem computer Science introduce evolutionary optimization algorithm and their hybrid. In recent years, test functions are using to validate new optimization algorithms and to compare the performance with other existing algorithm. There are many Single Object Optimization algorithm proposed earlier. For example: ACO, PSO, ABC. ACO is a popular optimization technique for solving hard combination mathematical optimization problem. In this paper, we run ACO upon five benchmark function and modified the parameter of ACO in order to perform SBX crossover and polynomial mutation. The proposed algorithm SBXACO is tested upon some benchmark function under both static and dynamic to evaluate performances. We choose wide range of benchmark function and compare results with existing DE and its hybrid DEahcSPX from other literature are also presented here.Nabila TabassumMaruful HaqueB. Computer Science and Engineerin

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Experimental investigation and modelling of the heating value and elemental composition of biomass through artificial intelligence

    Get PDF
    Abstract: Knowledge advancement in artificial intelligence and blockchain technologies provides new potential predictive reliability for biomass energy value chain. However, for the prediction approach against experimental methodology, the prediction accuracy is expected to be high in order to develop a high fidelity and robust software which can serve as a tool in the decision making process. The global standards related to classification methods and energetic properties of biomass are still evolving given different observation and results which have been reported in the literature. Apart from these, there is a need for a holistic understanding of the effect of particle sizes and geospatial factors on the physicochemical properties of biomass to increase the uptake of bioenergy. Therefore, this research carried out an experimental investigation of some selected bioresources and also develops high-fidelity models built on artificial intelligence capability to accurately classify the biomass feedstocks, predict the main elemental composition (Carbon, Hydrogen, and Oxygen) on dry basis and the Heating value in (MJ/kg) of biomass...Ph.D. (Mechanical Engineering Science

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Appliance Classification and Scheduling in Residential Environments with Limited Data and Reduced Intrusiveness

    Get PDF
    The United Kingdom aims for a 78% reduction in greenhouse gas emissions by 2035, with a specific carbon budget for 2033–2037. Despite rising CO2 emissions from 2021 to 2022 due to increased energy demands, this thesis presents novel strategies to reduce residential electricity consumption, a major emissions driver. It addresses two critical gaps in energy management: First, it develops a feature extraction methodology using machine learning and deep learning for accurately classifying high-power household appliances with smart meter data. Traditional methods often require complex setups or large datasets, leading to intrusiveness and implementation challenges. This research introduces the Spectral Entropy – Instantaneous Frequency (SE-IF) method, effective with limited datasets and enhancing usability (Chapter 3). Second, it proposes an optimisation model that intelligently schedules household appliance usage to balance costs, emissions, and user comfort, incorporating renewable energy and battery storage systems. Existing scheduling techniques typically overlook significant CO2 reductions and user comfort. The thesis utilises the Multiobjective Immune Algorithm (MOIA) to demonstrate this model’s effectiveness, achieving a 9.67% cost reduction and a 16.58% decrease in emissions (Chapter 5). Chapters 4 and 5 further detail how the SE-IF method, paired with a Bidirectional Long Short-Term Memory (BiLSTM) network, achieves a 94% accuracy in identifying appliances from aggregated data and applies the multi-objective optimisation in various scenarios. This research advances the integration of energy efficiency, environmental sustainability, and user-centric solutions in smart homes, contributing significantly to national goals of reducing energy consumption and emissions

    Neural dynamics of social behavior : An evolutionary and mechanistic perspective on communication, cooperation, and competition among situated agents

    Get PDF
    Social behavior can be found on almost every level of life, ranging from microorganisms to human societies. However, explaining the evolutionary emergence of cooperation, communication, or competition still challenges modern biology. The most common approaches to this problem are based on game-theoretic models. The problem is that these models often assume fixed and limited rules and actions that individual agents can choose from, which excludes the dynamical nature of the mechanisms that underlie the behavior of living systems. So far, there exists a lack of convincing modeling approaches to investigate the emergence of social behavior from a mechanistic and evolutionary perspective. Instead of studying animals, the methodology employed in this thesis combines several aspects from alternative approaches to study behavior in a rather novel way. Robotic models are considered as individual agents which are controlled by recurrent neural networks representing non-linear dynamical system. The topology and parameters of these networks are evolved following an open-ended evolution approach, that is, individuals are not evaluated on high-level goals or optimized for specific functions. Instead, agents compete for limited resources to enhance their chance of survival. Further, there is no restriction with respect to how individuals interact with their environment or with each other. As its main objective, this thesis aims at a complementary approach for studying not only the evolution, but also the mechanisms of basic forms of communication. For this purpose it can be shown that a robot does not necessarily have to be as complex as a human, not even as complex as a bacterium. The strength of this approach is that it deals with rather simple, yet complete and situated systems, facing similar real world problems as animals do, such as sensory noise or dynamically changing environments. The experimental part of this thesis is substantiated in a five-part examination. First, self-organized aggregation patterns are discussed. Second, the advantages of evolving decentralized control with respect to behavioral robustness and flexibility is demonstrated. Third, it is shown that only minimalistic local acoustic communication is required to coordinate the behavior of large groups. This is followed by investigations of the evolutionary emergence of communication. Finally, it is shown how already evolved communicative behavior changes during further evolution when a population is confronted with competition about limited environmental resources. All presented experiments entail thorough analysis of the dynamical mechanisms that underlie evolved communication systems, which has not been done so far in the context of cooperative behavior. This framework leads to a better understanding of the relation between intrinsic neurodynamics and observable agent-environment interactions. The results discussed here provide a new perspective on the evolution of cooperation because they deal with aspects largely neglected in traditional approaches, aspects such as embodiment, situatedness, and the dynamical nature of the mechanisms that underlie behavior. For the first time, it can be demonstrated how noise influences specific signaling strategies and that versatile dynamics of very small-scale neural networks embedded in sensory-motor feedback loops give rise to sophisticated forms of communication such as signal coordination, cooperative intraspecific communication, and, most intriguingly, aggressive interspecific signaling. Further, the results demonstrate the development of counteractive niche construction based on a modification of communication strategies which generates an evolutionary feedback resulting in an active reduction of selection pressure, which has not been shown so far. Thus, the novel findings presented here strongly support the complementary nature of robotic experiments to study the evolution and mechanisms of communication and cooperation.</p

    DATA-DRIVEN ANALYTICAL MODELS FOR IDENTIFICATION AND PREDICTION OF OPPORTUNITIES AND THREATS

    Get PDF
    During the lifecycle of mega engineering projects such as: energy facilities, infrastructure projects, or data centers, executives in charge should take into account the potential opportunities and threats that could affect the execution of such projects. These opportunities and threats can arise from different domains; including for example: geopolitical, economic or financial, and can have an impact on different entities, such as, countries, cities or companies. The goal of this research is to provide a new approach to identify and predict opportunities and threats using large and diverse data sets, and ensemble Long-Short Term Memory (LSTM) neural network models to inform domain specific foresights. In addition to predicting the opportunities and threats, this research proposes new techniques to help decision-makers for deduction and reasoning purposes. The proposed models and results provide structured output to inform the executive decision-making process concerning large engineering projects (LEPs). This research proposes new techniques that not only provide reliable timeseries predictions but uncertainty quantification to help make more informed decisions. The proposed ensemble framework consists of the following components: first, processed domain knowledge is used to extract a set of entity-domain features; second, structured learning based on Dynamic Time Warping (DTW), to learn similarity between sequences and Hierarchical Clustering Analysis (HCA), is used to determine which features are relevant for a given prediction problem; and finally, an automated decision based on the input and structured learning from the DTW-HCA is used to build a training data-set which is fed into a deep LSTM neural network for time-series predictions. A set of deeper ensemble programs are proposed such as Monte Carlo Simulations and Time Label Assignment to offer a controlled setting for assessing the impact of external shocks and a temporal alert system, respectively. The developed model can be used to inform decision makers about the set of opportunities and threats that their entities and assets face as a result of being engaged in an LEP accounting for epistemic uncertainty
    • …
    corecore