416 research outputs found

    On Embeddability of Buses in Point Sets

    Full text link
    Set membership of points in the plane can be visualized by connecting corresponding points via graphical features, like paths, trees, polygons, ellipses. In this paper we study the \emph{bus embeddability problem} (BEP): given a set of colored points we ask whether there exists a planar realization with one horizontal straight-line segment per color, called bus, such that all points with the same color are connected with vertical line segments to their bus. We present an ILP and an FPT algorithm for the general problem. For restricted versions of this problem, such as when the relative order of buses is predefined, or when a bus must be placed above all its points, we provide efficient algorithms. We show that another restricted version of the problem can be solved using 2-stack pushall sorting. On the negative side we prove the NP-completeness of a special case of BEP.Comment: 19 pages, 9 figures, conference version at GD 201

    On reconfiguration of disks in the plane and related problems

    Get PDF
    We revisit two natural reconfiguration models for systems of disjoint objects in the plane: translation and sliding. Consider a set of n pairwise interior-disjoint objects in the plane that need to be brought from a given start (initial) configuration S into a desired goal (target) configuration T, without causing collisions. In the translation model, in one move an object is translated along a fixed direction to another position in the plane. In the sliding model, one move is sliding an object to another location in the plane by means of an arbitrarily complex continuous motion (that could involve rotations). We obtain various combinatorial and computational results for these two models: (I) For systems of n congruent disks in the translation model, Abellanas et al. showed that 2n − 1 moves always suffice and ⌊8n/5 ⌋ moves are sometimes necessary for transforming the start configuration into the target configuration. Here we further improve the lower bound to ⌊5n/3 ⌋ − 1, and thereby give a partial answer to one of their open problems. (II) We show that the reconfiguration problem with congruent disks in the translation model is NPhard, in both the labeled and unlabeled variants. This answers another open problem of Abellanas et al. (III) We also show that the reconfiguration problem with congruent disks in the sliding model is NP-hard, in both the labeled and unlabeled variants. (IV) For the reconfiguration with translations of n arbitrary convex bodies in the plane, 2n moves are always sufficient and sometimes necessary

    Computing Shortest Paths in the Plane with Removable Obstacles

    Get PDF
    We consider the problem of computing a Euclidean shortest path in the presence of removable obstacles in the plane. In particular, we have a collection of pairwise-disjoint polygonal obstacles, each of which may be removed at some cost c_i > 0. Given a cost budget C > 0, and a pair of points s, t, which obstacles should be removed to minimize the path length from s to t in the remaining workspace? We show that this problem is NP-hard even if the obstacles are vertical line segments. Our main result is a fully-polynomial time approximation scheme (FPTAS) for the case of convex polygons. Specifically, we compute an (1 + epsilon)-approximate shortest path in time O({nh}/{epsilon^2} log n log n/epsilon) with removal cost at most (1+epsilon)C, where h is the number of obstacles, n is the total number of obstacle vertices, and epsilon in (0, 1) is a user-specified parameter. Our approximation scheme also solves a shortest path problem for a stochastic model of obstacles, where each obstacle\u27s presence is an independent event with a known probability. Finally, we also present a data structure that can answer s-t path queries in polylogarithmic time, for any pair of points s, t in the plane

    Parameterized Study of Steiner Tree on Unit Disk Graphs

    Get PDF
    We study the Steiner Tree problem on unit disk graphs. Given a n vertex unit disk graph G, a subset R? V(G) of t vertices and a positive integer k, the objective is to decide if there exists a tree T in G that spans over all vertices of R and uses at most k vertices from V? R. The vertices of R are referred to as terminals and the vertices of V(G)? R as Steiner vertices. First, we show that the problem is NP-hard. Next, we prove that the Steiner Tree problem on unit disk graphs can be solved in n^{O(?{t+k})} time. We also show that the Steiner Tree problem on unit disk graphs parameterized by k has an FPT algorithm with running time 2^{O(k)}n^{O(1)}. In fact, the algorithms are designed for a more general class of graphs, called clique-grid graphs [Fomin et al., 2019]. We mention that the algorithmic results can be made to work for Steiner Tree on disk graphs with bounded aspect ratio. Finally, we prove that Steiner Tree on disk graphs parameterized by k is W[1]-hard

    Partitioning Perfect Graphs into Stars

    Full text link
    The partition of graphs into "nice" subgraphs is a central algorithmic problem with strong ties to matching theory. We study the partitioning of undirected graphs into same-size stars, a problem known to be NP-complete even for the case of stars on three vertices. We perform a thorough computational complexity study of the problem on subclasses of perfect graphs and identify several polynomial-time solvable cases, for example, on interval graphs and bipartite permutation graphs, and also NP-complete cases, for example, on grid graphs and chordal graphs.Comment: Manuscript accepted to Journal of Graph Theor

    Shortest Paths and Steiner Trees in VLSI Routing

    Get PDF
    Routing is one of the major steps in very-large-scale integration (VLSI) design. Its task is to find disjoint wire connections between sets of points on a chip, subject to numerous constraints. This problem is solved in a two-stage approach, which consists of so-called global and detailed routing steps. For each set of metal components to be connected, global routing reduces the search space by computing corridors in which detailed routing sequentially determines the desired connections as shortest paths. In this thesis, we present new theoretical results on Steiner trees and shortest paths, the two main mathematical concepts in routing. In the practical part, we give computational results of BonnRoute, a VLSI routing tool developed at the Research Institute for Discrete Mathematics at the University of Bonn. Interconnect signal delays are becoming increasingly important in modern chip designs. Therefore, the length of paths or direct delay measures should be taken into account when constructing rectilinear Steiner trees. We consider the problem of finding a rectilinear Steiner minimum tree (RSMT) that --- as a secondary objective --- minimizes a signal delay related objective. Given a source we derive some structural properties of RSMTs for which the weighted sum of path lengths from the source to the other terminals is minimized. Also, we present an exact algorithm for constructing RSMTs with weighted sum of path lengths as secondary objective, and a heuristic for various secondary objectives. Computational results for industrial designs are presented. We further consider the problem of finding a shortest rectilinear Steiner tree in the plane in the presence of rectilinear obstacles. The Steiner tree is allowed to run over obstacles; however, if it intersects an obstacle, then no connected component of the induced subtree must be longer than a given fixed length. This kind of length restriction is motivated by its application in VLSI routing where a large Steiner tree requires the insertion of repeaters which must not be placed on top of obstacles. We show that there are optimal length-restricted Steiner trees with a special structure. In particular, we prove that a certain graph (called augmented Hanan grid) always contains an optimal solution. Based on this structural result, we give an approximation scheme for the special case that all obstacles are of rectangular shape or are represented by at most a constant number of edges. Turning to the shortest paths problem, we present a new generic framework for Dijkstra's algorithm for finding shortest paths in digraphs with non-negative integral edge lengths. Instead of labeling individual vertices, we label subgraphs which partition the given graph. Much better running times can be achieved if the number of involved subgraphs is small compared to the order of the original graph and the shortest path problems restricted to these subgraphs is computationally easy. As an application we consider the VLSI routing problem, where we need to find millions of shortest paths in partial grid graphs with billions of vertices. Here, the algorithm can be applied twice, once in a coarse abstraction (where the labeled subgraphs are rectangles), and once in a detailed model (where the labeled subgraphs are intervals). Using the result of the first algorithm to speed up the second one via goal-oriented techniques leads to considerably reduced running time. We illustrate this with the routing program BonnRoute on leading-edge industrial chips. Finally, we present computational results of BonnRoute obtained on real-world VLSI chips. BonnRoute fulfills all requirements of modern VLSI routing and has been used by IBM and its customers over many years to produce more than one thousand different chips. To demonstrate the strength of BonnRoute as a state-of-the-art industrial routing tool, we show that it performs excellently on all traditional quality measures such as wire length and number of vias, but also on further criteria of equal importance in the every-day work of the designer
    corecore