357 research outputs found

    Embracing Limited and Imperfect Data: A Review on Plant Stress Recognition Using Deep Learning

    Get PDF
    Plant stress recognition has witnessed significant improvements in recent years with the advent of deep learning. A large-scale and annotated training dataset is required to achieve decent performance; however, collecting it is frequently difficult and expensive. Therefore, deploying current deep learning-based methods in real-world applications may suffer primarily from limited and imperfect data. Embracing them is a promising strategy that has not received sufficient attention. From this perspective, a systematic survey was conducted in this study, with the ultimate objective of monitoring plant growth by implementing deep learning, which frees humans and potentially reduces the resultant losses from plant stress. We believe that our paper has highlighted the importance of embracing this limited and imperfect data and enhanced its relevant understanding

    Embracing limited and imperfect training datasets: opportunities and challenges in plant disease recognition using deep learning

    Get PDF
    Recent advancements in deep learning have brought significant improvements to plant disease recognition. However, achieving satisfactory performance often requires high-quality training datasets, which are challenging and expensive to collect. Consequently, the practical application of current deep learning–based methods in real-world scenarios is hindered by the scarcity of high-quality datasets. In this paper, we argue that embracing poor datasets is viable and aims to explicitly define the challenges associated with using these datasets. To delve into this topic, we analyze the characteristics of high-quality datasets, namely, large-scale images and desired annotation, and contrast them with the limited and imperfect nature of poor datasets. Challenges arise when the training datasets deviate from these characteristics. To provide a comprehensive understanding, we propose a novel and informative taxonomy that categorizes these challenges. Furthermore, we offer a brief overview of existing studies and approaches that address these challenges. We point out that our paper sheds light on the importance of embracing poor datasets, enhances the understanding of the associated challenges, and contributes to the ambitious objective of deploying deep learning in real-world applications. To facilitate the progress, we finally describe several outstanding questions and point out potential future directions. Although our primary focus is on plant disease recognition, we emphasize that the principles of embracing and analyzing poor datasets are applicable to a wider range of domains, including agriculture. Our project is public available at https://github.com/xml94/EmbracingLimitedImperfectTrainingDatasets

    An Automatic Rice Plant Disease Detection Model Built With Unstructured Data Using IMDT Tiling and CNN Cognitive Object Detection

    Get PDF
    Nowadays agriculture and processes are getting more intelligent mechanisms to improve the yield and reduce manual work. Smart agriculture provides numerous modern ideologies to farmers. But still, farmers face one important issue crop disease. Many researchers provide plenty of ways to recover and tackle the situation to come out of this problem. Therefore, they proceed with image processing to identify diseases from rice plant images. Farmers mainly face problems to take proper images for classification. Because of various reasons like various environmental factors, farmers ignorance, field size, capturing angle, device limitations, etc. are affecting the quality of the disease detection system, and these factors degrade overall performance. For this problem, introducing the Intelligent multi-dimensional tiling (IMDT) technique with an advanced convolution neural network with cognitive object detection (CNN-COD). IMDT technique developed with an intelligent expert system that adjusts input image size, capturing angles and other factors automatically. This advanced tiling technique supports to do the cropping and fluttering of input images for resizing. And CNN-COD model was used to calculate rice leaf width size and rescaled at the time of image segmentation with the Residual network (ResNet) model. Created dynamic tiled images are uniformly and scaled dimensional objects. These input values are used to train the CNN-COD rice plant disease, prediction model. Our proposed models were appraised on more than 4960 images which contain 8 various types of rice crop diseases. The experimental result portrayed out the CNN-COD model receives significant improvement in objection detection and image classification for the rice plant disease detection system. Mean average precision (MAP) values compared the CNN-COD model with the YOLOv4 model it got improved by 3.7% with the tiled input dataset

    Extracting Medical Entities from Radiology Reports with Ontology-based Distant Supervision

    Get PDF
    Doctors need to review a substantial amount of medical documents, such as radiology reports, to make medical decisions. Named Entity Recognition~(NER) structuralizes the raw medical text by detecting and classifying medical-related entities. Structuralized documents with medical concepts improve the doctors' work effectiveness and contain medical information benefitting the extraction of important information. Nevertheless, deploying the NER on Finnish medical text is still challenging because of data annotation, in-domain adaptation, label in-completion problem, and label noise. To solve these problems, we develop a NER system called Auto-labeling and Noise-suppressed Network~(ANT). Automated annotation mechanism provides supervised signals for training samples of the NER dataset. Domain continual pretraining transfers in-domain knowledge to the NER model for better model performance. We leverage weak label completion scheme to complete weak labels generated by the automated annotation mechanism. Some noise suppression approaches are applied to further reduce the label noise. Experimental results show that our model has achieved relatively strong performance on a silver standard dataset. We also conduct ablation experiments to explore the effectiveness of our framework's components

    Exploring variability in medical imaging

    Get PDF
    Although recent successes of deep learning and novel machine learning techniques improved the perfor- mance of classification and (anomaly) detection in computer vision problems, the application of these methods in medical imaging pipeline remains a very challenging task. One of the main reasons for this is the amount of variability that is encountered and encapsulated in human anatomy and subsequently reflected in medical images. This fundamental factor impacts most stages in modern medical imaging processing pipelines. Variability of human anatomy makes it virtually impossible to build large datasets for each disease with labels and annotation for fully supervised machine learning. An efficient way to cope with this is to try and learn only from normal samples. Such data is much easier to collect. A case study of such an automatic anomaly detection system based on normative learning is presented in this work. We present a framework for detecting fetal cardiac anomalies during ultrasound screening using generative models, which are trained only utilising normal/healthy subjects. However, despite the significant improvement in automatic abnormality detection systems, clinical routine continues to rely exclusively on the contribution of overburdened medical experts to diagnosis and localise abnormalities. Integrating human expert knowledge into the medical imaging processing pipeline entails uncertainty which is mainly correlated with inter-observer variability. From the per- spective of building an automated medical imaging system, it is still an open issue, to what extent this kind of variability and the resulting uncertainty are introduced during the training of a model and how it affects the final performance of the task. Consequently, it is very important to explore the effect of inter-observer variability both, on the reliable estimation of model’s uncertainty, as well as on the model’s performance in a specific machine learning task. A thorough investigation of this issue is presented in this work by leveraging automated estimates for machine learning model uncertainty, inter-observer variability and segmentation task performance in lung CT scan images. Finally, a presentation of an overview of the existing anomaly detection methods in medical imaging was attempted. This state-of-the-art survey includes both conventional pattern recognition methods and deep learning based methods. It is one of the first literature surveys attempted in the specific research area.Open Acces

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    A survey on generative adversarial networks for imbalance problems in computer vision tasks

    Get PDF
    Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Few-Shot Learning for Medical Image Segmentation Using 3D U-Net and Model-Agnostic Meta-Learning (MAML)

    Get PDF
    Deep learning has attained state-of-the-art results in general image segmentation problems; however, it requires a substantial number of annotated images to achieve the desired outcomes. In the medical field, the availability of annotated images is often limited. To address this challenge, few-shot learning techniques have been successfully adapted to rapidly generalize to new tasks with only a few samples, leveraging prior knowledge. In this paper, we employ a gradient-based method known as Model-Agnostic Meta-Learning (MAML) for medical image segmentation. MAML is a meta-learning algorithm that quickly adapts to new tasks by updating a model’s parameters based on a limited set of training samples. Additionally, we use an enhanced 3D U-Net as the foundational network for our models. The enhanced 3D U-Net is a convolutional neural network specifically designed for medical image segmentation. We evaluate our approach on the TotalSegmentator dataset, considering a few annotated images for four tasks: liver, spleen, right kidney, and left kidney. The results demonstrate that our approach facilitates rapid adaptation to new tasks using only a few annotated images. In 10-shot settings, our approach achieved mean dice coefficients of 93.70%, 85.98%, 81.20%, and 89.58% for liver, spleen, right kidney, and left kidney segmentation, respectively. In five-shot sittings, the approach attained mean Dice coefficients of 90.27%, 83.89%, 77.53%, and 87.01% for liver, spleen, right kidney, and left kidney segmentation, respectively. Finally, we assess the effectiveness of our proposed approach on a dataset collected from a local hospital. Employing five-shot sittings, we achieve mean Dice coefficients of 90.62%, 79.86%, 79.87%, and 78.21% for liver, spleen, right kidney, and left kidney segmentation, respectively
    • …
    corecore