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Recent advancements in deep learning have brought significant improvements

to plant disease recognition. However, achieving satisfactory performance often

requires high-quality training datasets, which are challenging and expensive to

collect. Consequently, the practical application of current deep learning–based

methods in real-world scenarios is hindered by the scarcity of high-quality

datasets. In this paper, we argue that embracing poor datasets is viable and

aims to explicitly define the challenges associated with using these datasets. To

delve into this topic, we analyze the characteristics of high-quality datasets,

namely, large-scale images and desired annotation, and contrast them with the

limited and imperfect nature of poor datasets. Challenges arise when the training

datasets deviate from these characteristics. To provide a comprehensive

understanding, we propose a novel and informative taxonomy that categorizes

these challenges. Furthermore, we offer a brief overview of existing studies and

approaches that address these challenges. We point out that our paper sheds

light on the importance of embracing poor datasets, enhances the

understanding of the associated challenges, and contributes to the ambitious

objective of deploying deep learning in real-world applications. To facilitate the

progress, we finally describe several outstanding questions and point out

potential future directions. Although our primary focus is on plant disease

recognition, we emphasize that the principles of embracing and analyzing

poor datasets are applicable to a wider range of domains, including

agriculture. Our project is public available at https://github.com/xml94/

EmbracingLimitedImperfectTrainingDatasets.

KEYWORDS

plant disease recognition, AI in Agriculture, deep learning in agriculture, smart
agriculture, precision agriculture
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1 Introduction

Plant diseases are responsible for significant yield losses (Savary

et al., 2019), making their recognition a crucial task in crop

cultivation. In the past decade, deep learning, characterized by

two essential attributes inherited from classical machine learning

methods (Kawasaki et al., 2015; Mohanty et al., 2016; Fuentes et al.,

2017), has emerged as a promising approach for this purpose. First,

deep learning possesses the remarkable ability to serve as a feature

extractor (Singh et al., 2018; Bengio et al., 2021). This stands in

contrast to traditional machine learning, which often necessitates

human experts to manually design features, such as histograms of

oriented gradients for Red-Green-Blue (RGB) images (Fan et al.,

2022) and vegetation indices for hyperspectral and multispectral

images (Abdulridha et al., 2020). However, designing effective

features has proven challenging and often requires diversity for

different tasks. Second, deep learning–based methods have

demonstrated “decent performance” in numerous studies on plant

disease recognition (Singh et al., 2018; Boulent et al., 2019; Abade

et al., 2021; Liu and Wang, 2021; Ouhami et al., 2021; Singh et al.,

2021; Thakur et al., 2022). Furthermore, the implementation of

deep learning on farms offers the enticing advantage of liberating

human labor and significantly reducing associated costs. This is

particularly valuable in the present century, as the global population

is expected to continue increasing while the number of agricultural

workers has been steadily declining.

Although deep learning has demonstrated its potential, the

requirement for high-quality datasets to achieve satisfactory

performance remains a challenge. Unfortunately, collecting such

datasets is often prohibitively expensive and extremely challenging

in many real-world applications (Xu et al., 2022a; Xu et al., 2023).

Conversely, poor datasets are prevalent, and current models may

struggle when confronted with them. Recognizing this reality, we

contend that embracing poor datasets presents new opportunities to

advance plant disease recognition in real-world applications. To

further enrich the relevant understanding of this embrace, we
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analyze the characteristics of the desired high-quality datasets:

large-scale and desired annotation. Specifically, large-scale

datasets provide a vast quantity of information within the images,

whereas desired annotation ensures that the images are annotated

in accordance with specific criteria and objectives. More details are

discussed in Section 2. In contrast, poor-quality datasets are defined

by their deviations from the characteristics. Specifically, a dataset

not on a large scale is categorized as limited, whereas a dataset

lacking the desired annotation is considered imperfect. Embracing

poor datasets, therefore, entails embracing limited and imperfect

dataset, each of which is further explored and analyzed in Sections 4

and 5, respectively. The challenges associated with embracing

limited and imperfect datasets are explicitly defined within these

sections. A novel taxonomy detailing these challenges is

conceptually described in Section 3, and Table 1 provides a

glimpse of the taxonomy.

This study distinguishes itself from existing survey papers on

plant disease recognition using deep learning by adopting a

“challenge-oriented” approach instead of a “technique-oriented”

one. Whereas previous works such as those by Singh et al. (2018);

Boulent et al. (2019); Abade et al. (2021); Liu and Wang (2021);

Ouhami et al. (2021); Singh et al. (2021), and Thakur et al. (2022)

have focused on summarizing existing techniques and relevant

materials, we have identified the key challenges associated within

this field. Specifically, we highlight the scarcity of large-scale

annotated data and advocate for embracing the concept of limited

and imperfect datasets when deploying deep learning in real-

world applications.

To conclude, in pursuit of deploying deep learning for plant

disease recognition in real-world applications with satisfactory

performance, we offer a perspective that embraces limited and

imperfect datasets, contrasting with high-quality data. Our main

contributions are as follows.
• We explicitly argue embracing limited and imperfect

datasets for plant disease recognition using deep learning,
TABLE 1 Taxonomy of challenges arising when embracing limited and imperfect datasets.

Challenge Definition

Limited
dataset

Class-
level

Few-shot All classes have similar few annotated images, where trained models may get low performance for all classes.

Class
imbalance

One class has many more annotated images than another class, where trained models may get high performance in the former
class but suffer in the latter class.

Dataset-
level

Domain
shift

The training and test datasets share the same label spaces but are in different distribution spaces, where trained models may get
low test performance.

Unknown
class

Unknown (new) classes exist in the test dataset, where trained models will consider the corresponding image into a known
class and not distinguish the unknown from known classes.

Imperfect
dataset

Incomplete annotation Training datasets have labeled and unlabeled images simultaneously, where utilizing the unlabeled images may contribute to
the test performance.

Inexact annotation Training datasets are given with only coarse-grained annotations, where utilizing these annotations is challenging to train
models.

Inaccurate annotation Some annotations may be inaccurate, where it is challenging to get decent test performance by utilizing these annotations to
train models.
A limited dataset suggests that the training dataset is not on a large scale, whereas an imperfect dataset implies that the annotations are not expected. In addition, the challenges of limited dataset
encompass class-level challenges, which involve image variations among different classes within the training dataset, and dataset-level challenges, which pertain to the information gap between
the training and test datasets.
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motivated by the reality that collecting high-quality datasets

is expensive and challenging.

• We analyze the underlying reasons behind the current

necessity for high-quality datasets in Section 2.

• We present a taxonomy of challenges associated with the

embrace in Section 3, with formal definitions. A concise

overview of existing studies that tackle them is also given as

discussed in Sections 4 and 5.

• We provide noteworthy questions and highlight potential

directions for further exploration in Section 6.
2 Why is high-quality dataset desired?

In general, to achieve promising performance using deep

learning models, the training datasets should have two

characteristics: large-scale and annotated with desired strategies.

This section aims to probe the underlying reasons behind the

desired characteristics.
2.1 Large-scale dataset

2.1.1 Deep learning models require
large-scale data

For two reasons, deep learning generally requires a large-scale

training dataset to obtain a comparable test performance. First,

there are enormous learnable parameters in deep learning–based

models that require large-scale data (Krizhevsky et al., 2017; Sarker,

2021). This ensures that a better feature extractor could be learned;

otherwise, the training data points could be remembered, resulting

in a poor test performance (Xu et al., 2023). Second, the distribution

of the training dataset is gradually approaching that of the test

dataset when the training dataset becomes larger, supporting a

better test performance. For example, a model trained with images

captured in laboratories is not expected to be effective when tested

with images captured on farms (Guth et al., 2023; Wu et al., 2023).

2.1.2 Huge image variation requires
large-scale datasets

The requirement for a large-scale training dataset comes from not

only deep learning but also the task of plant disease recognition, called

image variation (Xu, 2023; Xu et al., 2023). Considering the types of plant

diseases, it can be divided into intra-class, differences within the same

plant disease, and inter-class, heterogeneity between the two plant

diseases. The intra-class image variation, partially illustrated in

Figure 1, originates from three main elements. The first one is “plant

itself”. For example, some plants may have different types, such as

different types of tomatoes, with diverse leaf shapes and sizes, as shown in

Figure 1A. The same type of plant and plant disease may also occur at

various stages with individual visual patterns. For example, Figures 1B–D

have shown the different stages of plant disease, flowers, and leaves.

Second, the plants may be grown in different “environments”, such as

fields and greenhouses. Heterogeneous illuminations and backgrounds in

the fields are shown in Figures 1E, F, respectively. Third, “imaging
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processing” is another source of intra-class image variation. Arguably,

optical sensors and platforms result in greater diversity, such as RGB and

thermal images, phones, and satellites (Oerke et al., 2014;Mahlein, 2016).

When the optical sensors and platforms are fixed, the distance between

the plants and sensors results in a multiscale challenge, as shown in

Figure 1G. In addition, these viewpoints also lead to variations, as shown

in Figure 1H.

The inter-class variation assumes that one type of plant disease is

visually different from another, such as tomato leaf mold and canker, as

shown in Figures 2A, C. We emphasize that this assumption should be

considered when formulating the application objectives. For example,

early symptoms in RGB images of plant diseases really resemble

healthy ones, and, consequently, finding related plant diseases at very

early stages may not be reliable. In addition, inter-class image variation

can be viewed as a relative challenge. Specifically, the visual differences

between the two plant diseases could be larger than those of the

counterparts of another pair. As shown in Figure 2, the visual

deviations between tomato leaf mold and canker are larger than

those between tomato magnesium deficiency and chlorosis virus. A

strategy used for this scenario is to collect more data for the close pairs,

in which the models required more evidence to make decisions.
2.2 Desired annotation strategy

Deep learning is first trained in a “training dataset” and then tested

in a “test dataset”. A “validation dataset” is usually utilized to select the

best-trained model from different hyperparameters and other training

settings. The training and validation datasets are accessible at both the

training and test stages, whereas the test dataset is only accessible at the

test stage. Furthermore, the training and validation datasets for most

deep learning–based models are hypothesized to be annotated in the

desired manner. A desired annotation strategy, called EEP, has three

primary points: exclusion, extensiveness, and precision. This has

suggested that every annotation included only one specific visual

pattern of plant disease, whereas extensive indicated that every plant

disease in the images should have been annotated. The last one requires

a precise annotation. For example, in image classification, every image

should have included a type of plant disease and be linked to a label, as

illustrated in the first row of Figure 3. By contrast, as shown in the

second row of Figure 1, object detection generalizes the idea that one

image can cover multiple plant diseases. However, every region should

be annotated with labels and locations (a bounding box with four

values: two for the left point in the horizontal and vertical directions,

and two for width and height).

Accordingly, segmentation is a task for recognizing plant

disease, in which every pixel should be assigned a label, as

suggested in the last row of Figure 3.
3 Challenge formulation with limited
and imperfect datasets

As previously discussed, achieving satisfactory performance

using deep learning often requires training datasets that are both

annotated as desired and of large scale (Lu et al., 2022). However,
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collecting such datasets is frequently challenging, time-consuming,

and costly. Consequently, existing models may encounter

limitations when applied to real-world scenarios without access to

high-quality datasets. Therefore, a more convincing objective is to

secure the satisfactory performance of models using limited and

imperfect training datasets. However, this concept remains

relatively unexplored within the context of plant disease

recognition. The present study aims to shed light on this

direction, with the ultimate goal of monitoring plant growth,

thereby reducing human intervention and potentially mitigating

the issues arising from plant diseases.
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To comprehend the challenges that arise when dealing with

limited and imperfect training datasets, we propose a novel

taxonomy. Specifically, the term “limited dataset” refers to

scenarios where the training dataset is not on a large scale,

whereas “imperfect dataset” describes situations where the

annotations of the training dataset deviate from the expected and

desired. The limited dataset can be further divided into two

subcategories: class-level, which examines deviations among

different classes within the training datasets, and dataset-level,

which analyzes the heterogeneity between the training and test

datasets. On the other hand, imperfect dataset can be classified into
A B

D

E F

G H

C

FIGURE 1

Illustration of the intra-class image variation. The images in (A, B) are tomato leaves. The images in (C–H) stem from a species, Aralia nudicaulis, in
the PlantCLEF2022 dataset (Goëau et al., 2022). Every group suggests that the pictures belonging to the same plant disease may have visual
diversities.
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A B

DC

FIGURE 2

Illustration of inter-class image variation. It can be cast to a relative challenge where the visual deviations between (A, C) are larger than that
between (B, D). A corresponding strategy is to collect more data for (B, D) in that models need more evidence to make decisions for hard scenarios.
FIGURE 3

Annotation strategies in three primary tasks of plant disease recognition. From the first to the last rows are image classification, object detection, and
segmentation, respectively. Dm (m = 1, 2, 3, 4) denote the types of plant disease, and every column suggests different plant diseases. In the simplest
way, image classification refers to assigning a class to one image, whereas, in object detection, classes and their locations (bounding box) are
entailed to predict. Segmentation requires class prediction at a pixel level. From the first to the last row, the annotation becomes more complicated
and thus more time-consuming. The images in real-world applications tend to be more complex than these examples, such as multiple diseases
existing in one leaf and one image including multiple leaves. Furthermore, a desired annotation strategy embraces three primary points: exclusive,
extensive, and precise. The exclusive suggests that every annotation just includes one specific visual plant disease pattern, whereas the extensive
denotes that every plant disease in the images should be annotated. The precise requires that the images should be annotated precisely. Violating
the three points leads to the challenges of imperfect annotation.
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three distinct types based on the nature of conflict: incomplete

annotation, where a portion of images lacks annotations; inexact

annotation, where some classes are annotated in a coarse-grained

manner; and inaccurate annotation, where certain images are

annotated with inaccuracies or even incorrect labels. Table 1

offers a glimpse into this comprehensive taxonomy.
4 Limited dataset

To make the following content easy to understand, several

notations are first described. DX and DY denote the training and

test datasets, X and Y denoting the training and test domains. In

general, the two datasets encompass n plant disease classes: c1,c2,…,

cN. Let nXi (i = 1,2,…,N) and nYj (j = 1,2,…,N) denote the numbers

of annotated images for class ci in DX and class c
j in DY, respectively.
4.1 Class-level limited dataset

The class-level limited dataset, confined to the training dataset,

is a case in which the number of annotated images for a class is

small. Considering the differences across the different classes, they

are divided into few-shot and class imbalances.

4.1.1 Few-shot
The few-shot challenge assumes that collecting and annotating

images are expensive for every plant disease with the same number

of annotated images. Formally, this challenge is strictly defined as

nXi=M, whereM ∈R+ is a small natural number. In general,Mmay

be equal to 5 or 10, which suggests that every plant disease has only

5 or 10 annotated images. Moreover, the few-shot challenge could

be generalized as

nXi
≈ M (1)

where every class contain approximately M annotated images.

The essential issue is that a few annotated images could not provide

sufficient evidence to train a deep learning–based model; thus, the

trained model could not be generalized in the test dataset for every

class. On the basis of this, we further extend the few-shot challenge

from a small number of annotated images to a larger case, such as

100 and even 500, wheremost deep learning–based models could not

obtain good test performance for every plant disease. This motivation

is based on the observation that plant disease may have huge intra-

class image variation and relatively low inter-class image variation.

To address this few-shot challenge, image manipulation, a set of

traditional image processing methods, such as translation and

flipping, is one of the simplest methods. It is hypothesized to

retain class information and mimic image variations. For

example, image translation changes the positions of objects in an

image. This method is utilized to increase the number of training

images from 350 to 39,010 for six plant diseases and healthy leaves

(Gorad and Kotrappa, 2021). In particular, a new background is

fused to the object of plant disease to create diverse backgrounds in

the field rather than in the laboratory (Gui et al., 2021). Owing to its

simple deployment, image manipulation is leveraged by default
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with many other advanced methods in the general few-shot cases

(Mohanty et al., 2016; Xu et al., 2022c). In addition, the image-

generating models provide opportunities. Conditional generative

adversarial networks (Mirza and Osindero, 2014) can generate new

images, and, given a label, the generated images are assumed to be

similar to the original images, but not the same (Abbas et al., 2021).

Intuitively, image-generating models aim to learn image variations

in the original training dataset and then create new image

variations. However, learning an image-generating model requires

data, which is often not satisfactory in the few-shot challenge.

Another effective and efficient method is transfer learning,

which transfers knowledge for plant disease recognition from

another task with a large-scale training dataset, assuming that

learning one task with a large-scale training dataset is beneficial

to plant disease recognition (Zhuang et al., 2020). In general, the

plant disease recognition dataset is called the target dataset and the

task is called the target task, whereas another one is termed as

source dataset and task, respectively. With this strategy, the first

issue is to choose a better model from many deep learning–based

models (Mohanty et al., 2016; Kaya et al., 2019; Chen et al., 2020),

such as ResNet (He et al., 2016) and DenseNet (Huang et al., 2017).

The way to adopt a given pre-trained model is a question, such as

freezing most of the models and training the remaining part (Sethy

et al., 2020). In addition to models, choosing a better source dataset

is another essential issue. A seminal work directly utilized a generic

computer vision dataset, ImageNet (Deng et al., 2009). Although it

has many variations, it is not that kindly related to plant disease

recognition. Simultaneously, a source dataset related to the target

dataset is more appealing (Neyshabur et al., 2020; Matsoukas et al.,

2022). In this manner, plant-related datasets are considered, such as

the AIChallenger2018 (Zhao et al., 2022) and PlantCLEF2017 (Kim

et al., 2021) datasets. Furthermore, the image variations inside the

source dataset should also be considered. For example,

PlantCLEF2017 has more annotated images and higher intra-class

variations than AIChallenge2018 where most images are collected

in the laboratory. Considering the model and source dataset

together is therefore encouraging. Embracing this idea,

PlantCLEF2022 (Goëau et al., 2022; Xu et al., 2022b), a large-scale

plant-relevant dataset with 2,885,052 annotated images for 80,000

classes, is leveraged with a ViT-based (Dosovitskiy et al., 2020)

model rather than convolution neural network (CNN), to achieve

versatile plant disease recognition (Xu et al., 2022c). With this

strategy, a mean test accuracy of 86.29% over 12 datasets of plant

disease recognition in a 20-shot case is achieved with a fast

convergence speed, which is 12.76% higher than the current state-

of-the-art accuracy of 73.53%.

Although transfer learning has been widely adopted, we argue

that more opportunities still exist. First, transfer learning involves

more segments beyond the models and source datasets, such as the

loss function to pre-train and re-train the model. Considering these

segments may provide motivation for improving the performance

of plant disease recognition. We argue that the new methods in the

general field of computer vision are useful for plant disease

recognition. For example, a model could be trained using a source

dataset with not only annotated images but also paired text to

obtain improved semantic representations (Radford et al., 2021;
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Wei et al., 2022). The utilization of transfer learning in practical

applications is another issue. For example, current deep learning–

based models have numerous parameters and thus should be

compressed for embedding systems. In this case, transferring

knowledge from a large to a small model is desirable (Abbasi

Koohpayegani et al., 2020).

Other possible strategies, such as meta-learning (Huisman et al.,

2021) and metric learning (Kaya and Bilge, 2019), have received

attention over the last few years. Generic deep learning directly

outputs the final results such as the type of plant disease and could

be used to learn the relationship between samples and the

corresponding ground truth. In contrast, meta-learning aims to

learn how to learn, with which the output is rather parameters used

to train a new task (Chen et al., 2021b; Li and Yang, 2021;

Nuthalapati and Tunga, 2021). One of the primary issues is that

current plant disease recognition datasets could not support an

enormous number of source tasks, such as more than 110,000 tasks

(Chen et al., 2021b). Furthermore, metric learning attempts to learn

the differences between samples. In general, it pushes the samples

closer within the same class and away from different classes (Afifi

et al., 2020; Li and Yang, 2020; Egusquiza et al., 2022). Finally, the

aforementioned strategies can be combined to further improve the

performance, such as (Afifi et al., 2020) utilizing transfer learning

and metric learning simultaneously.

4.1.2 Class imbalance
The few-shot challenge assumes that each type of plant disease

occurs with a similar frequency, thus resulting in small image

variations. However, some plant diseases occur at a higher

frequency than others in the natural world. For instance, some

plant diseases may appear more often than others, and, even for one

specific type, different stages can be observed with diverse

frequencies. In this case, one class may have a much higher

number of annotated images than another class in the training

dataset, termed a “class imbalance”. Mathematically, the class

imbalance challenge is formalized as nXi≫ nXj, where ≫ denotes

much larger. A class with many more annotated images refers to the

majority class; otherwise, it refers to the minority class (Xu et al.,

2022a). The fundamental challenge is that the trained model tends

to assign a high probability to the majority class during the test stage

because it contributes more at the training stage (Xu et al., 2023).

However, when the minority class also has many annotated images,

the models may exhibit acceptable performance. Therefore, we

propose a strict definition that is closer to the real applications:

nXi
≫ nXj

,

nXj
≤ M :

(
(2)

In the strict version, the number of annotated images of the

minority class is not only much less than that of the majority class

but should also be lower than a specific value. We argue that M

should not be fixed for all tasks. By contrast, this value depends on

multiple factors, such as intra- and inter-class variations.

Essentially, deep learning–based models may not be able to learn

robust features for the minority class in the class-imbalance datasets.

To mitigate this challenge, the primary idea is to increase the
Frontiers in Plant Science 07
performance of the minority class while maintaining that of the

majority class.

Theoretically, the majority of strategies designed for few-shot

could be utilized in that class imbalance becomes a few-shot

challenge when the number of annotated images of the majority

class reduces to a certain extent. This subsection introduces the

methods aiming to specifically facilitate the minority classes.

Compared with the majority class, the lower performance of the

minority class is assumed to be due to the lower observation

frequency of the models. This assumption inspires balancing the

frequency for models by pushing the model to look at the images of

the minority class more often (Nafi and Hsu, 2020). Similarly,

models can also be punished more by using samples from the

minority class (Nafi and Hsu, 2020; Oksuz et al., 2020). In addition,

image augmentation aims to increase image variations to facilitate

deep learning–based models. The methods belonging to image

augmentation for the class imbalance differing from that of the

few-shot is the basic motivation that the majority class can be

leveraged for the minority. Conditional image-generating models

implicitly utilize this insight by training a single model to learn from

all classes (Mirza and Osindero, 2014; Abbas et al., 2021). By

contrast, translating an image from one class to another directly

utilizes the information among these classes (Cap et al., 2020; Nazki

et al., 2020; Lu et al., 2022). To further consider the intra-class image

variation from the majority class to the minority class, a specific loss

is leveraged along with the image translation strategy (Xu

et al., 2022a).
4.2 Dataset-level limited dataset

The limited dataset at the class level considers situations among

the classes of the training dataset, whereas heterogeneity between

the training and test datasets appears at the dataset level. It is further

categorized into unknown classes and domain shifts. The former

suggests that some classes in the test dataset, termed unknown

classes, do not appear in the training dataset; whereas the latter

emphasizes that the image variations in the test and training

datasets are diverse. We emphasize that these two categories focus

on specific essences and that their combination may exist at a higher

frequency in real-world applications.

4.2.1 Unknown class
The class in the training dataset refers to the “known class”,

whereas a class existing in the test dataset but not in the training

dataset is termed an “unknown class” (Geng et al., 2020). In the

concept of plant disease, unknown classes may result in a large

economic loss, and recognizing them is thus one of the fundamental

demands. Simultaneously, collecting all the existing plant diseases is

difficult and even impossible for real-world applications. Therefore,

assuming the existence of unknown classes in the test dataset is

encouraging. In this scenario, the task of plant disease recognition

has two-fold; classifying known classes and rejecting unknown

classes (Yang et al., 2021). This task refers to open set recognition

or out-of-distribution and has witnessed significant developments

in the field of computer vision (Geng et al., 2020; Salehi et al., 2021;
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Yang et al., 2021). However, it has been rather underdeveloped for

recognizing plant disease. In the following paragraphs, three key

understandings from the computer vision field are first introduced,

followed by a review of the literature on plant disease recognition.

First, thresholds are commonly employed to distinguish

unknown classes, such as when an image larger than the

threshold is categorized as known. In this case, two things are

essential: a method to compute a value for a given image and a

method to set a threshold. Currently, the probability (Liang et al.,

2018), energy (Zhang et al., 2020), and reconstruction error (Sun

et al., 2020) are the three main strategies for a given image. For

example, known classes are assumed to have higher probabilities,

lower energies, and smaller reconstruction errors than unknown

classes. Simultaneously, a fixed threshold tuned in the training

dataset is widely employed, such as the accuracy to maintain 95% of

the images in the training dataset as known (Huang et al., 2022).

This fixed one can be deemed at the dataset level and the class-level

threshold has been recently considered in that different known

classes probably behave diversely (Wang et al., 2022a).

Second, learning a good classifier with known classes is an

effective and efficient strategy, such as utilizing strong image

augmentation and longer training times (Vaze et al., 2022). A

good classifier requires models to learn a robust feature space to

distinguish one known class from another. In general, a robust

feature space is tight for a specific class and the distances between

the two classes are sufficiently large, with which unknown classes

have more possibilities to be recognized. However, known classes

with occlusions and unknown classes with features similar to those

of known classes trigger problems in this strategy (Dietterich and

Guyer, 2022). Finally, the exposure of potential novel classes, not

the unknown class in the test dataset, is a convincing strategy

because the primary challenge is that models are trained with only

known classes and extra information about unknown classes can

provide extra information (Zhou et al., 2021; Dietterich and Guyer,

2022). With this paradigm, the potential unknown classes and

efficiency of sampling images from unknown classes are essential

(Chen et al., 2021a).

In plant disease recognition, an existing work aims to learn a

good classifier via metric learning (You et al., 2022), with the

inspiration that the distances between two images from the same

unknown class should be smaller than those from different known

classes. In general, metric learning pushes models to learn robust

feature spaces and thus implicitly contributes to the recognition of

the unknown class. In addition, an extra probability branch is

explicitly utilized to distinguish between known and unknown

classes along with a generic classification branch for known

classes (Jiang et al., 2022). Simultaneously, images belonging to

unknown classes are utilized to train the models, where exposure to

unknown classes is beneficial, although unknown classes in the

training stage may also appear in the test stage. The ratio between

the number of known and unknown classes is formally analyzed

(Fuentes et al., 2021a). The experimental results suggest that the

performance deteriorates with more unknown classes mainly

because of the shortage of useful information in the training dataset.
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4.2.2 Domain shift
Domain shift is a common problem in deep learning where the

training and test data come from different domains. In such cases,

the trained model may perform poorly on the test data, resulting in

a phenomenon known as a “domain shift”. Domain shifts can occur

for several reasons such as differences in data distribution, scale, and

quality. The general assumptions are as follows:

P(c ∣X) ≠ P(c ∣Y) (3)

where P(c|X) represents the probability distribution of one plant

disease c given the input images in the training dataset X, and P(c|Y)

represents the probability distribution of c given the input images in

test dataset Y. The inequality sign indicates that the two

distributions are not equal, implying that the domain shift can

lead to a significant decrease in the performance of the test data,

making the model ineffective. The unknown class in the test dataset

is a special form of the domain shift challenge, but, in this section,

we aim to highlight the domain shift where the set of classes in the

test dataset is a proper subset of that in the training dataset.

In the case of plant disease data, symptoms do not have well-

defined boundaries and gradually change from healthy normal

conditions to diseased regions, making it difficult to create

homogeneity in the data (Barbedo, 2018). In addition, the inter-

and intra-class image variations, as well as the explicit variations

given by the domain used for the data collection, add complexity to

the model. A frequent performance drop occurs when a model is

trained on a dataset from a particular scenario but is further tested

on data from a different scenario. A common scenario, for example,

is that the training dataset is collected in one place by one person

and the test dataset is collected in another place with different

infrastructures and illumination by another person with their

individual habit of taking pictures, such as training in the images

collected in the laboratory and testing in the real world (Guth et al.,

2023; Wu et al., 2023).

To address the domain shift problem, researchers have developed

several techniques, such as domain adaptation (Wang and Deng, 2018)

and domain generalization (Wang et al., 2022b). Domain adaptation

aims to adapt a model to the test domain by modifying the training

data or the model itself, whereas domain generalization aims to train a

model that can perform well in unseen domains. The goal of

generalization is to design a model that can operate efficiently in the

same environment or across multiple environments. There are several

approaches to domain adaptation for plant disease recognition using

deep learning. One approach is to use transfer learning, which involves

fine-tuning a pre-trainedmodel on a new dataset. This approach can be

effective when the new dataset is similar to the original dataset but may

not work as well when there are significant differences between the

domains. Another approach is to use domain adaptation techniques

such as adversarial training or domain adaptation networks. These

techniques involve training a model to recognize features specific to the

target domain while also minimizing the differences between the source

and target domains. This approach can be effective when there are

significant differences between domains but may require more

computational resources and training data.
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In the literature, this problem has barely been investigated in

plant disease recognition; however, it is an important issue for

developing a more generalized model. Early work in this area

(Fuentes et al., 2021b) shows the benefits of using control classes,

such as background and healthy leaves, to lead the learning process

toward classes of interest. It exhibited improved performance as an

easier-to-adapt model across environments. However, data from

different backgrounds and environments are required to achieve

this goal. This issue was further investigated by (Fuentes et al.,

2021a), where a bounding box detector was trained to obtain the

regions of interest. Then, in the second stage, a domain adaption

model obtained the features of data from a source farm with known

diseases and transferred them to a target farm in which unlabeled

data were used to assess the generalization capabilities of the model

to recognize regions belonging to known classes or otherwise

assigned them as unknown. This scenario showed how

implementation could improve the recognition of target diseases

and precisely estimate novel information by associating them with

an unknown class.

Another important assumption is to address domain shifts across

crops and environments. Shibuya et al. (Shibuya et al., 2021) utilized

more than 221,000 labeled leaf images from different regions and

crops to investigate the performance bias of evaluation within the

same farm and the effect of Region-Of-Interest (ROI) detection. They

found that even with many training images, the diagnostic

performance for images in fields different from the training images

is greatly degraded owing to covariate shifts. From this study, two

important questions arise: first, what is the importance of data taken

in different environments than the training data for evaluation, and,

second, how do the pre-detection of regions of interest, including

symptoms of diseases, affect the performance? Another essential

aspect to investigate in the domain shift is the changes that occur

in data collected in the laboratory compared with data collected

under field conditions. The generalization capabilities of CNNs are

investigated to learn the clear patterns from lab conditions that are to

be detected again under new and more complex field conditions

while avoiding overfitting (Guth et al., 2023). The important insight

derived from this is that, in order to create useful tools for disease

detection and classification using deep learning for image analysis, it

is crucial to develop a final product that can handle a wide range of

images from various crop conditions and locations, including inter-

class and intra-class variations (Wu et al., 2023). This requires

carefully designed datasets with a large number of image samples

that can accommodate the significant variability in crop conditions in

different areas.

In summary, domain shift is a critical challenge in plant disease

recognition using deep learning. Developing models that can adapt to

different domains is essential for building robust and accurate

systems that can be used across a wide range of crops and regions.

Although there are several approaches to the domain shift,

researchers must continue to develop new techniques and datasets

for ensuring that these models are effective in real-world scenarios.
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5 Imperfect dataset

The limited dataset challenge considers annotated images

within either a class or dataset in which all images in the training

dataset are assumed to be annotated, whereas the imperfect dataset

challenge instead hypothesizes that the annotation in the training

dataset can be missing and not perfect. The imperfect dataset

challenge is categorized into incomplete, inexact, and inaccurate

annotations based on the violation of the EEP annotation strategy.

Figure 4 provides a quick impression of the changes in performance

when the annotations are different from the desired ones.
5.1 Incomplete annotation

Incomplete annotation indicates that the training dataset

includes annotated and unannotated images, primarily because of

economic issues and the annotation requirements of expert

knowledge in plant science. The number of annotated images is

much lower than that of unannotated images. A straightforward

method is to discard unannotated images and just use the annotated

images to train the models. By contrast, the use of unannotated

images has become an active topic in recent years. One strategy to

use unlabeled images is self-supervised learning (SSL), which aims

to learn better representations, followed by a fine-tuning process

within the annotated images. In SSL, a pretext task should first be

defined without using annotation to train a deep learning–based

model (Jing and Tian, 2020). Currently, there are many types of

pretext tasks, but only a few are utilized to recognize plant disease.

In particular, image augmentation does not change one image’s type

of plant disease and is deemed as a pretext task (Nagasubramanian

et al., 2022). Furthermore, advanced image augmentation methods,

such as Mixup (Zhang et al., 2018) changing the labels linearly, can

also be utilized as a pretext task (Monowar et al., 2022) using the

connections before and after image augmentation.

Semi-supervised learning, which is another active topic,

attempts to leverage unlabeled and labeled images simultaneously.

One branch directly adopts SSL methods along with a supervised

loss function such as softmax. Another branch generates pseudo-

labels for unlabeled images, where the labeled images can be

leveraged to annotate the unlabeled images by first training a

classifier (Li and Chao, 2021). In contrast, clustering methods

find the similarity without label information and link the images

in the test dataset to those in the training dataset (Fang et al., 2021).

Furthermore, active learning aims to select informative images

labeled by humans later instead of machines, hoping to annotate

fewer images yet obtain a better performance (Ren et al., 2021).

Therefore, selecting informative images effectively and efficiently

(Nagasubramanian et al., 2021) is essential. Moreover, the

involvement of human experts in the training loop is difficult and

inconvenient in real-world applications.
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5.2 Inaccurate annotation

Inaccurate annotation, also called noisy annotation, denotes

that some annotations in the training dataset may not be correct

(Algan and Ulusoy, 2021; Dong et al., 2022). For example, plant

disease is incorrectly annotated in the classification case,

considering that experts may have conflicting decisions for a

given image. Similarly, the bounding box used for object

detection may be imprecise. Inaccurate annotation can be

mitigated using multiple annotators, but this is expensive.

Existing work (Dong et al., 2022) suggests that inaccurate

annotation results in worse recognition performance, and

different noise magnitudes have diverse impacts. Accordingly,

facilitating the training process to reduce its impact is a

straightforward approach (Li et al., 2019). Following this idea,

new plant diseases are randomly generated for every image, and

meta-learning is adopted to obtain consistent predictions (Zhai

et al., 2022). In this manner, meta-learning aims to reduce the

adverse impact of randomly generated labels. Although inaccurate

annotations are facilitated, the corresponding images do not

contribute to the trained models. Therefore, we highlight

inaccurate annotations and employ relevant images by re-

correcting the annotations (Liu et al., 2022; Wang et al., 2022c),

although this idea has not yet been leveraged in plant

disease recognition.
5.3 Inexact annotation

Inexact annotation refers to coarse-grained annotation, and the

meaning varies for different tasks (Zhou, 2018; Zhang et al., 2021).

For example, only image-level labels are accessible for object

detection and segmentation, without bounding boxes and pixel-

level classes, respectively. We emphasize that image classification

also has a situation of inexact annotation, such as multiple diseases

existing in one image but only one disease label. Simultaneously,
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inexact annotations may appear along with precise annotations. A

basic assumption in using inexact annotation is that a deep learning–

based model may learn a significant area with coarse-grained

annotations. Specifically, the activation value in every layer

indicates that the pixels contribute to the final prediction diversely.

Therefore, computing the most important pixels in an input image is

one way of determining the exact annotation. This strategy has been

employed for object detection of crop pests (Bollis et al., 2022) and

segmentation of foliar diseases (Yi et al., 2021). However, this

challenge currently receives less attention than incomplete and

inaccurate annotations.
6 Concluding remarks and
future perspectives

In this study, we advocated for embracing limited and imperfect

training datasets for plant disease recognition using deep learning,
FIGURE 4

Performance comparison of object detection in a plant disease dataset, using different annotations; this figure adapted from Dong et al. (2022). The
cases of missing labels and class noise suggest some patterns of plant disease have no labels and wrong labels. The inconsistencies of position and
size suggest that the position and size are different from the desired. The mixed case is the combination of previous cases. Detection performance
clearly degrades when the deviations from the desired ones are severe.
FIGURE 5

Flowchart to deploy deep learning in plant disease recognition. The
evaluation of the project objectives and rethinking of the datasets
are highlighted.
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acknowledging the practical difficulties, expenses, and challenges

associated with collecting high-quality datasets in real-world

applications. Although this embrace is more convincing and

practical, it also introduces new challenges. To enrich our

understanding, we proposed a novel taxonomy of challenges with

formal definitions. In addition, we provided a concise overview of

strategies to address these challenges. One noteworthy finding is the

limited research focused on dataset-level challenges related to

limited datasets and imperfect annotation, whereas significant

developments have been made concerning class-level limited

datasets. Another essential point that we discovered is the severe

shortage of benchmark datasets specifically tailored for real-world

applications. By highlighting these insights, we aim to contribute to

the advancement of deep learning techniques in real-world

applications and foster progress in the domain of plant disease

recognition. Although the primary focus of this study was on plant

disease recognition, we emphasize that the concept of embracing

limited and imperfect datasets is applicable to broader fields, such as

deep learning in agriculture.

Building upon the challenges posed by limited and imperfect

datasets, we propose a process tailored for real-world applications,
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depicted in Figure 5. Our objective is to emphasize the importance

of evaluating and reevaluating the objectives and datasets. A

fundamental assumption is that each class exhibits distinguishable

visual patterns in the image space. However, certain classes may

share remarkably similar patterns, making them challenging to

distinguish. In such cases, the objectives of utilizing deep learning or

the collected datasets should be polished, possibly by incorporating

novel evidence. We also present several outstanding questions in

Box 1 and outline potential future directions in Box 2, seeking to

foster further research and advancements in the domain.
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BOX 1 Outstanding questions.

• How can efficiently integrate plant science, including plant disease recognition, and artificial intelligence knowledge from collecting data to deploying a deep
learning model?

• How to make a reliable dataset for the application-orientated challenges.
• Is there any other challenge to deploying deep learning in plant disease recognition, except the limited and imperfect dataset?
• What are the heterogeneities between plant disease recognition and generic computer vision tasks?
• How to design a preliminary automatic prototype to recognize plant disease as a real-world application?
• Considering the success of the large language models and foundation models, what can be done in plant disease recognition and the plant science field?
BOX 2 Future directions.

• Inspiration
○ Adopt the commonness between plant disease recognition and general computer vision tasks and then adapt the suitable concepts such as new problem

formulations and methods.
○ Distinguish plant disease recognition from general computer vision tasks such as different plants having similar diseases and further leverage the difference.

• Dataset
○ Collect application-orientated datasets, such as for the domain shift.
○ Collect datasets from multiple sensors simultaneously, such as RGB and multispectral images.
○ Collect datasets from multiple observations such as spatial and temporary, inspired by the effectiveness of accumulated evidence.
○ Develop strategies to integrate datasets from the whole community.

• Model and algorithm
○ Develop strategies for specific challenges, such as for open set recognition.
○ Fine-tune large pre-trained models to achieve better performance in plant disease recognition tasks, and design strategies to achieve parameter-efficient fine-

tuning (PEFT).
○ Employ small models for the embedding system.
○ Integrate large and small models to have decent performance yet for the embedding system.

• Analysis
○ Analyze the challenges in a dataset quantitatively.
○ Analyze the impacts of strategies to annotate datasets.
○ Analyze the relationship between performance, data quality and amount, computing resources, and model capacity.

• Application
○ Evaluate plant disease quantitatively, such as object detection and segmentation.
○ Deploy deep learning in real-world applications, such as robotic systems.
○ Design versatile plant disease recognition such as multi-plant and multi-dataset, rather than individual models for specific plants and datasets.
○ Consider plant disease recognition with other plant-related tasks, such as plant identification.
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