420 research outputs found

    A Signal processing approach for preprocessing and 3d analysis of airborne small-footprint full waveform lidar data

    Get PDF
    The extraction of structural object metrics from a next generation remote sensing modality, namely waveform light detection and ranging (LiDAR), has garnered increasing interest from the remote sensing research community. However, a number of challenges need to be addressed before structural or 3D vegetation modeling can be accomplished. These include proper processing of complex, often off-nadir waveform signals, extraction of relevant waveform parameters that relate to vegetation structure, and from a quantitative modeling perspective, 3D rendering of a vegetation object from LiDAR waveforms. Three corresponding, broad research objectives therefore were addressed in this dissertation. Firstly, the raw incoming LiDAR waveform typically exhibits a stretched, misaligned, and relatively distorted character. A robust signal preprocessing chain for LiDAR waveform calibration, which includes noise reduction, deconvolution, waveform registration, and angular rectification is presented. This preprocessing chain was validated using both simulated waveform data of high fidelity 3D vegetation models, which were derived via the Digital Imaging and Remote Sensing Image Generation (DIRSIG) modeling environment and real small-footprint waveform LiDAR data, collected by the Carnegie Airborne Observatory (CAO) in a savanna region of South Africa. Results showed that the preprocessing approach significantly increased our ability to recover the temporal signal resolution, and resulted in improved waveform-based vegetation biomass estimation. Secondly, a model for savanna vegetation biomass was derived using the resultant processed waveform data and by decoding the waveform in terms of feature metrics for woody and herbaceous biomass estimation. The results confirmed that small-footprint waveform LiDAR data have significant potential in the case of this application. Finally, a 3D image clustering-based waveform LiDAR inversion model was developed for 1st order (principal branch level) 3D tree reconstruction in both leaf-off and leaf-on conditions. These outputs not only contribute to the visualization of complex tree structures, but also benefit efforts related to the quantification of vegetation structure for natural resource applications from waveform LiDAR data

    Monitoring riverbank erosion in mountain catchments using terrestrial laser scanning

    Get PDF
    Sediment yield is a key factor in river basins management due to the various and adverse consequences that erosion and sediment transport in rivers may have on the environment. Although various contributions can be found in the literature about sediment yield modeling and bank erosion monitoring, the link between weather conditions, river flow rate and bank erosion remains scarcely known. Thus, a basin scale assessment of sediment yield due to riverbank erosion is an objective hard to be reached. In order to enhance the current knowledge in this field, a monitoring method based on high resolution 3D model reconstruction of riverbanks, surveyed by multi-temporal terrestrial laser scanning, was applied to four banks in Val Tartano, Northern Italy. Six data acquisitions over one year were taken, with the aim to better understand the erosion processes and their triggering factors by means of more frequent observations compared to usual annual campaigns. The objective of the research is to address three key questions concerning bank erosion: "how" erosion happens, "when" during the year and "how much" sediment is eroded. The method proved to be effective and able to measure both eroded and deposited volume in the surveyed area. Finally an attempt to extrapolate basin scale volume for bank erosion is presented

    Low-rank Based Algorithms for Rectification, Repetition Detection and De-noising in Urban Images

    Full text link
    In this thesis, we aim to solve the problem of automatic image rectification and repeated patterns detection on 2D urban images, using novel low-rank based techniques. Repeated patterns (such as windows, tiles, balconies and doors) are prominent and significant features in urban scenes. Detection of the periodic structures is useful in many applications such as photorealistic 3D reconstruction, 2D-to-3D alignment, facade parsing, city modeling, classification, navigation, visualization in 3D map environments, shape completion, cinematography and 3D games. However both of the image rectification and repeated patterns detection problems are challenging due to scene occlusions, varying illumination, pose variation and sensor noise. Therefore, detection of these repeated patterns becomes very important for city scene analysis. Given a 2D image of urban scene, we automatically rectify a facade image and extract facade textures first. Based on the rectified facade texture, we exploit novel algorithms that extract repeated patterns by using Kronecker product based modeling that is based on a solid theoretical foundation. We have tested our algorithms in a large set of images, which includes building facades from Paris, Hong Kong and New York

    Automated 3D model generation for urban environments [online]

    Get PDF
    Abstract In this thesis, we present a fast approach to automated generation of textured 3D city models with both high details at ground level and complete coverage for birds-eye view. A ground-based facade model is acquired by driving a vehicle equipped with two 2D laser scanners and a digital camera under normal traffic conditions on public roads. One scanner is mounted horizontally and is used to determine the approximate component of relative motion along the movement of the acquisition vehicle via scan matching; the obtained relative motion estimates are concatenated to form an initial path. Assuming that features such as buildings are visible from both ground-based and airborne view, this initial path is globally corrected by Monte-Carlo Localization techniques using an aerial photograph or a Digital Surface Model as a global map. The second scanner is mounted vertically and is used to capture the 3D shape of the building facades. Applying a series of automated processing steps, a texture-mapped 3D facade model is reconstructed from the vertical laser scans and the camera images. In order to obtain an airborne model containing the roof and terrain shape complementary to the facade model, a Digital Surface Model is created from airborne laser scans, then triangulated, and finally texturemapped with aerial imagery. Finally, the facade model and the airborne model are fused to one single model usable for both walk- and fly-thrus. The developed algorithms are evaluated on a large data set acquired in downtown Berkeley, and the results are shown and discussed

    Use of a Raspberry-Pi Video Camera for Coastal Flooding Vulnerability Assessment: The Case of Riccione (Italy)

    Get PDF
    Coastal monitoring is strategic for the correct assessment of nearshore morphodynamics, to verify the effects of anthropogenic interventions for the purpose of coastal protection and for the rapid assessment of flooding vulnerability due to severe events. Remote sensing and field surveys are among the main approaches that have been developed to meet these necessities. Key parameters in the assessment and prevision of coastal flooding extensions, beside meteomarine characteristics, are the topography and slope of beaches, which can be extremely dynamic. The use of continuous monitoring through orthorectified video images allows for the rapid detection of the intertidal bathymetry and flooding threshold during severe events. The aim of this work was to present a comparison of different monitoring strategies and methodologies that have been integrated into repeated surveys in order to evaluate the performance of a new camera system. We used a low-cost camera based on Raspberry Pi called VISTAE (Video monitoring Intelligent STAtion for Environmental applications) for long-term remote observations and GNSS-laser tools for field measurements. The case study was a coastal tract in Riccione, Italy (Northern Adriatic Sea), which is the seat of nourishment interventions and of different types of underwater protection structures to combat coastal erosion. We performed data acquisition and analysis of the emerged beach and of the swash zone in terms of the intertidal bathymetry and shoreline. The results show a generally good agreement between the field and remote measurements through image processing, with a small discrepancy of the order of ≈0.05 m in the vertical and ≈1.5 m in the horizontal in terms of the root mean square error (RMSE). These values are comparable with that of current video monitoring instruments, but the VISTAE has the advantages of its low-cost, programmability and automatized analyses. This result, together with the possibility of continuous monitoring during daylight hours, supports the advantages of a combined approach in coastal flooding vulnerability assessment through integrated and complementary techniques
    • …
    corecore