3,587 research outputs found

    Virtual Reality as Navigation Tool: Creating Interactive Environments For Individuals With Visual Impairments

    Get PDF
    Research into the creation of assistive technologies is increasingly incorporating the use of virtual reality experiments. One area of application is as an orientation and mobility assistance tool for people with visual impairments. Some of the challenges are developing useful knowledge of the user’s surroundings and effectively conveying that information to the user. This thesis examines the feasibility of using virtual environments conveyed via auditory feedback as part of an autonomous mobility assistance system. Two separate experiments were conducted to study key aspects of a potential system: navigation assistance and map generation. The results of this research include mesh models that were fitted to the walk pathways of an environment, and collected data that provide insights on the viability of virtual reality based guidance systems

    CoolBeans: Using Technology to Encourage Real-World Informal Interaction

    No full text
    Informal interaction is considered an important part of the work ethic and process in business and academia. We found that the new facilities for a computer science department at the University of Southampton were not conducive to this, and designed a technology-based solution to improve social awareness and encourage interaction using a presence-aware application and web interface. Users could use the system to find out who was taking a break and to invite others to do so. Initial results suggest that the project both encouraged social activity and became a popular fixture in the area on which efforts were focused

    A framework for realistic 3D tele-immersion

    Get PDF
    Meeting, socializing and conversing online with a group of people using teleconferencing systems is still quite differ- ent from the experience of meeting face to face. We are abruptly aware that we are online and that the people we are engaging with are not in close proximity. Analogous to how talking on the telephone does not replicate the experi- ence of talking in person. Several causes for these differences have been identified and we propose inspiring and innova- tive solutions to these hurdles in attempt to provide a more realistic, believable and engaging online conversational expe- rience. We present the distributed and scalable framework REVERIE that provides a balanced mix of these solutions. Applications build on top of the REVERIE framework will be able to provide interactive, immersive, photo-realistic ex- periences to a multitude of users that for them will feel much more similar to having face to face meetings than the expe- rience offered by conventional teleconferencing systems

    DeepNFV: A Lightweight Framework for Intelligent Edge Network Functions Virtualization

    Get PDF
    Traditional Network Functions Virtualization (NFV) implementations are somehow too heavy and do not have enough functionality to conduct complex tasks. In this work, we propose a lightweight NFV framework named DeepNFV, which is based on the Docker container running on the network edge, and integrates state-of-the-art deep learning models with NFV containers to address some complicated problems, such as traffic classification, link analysis, and so on. We compare the DeepNFV framework with several existing works, and detail its structures and functions. The most significant advantage of DeepNFV is its lightweight design, resulting from the virtualization and low-cost nature of the container technology. Also, we design this framework to be compatible with edge devices, in order to decrease the computational overhead of the central servers. Another merit is its strong analysis ability brought by deep learning models, which make it suitable for many more scenarios than traditional NFV approaches. In addition, we also describe some typical application scenarios, regarding how the NFV container works and how to utilize its learning ability. Simulations demonstrate its high efficiency, as well as the outstanding recognition performance in a typical use case

    A highly-available and scalable microservice architecture for access management

    Get PDF
    Access management is a key aspect of providing secure services and applications in information technology. Ensuring secure access is particularly challenging in a cloud environment wherein resources are scaled dynamically. In fact keeping track of dynamic cloud instances and administering access to them requires careful coordination and mechanisms to ensure reliable operations. PrivX is a commercial offering from SSH Communications and Security Oyj that automatically scans and keeps track of the cloud instances and manages access to them. PrivX is currently built on the microservices approach, wherein the application is structured as a collection of loosely coupled services. However, PrivX requires external modules and with specific capabilities to ensure high availability. Moreover, complex scripts are required to monitor the whole system. The goal of this thesis is to make PrivX highly-available and scalable by using a container orchestration framework. To this end, we first conduct a detailed study of mostly widely used container orchestration frameworks: Kubernetes, Docker Swarm and Nomad. We then select Kubernetes based on a feature evaluation relevant to the considered scenario. We package the individual components of PrivX, including its database, into Docker containers and deploy them on a Kubernetes cluster. We also build a prototype system to demonstrate how microservices can be managed on a Kubernetes cluster. Additionally, an auto scaling tool is created to scale specific services based on predefined rules. Finally, we evaluate the service recovery time for each of the services in PrivX, both in the RPM deployment model and the prototype Kubernetes deployment model. We find that there is no significant difference in service recovery time between the two models. However, Kubernetes ensured high availability of the services. We find that Kubernetes is the preferred mode for deploying PrivX and it makes PrivX highly available and scalable

    Overview on agent-based social modelling and the use of formal languages

    Get PDF
    Transdisciplinary Models and Applications investigates a variety of programming languages used in validating and verifying models in order to assist in their eventual implementation. This book will explore different methods of evaluating and formalizing simulation models, enabling computer and industrial engineers, mathematicians, and students working with computer simulations to thoroughly understand the progression from simulation to product, improving the overall effectiveness of modeling systems.Postprint (author's final draft

    Multiuser Diversity Management for Multicast/Broadcast Services in 5G and Beyond Networks

    Get PDF
    The envisaged fifth-generation (5G) and beyond networks represent a paradigm shift for global communications, offering unprecedented breakthroughs in media service delivery with novel capabilities and use cases. Addressing the critical research verticals and challenges that characterize the International Mobile Telecommunications (IMT)-2030 framework requires a compelling mix of enabling radio access technologies (RAT) and native softwarized, disaggregated, and intelligent radio access network (RAN) conceptions. In such a context, the multicast/broadcast ser vice (MBS) capability is an appealing feature to address the ever-growing traffic demands, disruptive multimedia services, massive connectivity, and low-latency applications. Embracing the MBS capability as a primary component of the envisaged 5G and beyond networks comes with multiple open challenges. In this research, we contextualize and address the necessity of ensuring stringent quality of service (QoS)/quality of experience (QoE) requirements, multicasting over millimeter-wave (mmWave) and sub-Terahertz (THz) frequencies, and handling complex mobility behaviors. In the broad problem space around these three significant challenges, we focus on the specific research problems of effectively handling the trade-off between multicasting gain and multiuser diversity, along with the trade-off between optimal network performance and computational complexity. In this research, we cover essential aspects at the intersection of MBS, radio resource management (RRM), machine learning (ML), and the Open RAN (O-RAN) framework. We characterize and address the dynamic multicast multiuser diversity through low-complexity RRM solutions aided by ML, orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) techniques in 5G MBS and beyond networks. We characterize the performance of the multicast access techniques conventional multicast scheme (CMS), subgrouping based on OMA (S-OMA), and subgrouping based on NOMA (S-NOMA). We provide conditions for their adequate selection regarding the specific network conditions (Chapter 4). Consequently, we propose heuristic methods for the dynamic multicast access technique selection and resource allocation, taking advantage of the multiuser diversity (Chapter 5.1). Moreover, we proposed a multicasting strategy based on fixed pre-computed multiple-input multiple-output (MIMO) multi-beams and S-NOMA (Chapter 5.2). Our approach tackles specific throughput requirements for enabling extended reality (XR) applications attending multiple users and handling their spatial and channel quality diversity. We address the computational complexity (CC) associated with the dynamic multicast RRM strategies and highlight the implications of fast variations in the reception conditions of the multicast group (MG) members. We propose a low complexity ML-based solution structured by a multicast-oriented trigger to avoid overrunning the algorithm, a K-Means clustering for group-oriented detection and splitting, and a classifier for selecting the most suitable multicast access technique (Chapter 6.1). Our proposed approaches allow addressing the trade-off between optimal network performance and CC by maximizing specific QoS parameters through non-optimal solutions, considerably reducing the CC of conventional exhaustive mechanisms. Moreover, we discuss the insertion of ML-based multicasting RRM solutions into the envisioned disaggregated O-RAN framework (Chapter 6.2.5). We analyze specific MBS tasks and the importance of a native decentralized, softwarized, and intelligent conception. We assess the effectiveness of our proposal under multiple numerical and link level simulations of recreated 5G MBS use cases operating in μWave and mmWave. We evaluate various network conditions, service constraints, and users’ mobility behaviors

    Estimating Vehicle Suspension Characteristics for Digital Twin Creation with Genetic Algorithm

    Get PDF
    Usage of simulation techniques like Vehicle-in-the-Loop, Scenario-in-the-Loop, and other mixed-reality systems are becoming inevitable in autonomous vehicle development, particularly in testing and validation. These methods rely on using digital twins, realistic representations of real vehicles, and traffic in a carefully rebuilt virtual world. Recreating them precisely in a virtual ecosystem requires many parameters of real vehicles to follow their properties in a simulation. This is especially true for vehicle dynamics, where these parameters have high impact on the simulation results. The paper's objective is to provide a method that can help reverse engineering a real car's suspension characteristics with the help of a genetic algorithm. A detailed description of the method is presented, guiding the reader through the whole process, including the meta-heuristic function's settings and how it interfaces with IPG Carmaker. The paper also presents multiple measurements, which can be effortlessly recreated without expensive devices or the need to disassemble any vehicle parts. Measurements are reproduced in two separate simulation tools with special scenarios providing an efficient way to analyze and verify the results. The provided method creates vehicle suspension characteristics with adequate quality, opening up the possibility to use them in the creation of digital twins or creating virtual traffic with realistic vehicle dynamics for high-quality visualization. Results show satisfying accuracy when tested with OpenCRG

    What is a Good Pattern of Life Model? Guidance for Simulations

    Get PDF
    We have been modeling an ever-increasing scale of applications with agents that simulate the pattern of life (PoL) and real-world human behaviors in diverse regions of the world. The goal is to support sociocultural training and analysis. To measure progress, we propose the definition of a measure of goodness for such simulated agents, and review the issues and challenges associated with first-generation (1G) agents. Then we present a second generation (2G) agent hybrid approach that seeks to improve realism in terms of emergent daily activities, social awareness, and micro-decision making in simulations. We offer a PoL case study with a mix of 1G and 2G approaches that was able to replace the pucksters and avatar operators needed in large-scale immersion exercises. We conclude by observing that a 1G PoL simulation might still be best where large-scale, pre-scripted training scenarios will suffice, while the 2G approach will be important for analysis or if it is vital to learn about adaptive opponents or unexpected or emergent effects of actions. Lessons are shared about ways to blend 1G and 2G approaches to get the best of each
    corecore