
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Rajagopalan Ranganathan

A highly-available and scalable microser-
vice architecture for access management

Master’s Thesis
Espoo, September 17, 2018

Supervisor: Professor Mario Di Francesco, Aalto University
Instructors: Markku Rossi M.Sc., Computer Science, SSH Communica-

tions and Security Oyj
Gopika Premsankar, M.Sc. (Tech.), Aalto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/162136599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Rajagopalan Ranganathan

Title:
A highly-available and scalable microservice architecture for access management

Date: September 17, 2018 Pages: 73

Professorship: Mobile Computing, Services and Secu-
rity

Code: SCI3045

Supervisor: Professor Mario Di Francesco

Instructors: Markku Rossi M.Sc., Computer Science, SSH Communica-
tions and Security Oyj
Gopika Premsankar, M.Sc. (Tech.), Aalto University

Access management is a key aspect of providing secure services and applications
in information technology. Ensuring secure access is particularly challenging in a
cloud environment wherein resources are scaled dynamically. In fact keeping track
of dynamic cloud instances and administering access to them requires careful co-
ordination and mechanisms to ensure reliable operations. PrivX is a commercial
offering from SSH Communications and Security Oyj that automatically scans
and keeps track of the cloud instances and manages access to them. PrivX is cur-
rently built on the microservices approach, wherein the application is structured
as a collection of loosely coupled services. However, PrivX requires external mod-
ules and with specific capabilities to ensure high availability. Moreover, complex
scripts are required to monitor the whole system.

The goal of this thesis is to make PrivX highly-available and scalable by using a
container orchestration framework. To this end, we first conduct a detailed study
of mostly widely used container orchestration frameworks: Kubernetes, Docker
Swarm and Nomad. We then select Kubernetes based on a feature evaluation rele-
vant to the considered scenario. We package the individual components of PrivX,
including its database, into Docker containers and deploy them on a Kubernetes
cluster. We also build a prototype system to demonstrate how microservices can
be managed on a Kubernetes cluster. Additionally, an auto scaling tool is created
to scale specific services based on predefined rules. Finally, we evaluate the ser-
vice recovery time for each of the services in PrivX, both in the RPM deployment
model and the prototype Kubernetes deployment model. We find that there is no
significant difference in service recovery time between the two models. However,
Kubernetes ensured high availability of the services. We find that Kubernetes is
the preferred mode for deploying PrivX and it makes PrivX highly available and
scalable.

Keywords: docker, container, kubernetes, container orchestration, mi-
croservices, access management

Language: English

2

Acknowledgments

I would like to thank my thesis supervisor Professor Mario Di Francesco
for giving me an opportunity to work on this thesis and providing valuable
insights. I would like to specifically thank my instructors Markku Rossi and
Gopika Premsankar for their continuous support and patience during this
entire tenure. I am grateful to them for constantly guiding me through out
this thesis work.

I would like to thank my father, in-laws and friends for their support and
motivation. Special thanks to my wife and daughter for constantly encourag-
ing me throughout my academic journey and writing this thesis. This thesis
would not have been possible without their help and support.

Thank you.

Helsinki, September 17, 2018

Rajagopalan Ranganathan

3

Abbreviations and Acronyms

AD Active Directory
API Application Programming Interface
AWS Amazon Web Services
CD Continuous Delivery
CI Continuous Integration
CLI Command-line Interface
CNCF Cloud Native Computing Foundation
DNS Domain Name System
GCP Google Cloud Platform
GKE Google Kubernetes Engine
GUI Graphical User Interface
IaaS Infrastructure as a Service
IPC Interprocess Communication
MITM Man In The Middle
OS Operating System
PAM Privileged Access Management
RBAC Role Based Access Control
RDP Remote Desktop Protocol
REST Representational State Transfer
RPC Remote Procedure Call
SaaS Software as a Service
SSH Secure Shell
TCP Transmission Control Protocol
UDP User Datagram Protocol
VM Virtual Machine
VMM Virtual Machine Monitor

4

Contents

Abbreviations and Acronyms 4

1 Introduction 8
1.1 Scope and goals . 10
1.2 Contribution . 10
1.3 Structure . 11

2 Virtualization 12
2.1 Virtualization . 12
2.2 Hypervisor-based virtualization 13
2.3 Operating system level virtualization 14
2.4 Docker . 18

3 Microservices and orchestration 24
3.1 Monolithic application . 24
3.2 Microservices . 26
3.3 Docker containers for microservices 29
3.4 Container orchestration . 30

3.4.1 Kubernetes . 31
3.4.2 Docker Swarm . 36
3.4.3 Nomad . 39

4 Access management and PrivX 42
4.1 Access management . 42
4.2 PrivX . 43

4.2.1 PrivX features . 45
4.2.2 PrivX architecture . 47
4.2.3 PrivX orchestrated with Kubernetes 48

5 Implementation 53
5.1 Preliminary steps . 53

5

5.1.1 Dockerizing PrivX . 54
5.1.2 System environment 54
5.1.3 Kubernetes installation 55

5.2 Deploying PrivX with Kubernetes 56
5.2.1 Database as a service 56
5.2.2 PrivX services orchestrated 60

5.3 Additional software realized 61
5.4 Evaluation and results . 63

6 Conclusion 65

6

List of Figures

2.1 Hypervisor-based virtualization architecture [56]. 13
2.2 Container-based virtualization architecture [56]. 15
2.3 cgroups hierarchical structure. 16
2.4 Docker Engine architecture [6]. 19
2.5 Docker Architecture [6]. 20
2.6 Multiple Docker containers using the same base image [12]. . . 23

3.1 Monolithic architecture [19]. 25
3.2 Monoliths and microservices [47]. 26
3.3 The increase in the use of the keywords DevOps and microser-

vices, according to a Google Trends report [32]. 28
3.4 Kubernetes architecture. 31
3.5 Docker Swarm architecture [33]. 36
3.6 Nomad architecture [2]. 40

4.1 PrivX - Managing different cloud and on-premise entities [25]. 46
4.2 PrivX architecture [24]. 47

5.1 PrivX orchestrated with Kubernetes. 57

7

Chapter 1

Introduction

Software development processes have been evolving at a fast pace. Com-
petition has become very fierce and being early to market has become a
critical factor in attracting customers and determining the eventual success
of a product or a service [52]. Software has evolved to rapidly-changing web-
based services that emphasize on the agility of organizations to develop and
deploy new software components and features [53]. Traditional software de-
velopment methodologies like the classic waterfall model do not scale well
to facilitate iterative software development with reduced release cycles [61].
This has paved the way for lean and agile software development processes,
which enable iterative software development with short release cycles [66].

Cloud computing provides unlimited access to computing resources and
supports agile deployment of software services [75]. More specifically, cloud
computing refers to the applications delivered as services over the Internet
and the hardware and systems software in the datacenters that provide these
services [31]. Virtualization plays an important role in cloud computing as it
provides an abstraction layer for storage and other computing resources. The
most popular virtualization technologies available for servers are: platform
and container virtualization. Linux containers are the most widely used
implementation of operating system-level virtualization. Virtualization helps
in creating Virtual Machines (VMs) which are efficient, isolated duplicates
of a real machine [63].

Containers are lightweight and easily manageable especially if compared
to VMs. These attributes have made containers highly desirable in the re-
cent years [67]. Containerization has enabled rapid and quick deployment
of software by establishing a unified environment from development until
deployment. There are several container platforms; Docker is one of the
most popular container platform [40]. The rise of containers has paved the
way for new software development practices based on microservices. In the

8

CHAPTER 1. INTRODUCTION 9

microservice-based architecture, the application is structured as a collection
of loosely bound services [44]. Services are organized around their capa-
bilities and communicate with each other using well defined interfaces [47].
This is a shift from the prevalent monolithic software architecture wherein
the legacy or ‘existing monolithic’ applications, and services, can be “Con-
tainerized” by splitting it into microservices, each running on a single or
multiple containers. Containers are one of the primary enabling technologies
for microservices. The scalability and high-availability of containerized ap-
plications is obtained through by having multiple replicas of the individual
services.

Containers are ephemeral and managing their life cycles in large deploy-
ments is challenging. Ensuring their availability and replica count in an
distributed environment is particularly demanding. Container orchestration
frameworks and tools help manage the containers. Automated container
deployment, scaling, resiliency, rescheduling the failed containers and con-
tainer management are some of the features offered by container orchestra-
tion frameworks [72]. Kubernetes, Docker Swarm and Nomad are the most
popular container orchestration frameworks.

With the advent of cloud computing, the information technology infras-
tructure of organizations has undergone a massive change. Managing dy-
namically allocated resources on the cloud and securely providing access to
them is a key aspect. Privileged Access Management (PAM) solutions en-
able organizations to securely provide access to its assets and conform with
compliance requirements by securing, monitoring and managing the accounts
and their access. Modern PAM solutions should support dynamic instances
on the cloud as well as static on-premise infrastructure. In this context,
PrivX is a lean on-demand access management software developed by SSH
Communications Security Oyj [23]. It supports all major cloud infrastructure
providers such Amazon, Google, Azure, OpenStack as well as the traditional
on-premise infrastructure. It simplifies access management with short-lived
certificates used to grant access to resources.

PrivX is based on the microservice architecture but the deployment model
does not leverage containers. Complex scripts are required to ensure high
availability. Addressing scalability is a challenge as it requires external load
balancers with sticky session support. PrivX requires an external Postgres
database. Additionally, PrivX has a watchdog script to monitor and restart
the failed services of PrivX. These reasons have motivated us to containerize
PrivX and deploy it with a container orchestration framework.

CHAPTER 1. INTRODUCTION 10

1.1 Scope and goals

The goal of this thesis is to containerize PrivX, eventually making it highly
available and scalable using a container orchestration framework. A con-
tainerized PrivX enables faster release cycles with Agile development method-
ologies. In fact, it accelerates Development and Operations (DevOps) and
simplifies the Continuous Integration (CI) and Continuous Delivery (CD).
The container orchestrator should simplify PrivX deployment by eliminating
the need for external load balancers. The goal is to create a single unified
solution that could be deployed both on-premise and on cloud environments.

To this end we identify the following goals.

• Find a container orchestration framework suitable for the considered
scenario.

• Containerize PrivX according to the selected solution.

• Create the Postgres database as a service within PrivX according to
the microservice architecture.

• Automate deployment of PrivX through a container orchestration frame-
work.

1.2 Contribution

The contributions of this thesis are the following

• We identify the main features required from the container orchestration
framework in the context of PrivX. We then evaluate the features of the
available open source container orchestration frameworks (Kubernetes,
Docker Swarm and Nomad) in light of these requirements.

• Next, we implement different microservices of PrivX as Docker con-
tainers. This also includes creating a database as a service.

• Finally, we deploy the containerized PrivX using Docker on a Kuber-
netes cluster. We also consider the automated build and deployment
of PrivX.

• A proof of concept smart scaling tool is created that scales services in
PrivX based on predefined rules. Additionally, an application level log
aggregation tool is created to collect the logs.

CHAPTER 1. INTRODUCTION 11

1.3 Structure

The rest of this work is organized as follows. Chapter 2 introduces the
relevant background about virtualization, containers, and Docker. Chapter 3
introduces the microservice architecture and selected container orchestration
frameworks. Chapter 4 describes PrivX, identifies its specific requirements
and evaluates the features of the container orchestration frameworks in this
context. Chapter 5 describes our prototype implementation of PrivX on a
custom Kubernetes cluster with the experiments and evaluation performed.
Finally, Chapter 6 provides some concluding remarks as well as directions for
future work.

Chapter 2

Virtualization

The chapter provides background information on the technologies and con-
cepts of virtualization relevant to this thesis. Section 2.1 introduces the con-
cept of virtualization. Section 2.2 describes hypervisor-based virtualization
and section 2.3 describes operating system level virtualization. Section 2.4
introduces Docker and describes its components and architecture in detail.

2.1 Virtualization

Virtualization is a methodology of sharing and dividing the resources of a
computer into multiple execution environments, by applying one or more
technologies such as hardware and software partitioning, time-sharing, par-
tial or complete machine simulation, emulation, quality of service, and many
others [50]. The usage of system virtualization in modern software develop-
ment and deployment is prevalent. It enables software and service providers
to serve a multitude of customers with physical and virtual resources on de-
mand [37]. With system virtualization, virtualized resources can be scaled
up or out to meet the increase in demand. When the demand decreases, the
virtualized resources can be removed (or scaled down). Scaling down seam-
lessly enables resources to be free and available for other purposes and helps
in keeping the infrastructure cost for the company low.

Virtualization enables the development and production environments for
the software to be the same. It enables running several virtual machines on a
single server hardware. The machines run in complete isolation and provide
better scalability and usage of the underlying hardware resources. The most
popular virtualization technologies are hypervisor-based virtualization and
Operating-system-level virtualization.

12

CHAPTER 2. VIRTUALIZATION 13

2.2 Hypervisor-based virtualization

A hypervisor or Virtual Machine Monitor (VMM) is a piece of computer
software that enables creating and running of virtual machines (VMs). It
allocates the host resources such as memory and CPU to a collection of VMs
(guest machines). The VMs provide an execution environment of that of
a real machine [63]. A VMM has three essential characteristics [63]: VMM
provides an environment for programs that is identical with that of a real
machine; programs that run in such virtualized environments only show a
minor reduction in performance and the VMM is in complete control of the
system resources in the host system.

There are two hypervisor-based virtualization architectures (Figure 2.1):
Type 1, which is native or bare metal and Type 2, hosted hypervisors. In
the type 1 architecture, the hypervisor runs directly on top of the host hard-
ware. It controls the host hardware and manages the virtual machines. Xen,
Microsoft Hyper-V, VMware ESX/ESXi are some of the notable hypervi-
sors based on this architecture. In type 2 architecture, the hypervisor runs
as an additional software layer on top of the host operating system. The
hypervisor does not directly control the system resources such as CPU or
other resources, but rather relies on the underlying host operating system
to perform the same. VMware Workstation, VirtualBox, QEMU are notable
examples of type-2 hypervisors.

Figure 2.1: Hypervisor-based virtualization architecture [56].

Hypervisors ensure that there is total isolation between the different VMs
that are running on the same hardware. Additionally, they ensure that the
virtual machines behave no differently than real hardware i.e., the same be-
havior is expected from the programs when running in a virtual machine as

CHAPTER 2. VIRTUALIZATION 14

compared to running on a physical hardware. Hypervisors provide a manage-
ment interface to control the running and execution of VMs and managing
their respective resources. Hypervisors provide the ability to take backups
and create snapshots of the VMs. This enables portability and deployment
at ease. In the cloud computing environment, creation, deletion and man-
agement of VMs can be controlled through a set of well-defined Application
Programming Interfaces (APIs) enabling applications to scale-up and scale-
down as per the requirements. This has notably driven the Infrastructure as
a Service (IaaS) model in the cloud computing world [38].

Despite their benefits hypervisor-based solutions have their drawbacks.
Programs that require isolation but rely on the same operating system lead
to creation of multiple VMs with the same operating systems. This leads to
poor utilization of the resources. Since VMs require booting up an operating
system they require considerable time to be started. Even though they pro-
vide an experience as close to a real operating system, there is performance
degradation when compared to physical machines [34].

2.3 Operating system level virtualization

Operating system level virtualization also known as containerization or container-
based virtualization is a lightweight alternative to the hypervisor based virtu-
alization. There is no hypervisor involved and virtualization is done at host
operating system (OS) level. All virtualized instances, i.e., containers, share
the host OS kernel. From a user perspective the containers give an experience
of stand-alone operating systems [74]. Since there is no hypervisor involved,
this largely reduces the runtime overhead and sharing a same operating sys-
tem also reduces the storage overhead. Container-based virtualization has a
weaker isolation when compared to hypervisor-based virtualization solutions.

As shown in Figure 2.2, containers provide a level of abstraction on top
of host operating system kernel, allowing each container to behave as an
independent operating system with isolation. Containers are created based
on an image. A container image is a stand-alone executable package that is
lightweight and contains all the necessary artifacts that are needed for the
container to run such as: code, runtime, system resources [27]. This package
can be backed-up, copied and distributed. Multiple instance of containers can
be executed in the same host machine or different host machines depending
upon the requirement for fault tolerance.

From a user perspective, the containers provide an illusion that the pro-
cesses executing inside them are running on different physical machines.
Linux kernels are predominant in supporting container-based virtualization

CHAPTER 2. VIRTUALIZATION 15

Figure 2.2: Container-based virtualization architecture [56].

and the popular container-based virtualization solutions such as Docker rely
on the features provided by it. The management interface provided by the
Linux kernel enables monitoring, execution and administration of the con-
tainers. Isolation is achieved using namespaces, which allows each container
to have a different view of the underlying system. Resource management such
as CPU, memory and I/O are administered and controlled with the help of
control groups (cgroups).

The technologies enabling container-based virtualization are discussed
further below.

Control groups

Control groups commonly known as cgroups enables to control the system
resources such as CPU, network bandwidth, memory, block I/O or a combi-
nation of these resources for a user-defined groups of processes running on
a given system [4]. Cgroups helps in achieving fine-grained control over al-
locating, denying, dynamically reconfiguring, managing and monitoring the
system resources. The hardware resources can be divided up among tasks
and users, increasing the overall efficiency and resource utilization [4]. The
control group config (cgconfig) service can be used to persist the cgroup
configurations and make them available from system boot time [4].

cgroups are organized hierarchically with child groups inheriting some at-
tributes from the parents. However, like the Linux process model, in cgroups
many different hierarchies can coexist in a system simultaneously. The cgroup
model is best described as one or more distinct tree of processes as shown in
Figure 2.3. A subsystem is the representation of a single system resource such
as system memory, CPU time, network, I/O operations and others. Multi-

CHAPTER 2. VIRTUALIZATION 16

ple separate hierarchies of cgroups are necessary because each hierarchy is
attached to one or multiple subsystems [4] as shown in the Figure 2.3.

Figure 2.3: cgroups hierarchical structure.

Namespaces

Namespaces are used to provide resource isolation. They provide an ab-
straction for the global system resource that makes it appear as if the pro-
cess within the namespace owns its own isolated instance of that resource.
Changes made to a resource inside a namespace do not affect the global re-
source. This enables different namespaces (or processes) to have a different
view about the physical resources of the system [5]. This is a key feature
which enables container-based virtualization. There are 7 different namep-
saces available from Linux kernel version 4.101.

• Mount2 (mnt) namespaces provide isolation on the list of mount points
in each namespace instance. This enables each process belonging to
different mount namespace instance to see different directory hierar-
chies.

• Process ID3 (pid) namespace provides isolation between process IDs.
Processes in different PID namespaces can have the same PID number.

1http://man7.org/linux/man-pages/man7/namespaces.7.html
2http://man7.org/linux/man-pages/man7/mount namespaces.7.html
3http://man7.org/linux/man-pages/man7/pid namespaces.7.html

CHAPTER 2. VIRTUALIZATION 17

This enables containers to suspend and resume a process or a set of
process. Additionally, this enables migrating containers between hosts
retaining their PID numbers and avoiding any potential conflict that
may arise otherwise.

• Network4 (net) namespaces provide isolation of networking system re-
sources such as: network devices, IPv4 and IPv6 protocol stacks, IP
routing tables, firewall rules. A physical networking device can reside in
only one network namespace. However, with the help of virtual network
(VETH) device, communication can be provided between namespaces
and external hosts. It provides the namespaces with its own networking
interface. When a namespace is freed or destroyed, the VETH devices
contained in it are also destroyed.

• Interprocess Communication5 (ipc) namespaces provide isolation for
IPC resources and Posix message queues. Each IPC namespace has its
own set of IPC resources. The IPC objects are visible to all processes
that are inside the same IPC namespace, but are not visible to processes
that are in a different namespace.

• UTS6 namespaces provide isolation of the following two system identi-
fiers: The host name and Network Information Service (NIS) domain
name. This enables containers to have their own namespace when com-
pared to the host.

• User ID7 (user) namespaces provide isolation of security identifiers
and attributes such as user IDs, Group IDs, root directory, keys and
capabilities. A process can have a different user and group ID inside and
outside a given namespace. This allows for a process running with full
privileges inside a namespace to be unprivileged outside the namespace.
This enhances the security of the system and protects it from misuse
and arbitrary attacks.

• Control group8 (cgroup) namespaces provide a virtualized view of the
process’s cgroups. Each cgroup namespace has its own cgroup root
directories.

4http://man7.org/linux/man-pages/man7/network namespaces.7.html
5http://man7.org/linux/man-pages/man7/namespaces.7.html
6http://man7.org/linux/man-pages/man2/uname.2.html
7http://man7.org/linux/man-pages/man7/user namespaces.7.html
8http://man7.org/linux/man-pages/man7/cgroup namespaces.7.html

CHAPTER 2. VIRTUALIZATION 18

2.4 Docker

Docker is a computer program that performs containerization. It enables
separation of application and infrastructure, thereby facilitating faster soft-
ware deliveries9. Linux cgroups and namespaces are the building blocks of
Docker [30]. Dockers enable developing, maintaining, shipping and running
of container-based applications. It is an open source platform and enables
scaling of applications at ease. Docker provides a mechanism to package ap-
plication, runtime, libraries and other necessary configurations into images.
Docker provides tools for version management, container management, moni-
toring and deployment of containers. Since Docker leverages container-based
virtualization it is possible to run multiple containers on a single host in a
secure isolated manner. Docker enables the development and production en-
vironment to be the same, meaning that the necessary infrastructure could
be created inside a Docker container. This reduces production issues and re-
duces the time to market a new product. These features of Docker have made
them popular with continuous integration (CI) and continuous development
(CD) work flows required for modern software development methodologies
such as Agile [46].

Containers are stateless and they can be brought up and down dynam-
ically. For example: systems that require large data storage, the database
component (the database container) can be scaled up horizontally and when
the need is no more, it can be scaled down. This enables smart scaling and
workload management. Docker is tailor made for these requirements.

Docker engine is a part of Docker which creates and runs the Docker con-
tainers [6]. Figure 2.4 illustrates the Docker Engine architecture. It is based
on the client-server architecture model and contains three major components:

• Server is the daemon process (the dockerd command).

• REST API specifies interfaces that application programs can use to
communicate with the server(daemon) and provide instructions to the
daemon.

• Command Line Interface (CLI) is the client (docker command), it uses
the REST APIs to communicate and control the daemon using scripts
or direct commands.

9https://docs.docker.com

CHAPTER 2. VIRTUALIZATION 19

Figure 2.4: Docker Engine architecture [6].

Docker Architecture

Docker Engine is the component that creates and runs Docker containers [6].
Figure 2.4 illustrates the Docker Engine architecture. It is based on the
client-server architecture model and contains three major components:

• Server is the daemon process(the dockerd command).

• REST API specifies interfaces that application programs can use to
communicate with the server(daemon) and provide instructions to the
daemon.

• Command Line Interface (CLI) is the client (docker command), it uses
the REST APIs to communicate and control the daemon using scripts
or direct commands.

Users manage and control the Docker containers using the Docker client.
Docker client communicates with the Docker daemon. The Docker daemon

CHAPTER 2. VIRTUALIZATION 20

does the important tasks such as building, running and distributing the
Docker containers. It is not necessary that the client and the daemon run
on the same system, the client can communicate with a remote daemon run-
ning on a different system. The client and daemon communicate using the
REST APIs, over Unix sockets or a well-defined network interface. Figure 2.5
depicts the Docker architecture.

Figure 2.5: Docker Architecture [6].

• The Docker daemon (dockerd) manages all the Docker objects such as
images, containers, networks and volumes. It communicates with the
Docker client for managing the Docker objects notably the containers.
A Docker daemon can communicate with other daemons to manage
the Docker services effectively. Only the Docker client is authorized to
communicate with the daemon, meaning direct communication with
the daemon is restricted.

• The Docker client (docker) is the primary interface for communicating
with the Docker platform. Docker users interact with the Docker plat-
form using the CLI provided by the client to execute the commands.
User commands are sent to the Docker daemon and the daemon ex-
ecutes them on users behalf. One single client can communicate with
multiple Docker daemons.

CHAPTER 2. VIRTUALIZATION 21

• Docker registries are used to store Docker images. The popular public
registries are Docker cloud and Docker Hub. By default, Docker looks
for images in Docker Hub. The registries can also be private and access
can be restricted as desired. Developing and storing of images is stream-
lined with registries, which simplifies their distribution. Docker client
is used to access these registries and download the images. Commands
like “docker pull” or “docker push” are used to pull and update the im-
ages to the registry respectively. It can be noted that these commands
are similar to source code versioning systems [55] like GIT10.

• Docker Images are read-only templates for creating Docker containers.
A Docker image is usually based on a base image with some additional
customizations that are needed for the application to run. It encom-
passes the libraries and binaries that are needed to build and run the
application and services. Users can create a new image or reuse an ex-
isting one in the registry. Creating a Docker image involves creation of
a Dockerfile with a simple syntax that defines the steps necessary for
creating an image and running it. Each step in the Dockerfile creates
a layer in the image and any subsequent changes to the Dockerfile re-
sults in only the changed layers getting rebuilt. This effectively means
that the subsequent versions of the images are the difference between
the previous versions. This enables to have a complete audit trail of
changes that went between the different versions [39]. Thus, Docker
images are designed to be small, fast and lightweight.

• Dockerfile is a simple text file that contains all the commands and
instructions on how to build a Docker image, configure a container
and run the application within the Docker container. The instructions
inside the Dockerfile are executed line-by-line in a sequential manner.
The command “docker build” is used to build a Docker image by point-
ing it to a correct Dockerfile. As explained earlier, the build system
checks for differences in the lines in the Dockerfile with previous ver-
sions and only adds (builds) new layers for the changed ones. A Dock-
erfile must start with a ‘FROM’ instruction, specifying the base image
to be used, it can also be mentioned as ‘SCRATCH’ indicating that
there is no base image and instructs the Docker to start with an empty
file system. System configurations are also specified in the Dockerfile;
for instance, listening ports and environment variables for applications.
These configurations are stored in separate layer as a JSON configura-
tion file.

10https://git-scm.com/

CHAPTER 2. VIRTUALIZATION 22

• Multi-stage Dockerfile is a relatively new approach to reduce the size the
Docker images. The images produced by the build system may contain
compilers or other tools that are not needed for the final deployment.
For example, let us consider a web server written in Golang, that is
serving requests in a designated port. When creating a Dockerfile to
build and compile the source code we might include a Golang compiler
and other needed libraries. Once the final server executable is created,
the resources such as the compiler are obsolete. To minimize the size
of the image and improve the build efficiency, multi-stage Dockerfile is
composed of various stages. The build artifacts from one stage could
be copied to the next [21]. In this way, a pipeline of the needed build
artifacts can be defined and the final stage can contain only the minimal
set of artifacts that are needed for the application to run.

• Docker containers are the runnable instance of an image. Docker con-
tainers are well isolated from each other and the host machine where
they are running. Multiple containers can be instantiated from a single
Docker image. Containers network, storage and other system proper-
ties can be controlled and modified according the requirements. Each
container has its own writable container layer, enabling them to share
a same underlying image but having individually different data states.
This is shown in the Figure 2.6. The changes are stored in the writable
layer, and when the container is deleted or removed, the writable layer
associated with it is also deleted. This ensures that the underlying im-
age is unchanged. The changes can be specifically saved to a persistent
storage if required.

CHAPTER 2. VIRTUALIZATION 23

Figure 2.6: Multiple Docker containers using the same base image [12].

• Docker Services allows scaling of containers across multiple Docker dae-
mons11. They work together as a swarm with multiple managers and
workers. Each member of the swarm is a Docker daemon and they
communicate with each other using the well-defined APIs. The desired
number of replicas can be defined in the service and it takes care of
load balancing. For a Docker user, it stills give the perception of a
single application.

11https://docs.docker.com/engine/docker-overview/#docker-objects

Chapter 3

Microservices and container or-
chestration

This chapter provides the necessary background on microservice architecture
and container orchestration frameworks. Microservice architecture enables
designing of applications as a collection of loosely coupled independent ser-
vices in contrast to the traditional monolithic architecture. Containers are
used to encapsulate these individual services with good isolation. Section
3.1 introduces monolithic applications and its draw backs. Section 3.2 de-
scribes microservice architecture and its advantages. Section 3.3 discusses
how Docker containers can be used to leverage the benefits of microservice
architecture. Finally, Section 3.4 provides information about the need for
container orchestration and describes different container orchestration frame-
works.

3.1 Monolithic application

Software applications were traditionally developed using a monolithic archi-
tecture. This approach consists of a single tier wherein different functions
and software components are combined into a single program (Figure 3.1).
For example, user interface, data processing, business logic and data stor-
age functionalities are all interwoven to create a large self-sufficient single
application [44]. The main issue with this approach is the poor support for
continuous integration, continuous delivery and scaling requirements. In the
cloud era, one of the main advantages is that the application can be scaled
according to actual demand. However, monolithic applications cannot fully
utilize these benefits. To scale a monolithic application the entire application
needs to be scaled. This results in more utilization of processing, storage and

24

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 25

other computing resources, even when only perhaps one component of the
application needs to be scaled.

Figure 3.1: Monolithic architecture [19].

There are several other drawbacks with the monolithic approach. This
approach is challenging for incremental software development processes such
as Agile which emphasizes on shorter delivery cycles. Even a small change
(in one part of the application) impacts on large portions of the remain-
ing application code and results in “cascading effect” and requiring longer
testing and release cycles [36]. For instance, the change in one part of the
code requires the whole application to be rebuilt and installed for testing
purposes. The entire software application needs to be in one specific technol-
ogy or programming language. Such an approach does not allow to use the
strong features of different programming languages. For instance, Python is
most suited for data processing, whereas Golang is suitable for business logic.
However, in a monolithic approach, the entire application has to be imple-
mented in a single programming language regardless of its suitability for a
particular component. This limits the freedom of choice for developers [45].

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 26

3.2 Microservices

The term “microservice” was first coined in May 2011 during a workshop of
software architects held in Venice [47]. Since then microservice architecture
has been gaining a lot of attention and interest among software developers.
Microservice architecture structures the application as a collection of loosely
coupled services. It relies on modular, independent software entities that are
highly scalable. Dependencies are decoupled into logical entities and func-
tional concerns are separated. Each single modular software entity addresses
a single concern. Each microservice has well defined interfaces through which
other entities can communicate with the service. This enables each service
to change its internal implementation as long as the interface is compatible
with the rest of the services. Figure 3.2, shows the differences between the
monolithic and microservice based architectures.

Figure 3.2: Monoliths and microservices [47].

The design philosophy of the microservices architecture is a simple one,
“Do one thing well”. The microservice architecture should adhere to the
following principles:

• Keep the services small such that they each address only a single con-
cern [58]

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 27

• Any software development organization must adopt and embrace au-
tomation for software testing, deployment and delivery. This enables
the development and testing teams to works on small individual de-
ployable units of software [57].

• The individual services must be [20]:

– Resilient: A single service should fail without impacting other ser-
vices.

– Elastic: Service should be able to scale up or down independently.

– Complete: The service should be functionally complete.

– Minimal: The given service should perform a single business func-
tion and must contain highly cohesive units.

– Composable: Service should have well defined uniform interfaces.

Microservices have been recognized as a reliable software solution to de-
velop and scale large software products [68]. Microservice architecture is usu-
ally best suited for Continuous Integration and Continuous Delivery [32]. Its
modular approach eases software development and release cycles, thereby
reducing the time to market. DevOps (Development and Operations) is a
set of practices intended to minimize the time between committing a change
to the system and the change being applied in production with high qual-
ity [35]. Figure 3.3 shows the increasing trends of DevOps and microservices
according to Google keywords search index. This trend clearly indicates the
growing importance of microservice architecture with respect to DevOps.
Several large organizations such as Netflix have embraced the microservice
architecture [59] and have successfully deployed large web scale products.
Each microservice can be developed in a different programming language
and framework, thereby allowing software developers the freedom of choice.
This also gives the added benefit of choosing the right programming language
and framework for the desired functionality. The microservices communicate
with each other using well defined interfaces and communication methods
such as REST API or message passing. It is much easier to accommodate
changes and new feature requests, as only the affected microservice needs
to be modified keeping the interface definitions consistent. Scaling up with
microservices architecture is easy and efficient. Instead of scaling the whole
application or product as in the case of monolith applications, only the de-
sired services are scaled and replicated. This results in cost savings for cloud-
based applications as the cloud computational resources are billed according
to their usage. For these reasons microservices architecture is usually known
as a cloud ready architecture [32].

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 28

Figure 3.3: The increase in the use of the keywords DevOps and microser-
vices, according to a Google Trends report [32].

Microservice is no silver bullet, it comes with its own limitations and con-
straints. Microservice architecture introduces complexity with respect to net-
work latency, network communication, load balancing, fault tolerance, mes-
sage formats [62] [60]. The distributed nature of the architecture introduces
complexity during debugging and error isolation [55]. Network communica-
tions are prone to failures and microservices depend heavily on network com-
munication for inter-microservice communication. Information flow between
the different services could be a problem, since each microservice addresses a
single concern they could become information barriers when trying to get a
complete view of the system internals. A microservice depending on another
microservice has to block itself until the dependent microservice is ready.
Usually, microservices have individual owners (developers) and communica-
tion gaps between different developers adds to some additional delay [10]. A
congested network or poor bandwidth can have a profound impact on the
performance of the product, since most of the functionality depends on inter
microservice communication. An in-memory call in monolith application is
always faster when compared to microservice architecture that relies on net-
work communication [45]. Even though addition of new services is perceived
as an easier task, maintaining different microservices with different technol-
ogy stacks can be challenging. From an organizational management point of
view, it can end up requiring several individuals with specific technology ex-
pertise to handle and maintain the different services which could increase the
cost. Unit testing and individual service level testing could be done compre-
hensively with this architecture. The complexity of building and maintaining
integration and system test suites grows as the number of services grow. As
the number of services increases within the system, the system state is also
shared among several individual services. All of these services need to work
in synchronization to maintain the collective state of the system. This leads

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 29

to more errors since one misbehaving service could disrupt the harmony of
the entire application [45].

3.3 Docker containers for microservices

Docker container is ideal for implementing the microservices. Docker enables
running of applications in an isolated manner within a container, effectively
each service could be run inside separate container. The containers could be
on the same machine or on a different machine. Docker has several features
like image repository that enables upgrading and downgrading of applica-
tions in a trusted manner. Managing the Docker containers is eased by the
Docker client. Docker client can communicate with more than one daemon
and enables users to monitor and manage containers across hosts [6]. Docker
addresses most of the challenges faced by microservice architecture [55] such
as:

• Automation: Creation and launching of Docker containers is scriptable
and this drives automation.

• Independent: Docker containers are self-contained with the application
and its required run time environment. This gives the freedom for de-
velopers to choose any technology stack they deem fit for the desired
functionality.

• Portable: Docker containers are portable and allows testing of individ-
ual microservices. The containers could be easily ported across differ-
ent machines and environments, this ensures that the development and
production environments are the same [18].

• Resource utilization: Docker containers contain a minimal set of arti-
facts needed for the application to run, while sharing the kernel and
other resources from the host operating system with other containers.
This maximizes resource utilization.

• Support and popularity Dockers are widely adopted and supported by
multiple different platforms and this enables development teams to
choose a technology they seem best fit for the given the microservice
and start developing it.

Docker has several open source tools built around it to facilitate rapid
deployment, automation and ease of maintenance of microservices such as

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 30

Docker registry, Dockerfile and Docker client. The Dockerfile enables automa-
tion and ease of deployment of the microservice with its image managed by
Docker registry [55]. The Docker client is used to communicate and control
the microservice (container) and enables in logging and monitoring of the ser-
vice. Docker containers enable rapid automated deployment and testing of
the application. Automated deployment and testing are the building blocks of
modern CI/CD pipeline. Thus, Docker containers have become the enabling
technology for modern CI/CD. Popular CI/CD tools like like Jenkins1 and
Gitlab2 support Docker. These features have made Docker containers popu-
lar and well suited for implementing the microservice architecture.

3.4 Container orchestration

Docker containers have become the standard way to build modern scalable
applications. However, the microservice architecture requires an increasing
number of containers for the growing number of microservices. This raises
several challenges in managing the the containers. The distributed nature of
the containers further complicates their management. Deploying these dis-
tributed microservices requires many manual intervention steps by the sys-
tem administrators [71]. Automating these steps results in long scripts that
grow in complexity and are hard to maintain. Thus, there is a growing need
for frameworks and tools to manage the containers. Container management
tools and frameworks satisfy the below requirements:

• Automated deployment of containers both in test and production envi-
ronments.

• Scaling up and scaling down of containers are required as per the traffic
patterns.

• Resilient: Containers should be resilient and always available for the
application to work as expected [8].

Container orchestration frameworks provide many features, including pro-
visioning of hosts, instantiating containers, stopping containers, rescheduling
failed containers, linking containers though their agreed interfaces, enabling
resilience, exposing the containers outside of their cluster in a secure way,
scaling out and scaling down containers, updating the images in the contain-
ers. Kubernetes, Docker Swarm and Nomad are the most popular container
orchestration frameworks available now.

1https://jenkins.io/solutions/docker
2https://docs.gitlab.com/omnibus/docker

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 31

Figure 3.4: Kubernetes architecture.

3.4.1 Kubernetes

Kubernetes is an extensible open-source platform for managing container-
ized workloads and services. It supports both declarative configuration and
automation [28]. Kubernetes is built on top of time tested Google’s inter-
nal cluster management system called Borg [73]. The Borg system has been
used by Google to run containers in its data centers for more than a decade.
It is a cluster management system that can run hundreds of thousands of
jobs from different applications across many clusters [73]. Kubernetes was
open-sourced in 2014 and since then has been the most popular container
management and orchestration system.

The design philosophy of Kubernetes is to create an ecosystem of various
components and tools that would enable deploying, scaling and managing
applications with ease. Kubernetes enables ease of portability of applications
across different environments and provides a container-centric management
platform.

Kubernetes Architecture

Figure 3.4 shows the high-level architecture of Kubernetes. We explain them
in detail next.

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 32

• The Pod3 is the smallest and simplest unit that can be created and
deployed in the Kubernetes object model. Pods are considered as the
basic building blocks of Kubernetes. In simple terms, a pod represents
a running process on the cluster. A Pod can contain a single container
or a small set of containers that share common resources like network
and storage. Even though the most common use case is one container
per pod, there may be requirements for multiple containers to be tightly
coupled in a single pod. Containers inside a single pod are always co-
located either in the same host or virtual machine. Containers inside
a pod communicate with each other using the localhost and communi-
cate outside the pod using the shared network resources such as ports.
Each pod is assigned a unique IP address that is used to communicate
with the external world and other pods. Kubernetes always schedules
and orchestrates the pods and not the containers. So, when an appli-
cation needs to scale, it translates to adding more pods. Adding pods
is referred as “replication” in Kubernetes. Pods are ephemeral entities
and they can be created and destroyed at will. Pods can be terminated
automatically for various reasons such as lack of resources, hence it is
important to maintain statelessness in the pods. Pods themselves do
not run, rather it is an environment where containers run.

• Node, also known as, minion can either be a physical or a virtual ma-
chine. Nodes provide the run time environment for the pods and are
managed by the master components. The important components of a
node are kubelet and kube-proxy.

– Kubelet is the prominent controller in Kubernetes and drives the
container execution layer. It implements the pod and node APIs.
Kubelet takes a set of PodSpecs (YAML or JSON representation
that describes the pod) and ensures that the containers mentioned
in the PodSpec specification are running without any issues. It
should be noted that kubelet does not manage containers that are
created outside the Kubernetes environment. The main respon-
sibilities of Kubelet include creation, continuous monitoring and
graceful termination of containers running on the node and status
reporting of the nodes to the cluster [64]. The PodSpec is usually
provided to the Kubelet using the API server. There are three
different options other than the API server for providing the Pod-
Spec to the Kubelet: path to a file from the command line, HTTP
endpoint as a parameter in the command line, and finally, Kubelet

3https://kubernetes.io/docs/concepts/workloads/pods/pod/

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 33

can listen for HTTP requests and request for a PodSpec. The re-
fresh intervals for requesting a new a PodSpec can be configured
from the command line4.

– Kube-proxy is run on each node and programs the IP tables. This
enables the service traffic to be redirected to the correct back-
ends. This additionally provides a highly-available load balancing
solution and has a low performance overhead5. For example, a
service request originating from a node is best served within the
same node. It basically maps the individual containers to a single
service. Kube-proxy works in the transport layer level and can do
a simple TCP or UDP stream forwarding. It can also perform a
round-robin based forwarding to achieve load balancing6. Service
end points are resolved and discovered using DNS.

• Master components serve as the control plane for a Kubernetes cluster.
A cluster refers to a collection of node(s) and master(s). The individual
master components can be run on any machine in the cluster. For
simplicity and easy management of the cluster, the master components
are all started in the same machine. User containers are not scheduled
to run in the master machines. Kube-apiserver, etcd, kube-scheduler,
kube-controller-manager are some of the main master components that
are described below [16].

– kube-apiserver is the front-end of the Kubernetes control pane and
exposes the Kubernetes API. It is a simple server which mainly
processes REST operations and updates the corresponding ob-
jects in etcd and other stores7. The API server acts as a gateway
to the cluster providing access to clients that are outside the clus-
ter. The API sever is horizontally scalable. Command line tools
such as Kubectl and Kubeadm use the API server to communi-
cate and control the cluster and the objects contained in it. API
server is responsible for all communication between the master
and the nodes [64]. It should be noted that Kubernetes does not
support atomic transactions that result in multiple resources being
updated.

– etcd stores all the cluster data including the state of the cluster.
It is a distributed, highly-available and consistent key-value store

4https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
5https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
6https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
7https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 34

which provides reliable access to critical data8. It provides watch
support with which multiple components can be notified of any
changes to the cluster state in a timely manner.

– kube-scheduler is responsible for assigning nodes to pods. It watches
for the newly created pods that do not have a node assigned and
selects a node for the pod to run. The availability of requested
resources, hardware constraints, software constraints, data local-
ity, affinity and anti-affinity requirements are some of the factors
considered by the scheduler to select a node for the pod9. The
scheduler is also responsible for evicting a pod from a node taking
into account the current state of the cluster.

– kube-controller-manager runs the controllers. It is a control loop
that watches the shared state of the cluster using the kube-apiserver
and makes appropriate changes to the components to move the
current state to the desired state. Even though each controller
could be treated as an individual process, in order to reduce com-
plexity they are all combined as one single process. Some of the
controllers are described below [16].

∗ Node controller is responsible for managing the nodes. It watches
each node and responds when a node goes down.

∗ Replication controller maintains the desired number of pods.

∗ Endpoints controller links services to pods. It populates the
Endpoints object.

∗ Service account and token controllers are responsible for cre-
ation of default accounts and API access tokens for new names-
paces.

– cloud-controller-manager runs controllers that interact with the
underlying cloud providers10. It is relatively new feature that is in
alpha state released with Kubernetes version 1.6 [15]. The cloud-
controller-manager daemon runs the cloud-specific control loops.
Even though this feature was previously present inside the control
manager, the development cycles of Kubernetes and cloud vendors
were not the same which led to creation of this separate binary.
With this separation the cloud vendors could abstract their cloud
specific code. Most of the popular cloud vendors such as Amazon
and Google have implemented their own cloud-controller-manager.

8https://github.com/coreos/etcd
9https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/

10https://kubernetes.io/docs/concepts/overview/components/

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 35

• Replication controller is responsible for ensuring that a single pod or
a homogeneous set of pods are up and always available. Set of pods is
called a replica. Replicas are needed for scalability i.e., during horizon-
tal scaling more pods are added to handle the traffic and more than
one replica is needed for high availability. ReplicationController super-
vises multiple pods across multiple nodes11. Pods that are monitored
and maintained by the replication controller are automatically replaced
with new ones if some pods fail. Pods are ephemeral and can be deleted
or terminated for various reasons. This is one of the strong compelling
factors to use replication controller even if the application requires only
a single pod. The replication controller uses pod templates (containing
a set of rules) to manage the pods. Replication controller is also respon-
sible for deleting the excess pods that may be present in the cluster.
The controller can be terminated along with the pods managed by it
or the controller can be terminated without terminating the pods and
pods can be disassociated from the controller.

• Services are an abstraction that defines a logical set of pods and policies
to access them. As seen earlier pods are ephemeral and replication
controller can evict or delete or replace them at any point of time.
Thus, the IP address associated to a pod is not fixed. These factors
complicate communication with the pods. This problem is solved with
the service abstraction where pods that provide the same services are
grouped using the label selector12. In Kubernetes, services are REST
objects like pods and RESTful operations could be performed on them.
Both TCP and UDP are supported protocols for services with TCP
being the default. The service object is updated when the associated
pod(s) change. Service endpoint object is created when the service is
created in Kubernetes and contains the details of the pods. The main
goal of the service is to ensure that the pods are accessible to its users
all the time.

• Addons are pods and services that implement the cluster features [16].
They extend the functionality of Kubernetes. There are several addons
available for features like: networking and defining the network policy,
service discovery, and visualization and control. WeaveScope13 is one
such addon for graphically visualizing the containers, pods, services and

11https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
12https://kubernetes.io/docs/concepts/services-networking/service
13https://www.weave.works/docs/scope/latest/introducing/

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 36

Figure 3.5: Docker Swarm architecture [33].

other Kubernetes objects. There is also a Dashboard14 addon which
provides a web interface for visualizing and monitoring the Kubernetes
cluster.

3.4.2 Docker Swarm

Docker Swarm is a cluster management and orchestration framework em-
bedded in the Docker Engine from v1.12. It is built using the swarmkit, a
Docker orchestration layer. A swarm is made up of multiple Docker hosts
that are running in swarm mode. A Docker host (node) can be a manager,
worker or both. Docker swarm abstracts many of the details such as network
communication between the containers in the given cluster and it is relatively
easy to setup. The commands necessary to deploy a container in the swarm
is similar to the commands required to deploy the containers in standalone
mode. This is due to the fact that both modes use the Docker engine APIs
and CLIs. This enables a swarm to setup easily. The framework supports and
abstracts seamless network communication between the different containers.
Docker Swarm also supports service discovery by name and provides basic
load balancing features.

Docker Swarm Architecture

Figure 3.5 shows the high-level architecture of the Docker Swarm, the com-
ponents of which are explained in detail below.

• Node is a host participating in a swarm. As explained previously nodes
can take up either the manager or worker roles or both of them. Nodes

14https://github.com/kubernetes/dashboard

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 37

can be run on the same physical machine or across multiple servers
which is usually the case15. For an application to be deployed in swarm
a corresponding service definition must be submitted to the manager
node. The manager then dispatches the tasks to the worker nodes.
Manager nodes performs functions to maintain the desired state of
the swarm. Their main functionalities include cluster management and
orchestration. Worker nodes execute the tasks dispatched by the master
nodes. Each worker node has a running agent, which reports the status
of the tasks assigned to the corresponding worker node. The worker
node constantly notifies and updates the manager node regarding the
status of the tasks being executed in it. Manager nodes can also run
services as the worker node or they can be configured to explicitly
perform management related tasks alone.

As shown in the Figure 3.5, there could be more than one manager node
in each swarm. They exchange control information among themselves
to maintain a consolidated view of the cluster. The node which executes
the command to initiate the swarm becomes the main manager or the
leader of the swarm. Any master node can replace a failed manager.
Container orchestration is performed by the scheduler that runs on the
leader [11]. Nodes have three different availability statuses: Active state
indicates that the nodes are available and containers can be scheduled
to run in them; Pause state indicates that nodes cannot take in more
containers, but the containers that are running inside the given node
can continue to run; Drain state indicates that no containers can be
scheduled on them and the containers that are executing inside the
nodes are terminated and relaunched in other nodes. User defined labels
can be part of node, which can be used to schedule certain containers
on the given node. Labels are also used to group a set of containers to
a specific node.

• Services and tasks are the fundamental building blocks of Docker Swarm.
Services are used to deploy the applications on a swarm. Service is the
primary mode of interaction for a user with the swarm. The service
defines the set of tasks that are to be executed by the nodes. Service
specification specifies the container image to be used and a list of com-
mands that are to be executed inside the container. It also contains
parameters such as the number of replicas, container placement and
the set of ports to be exposed. The two types of service deployment
modes are global where the task is scheduled on every available node

15https://docs.docker.com/engine/swarm/key-concepts/

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 38

of the cluster and replicated mode where the number of tasks are spec-
ified in the service definition and the leader schedules them across the
swarm. It should be noted that in the global mode, each node has ex-
actly one container allocated to execute the task. On the other hand,
in the replicated mode, a given node can have more than one container
executing the same task. Moreover, nodes are chosen based on any
container placement criterion defined in the service specification.

Tasks are the atomic scheduling units of swarm. Tasks are execution
units that contain a set of commands that are to be executed inside
a container. Tasks get assigned to nodes and run on them until the
desired state is reached [11]. Once a task is assigned to a specific node
it cannot be moved to another node. Manager nodes create and assign
tasks based on the number of replicas specified in the service definition.
Tasks move from one state to another until they complete or fail. Tasks
are initialized with new state move towards the completed state. A task
that has finished execution (completed state) will not be run again, but
a new task can take its place16.

Service Discovery

Service discovery refers to the process of how the service requests are routed
to the appropriate containers. Containers are ephemeral and their associated
IP addresses can change making it challenging to manage communication
manually. In the swarm, service discovery is network-scoped, meaning con-
tainers belonging to the same network can resolve addresses among them.
The Docker engine acts as DNS server, resolving the DNS queries (service
names) sent to it by individual containers.

If the query cannot be resolved by the Docker engine, the queries are for-
warded to the configured default DNS server. The swarm further supports
round robin mode and Virtual IP (VIP) mode to resolve DNS queries. In
the round robin mode, the query results contain addresses of all the con-
tainers executing the service and the service request could be sent to any of
the addresses17. In the VIP mode, the response is the virtual IP address of
the service. For requests originating outside the swarm, the mechanism still
remains the same, IP address and port numbers are used in the query rather
than the service names.

16https://docs.docker.com/engine/swarm/how-swarm-mode-works/swarm-task-states/
17https://docs.docker.com/docker-cloud/apps/service-links/#hostnames-vs-service-

links

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 39

Load Balancing

Load balancing is supported in swarm. The manager nodes use internal load
balancing to evenly distribute the requests among the services within the
same cluster18. As discussed in the previous section, when using the round
robin mode, the DNS query response contains a list of IP addresses corre-
sponding to the service. It is then left to the client to effectively load balance
the requests. Client-side load balancing is not preferred as it does not guar-
antee uniform load balancing. Client side applications usually use caching
and can have application specific design issues that might result in poor
load balancing. The VIP mode inherently guarantees effective load balanc-
ing, since the load balancing is done at the server end. The other advantage
is that the actual containers are well abstracted behind a VIP. The VIP of the
service will remain the same immaterial of what happens during container
orchestration and management.

3.4.3 Nomad

Nomad is an open source scheduler for scheduling containers and standalone
applications. Nomad is developed by HashiCorp. It is a tool for managing a
cluster and the applications running on them. Nomad uses a declarative job
file for scheduling the applications by abstracting the machines and location
of the applications. Nomad handles where and how the applications will be
run [13]. Nomad supports Docker containers. It uses the Docker driver to
deploy the containers in the cluster. The number of required instances of
the containers can be specified in the job. Nomad ensures that the specified
number of containers are running and recovers from any failures automati-
cally. Nomad is lightweight and is shipped as a single binary. It encompasses
the features of resource manager and scheduler into a single system. Nomad
provides flexible workload to the users by enabling them to start Docker
containers, virtual machines or any application run time. Nomad is built for
scaling and it can scale to cluster sizes which have more than ten thousand
nodes19. Nomad models the infrastructure as a group of data centers which
constitute a larger region, thus enabling Nomad to be Multi-Datacenter and
Multi-Region aware. Several regions could federate among themselves al-
lowing jobs to be registered globally [13]. Nomad provides a platform for
managing the microservices and enables organizations to adopt to the mi-
croservice architecture paradigm.

18https://docs.docker.com/engine/swarm/key-concepts/#load-balancing
19https://www.nomadproject.io/intro/index.html

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 40

Figure 3.6: Nomad architecture [2].

Nomad Architecture

Figure 3.6 shows the high-level architecture of Nomad for a single region [2].
The following sections describes the components in detail.

• Task is the smallest unit of work in Nomad. Drivers are static binaries
like Docker that are the means of executing the tasks. Task specifies
the required driver, constraints and resources. Tasks are executed by
the corresponding drivers. A Task Group is a group of tasks that are
scheduled to run in the same node and cannot be split.

• Job is composed of one or more task groups. It is a specification pro-
vided by the user expressing the desired state. Nomad works towards
maintaining the desired state of the job.

• Clients are machines where tasks are executed. A Nomad agent runs
on each client which is responsible for communicating with the servers
and listening for tasks to be assigned.

• Evaluation is the process by which scheduling decisions are made by
Nomad. Nomad continuously monitors the state of the job and if a
change is required it makes a new evaluation. A new evaluation could
result in new allocations. The mapping between the task groups in the
job and the client machines is termed as allocation.

• Servers are responsible for managing the jobs, clients, creating task
allocations and performing evaluations. There are a set of servers per
region. The data is replicated between servers in the same region and
can federate across different regions to make them globally aware. A
leader is elected among the servers and servers are highly available.

CHAPTER 3. MICROSERVICES AND ORCHESTRATION 41

• Bin packing is the process of packing tasks to the client machines.
Nomad automatically applies the job anti-affinity rules which reduces
collocation of multiple instances of the same task group. This ensures
high resource utilization of the clients.

As shown in the Figure 3.6, each region consists of a set of servers and
clients. Clients communicate with their respective regional servers using
Remote Procedure Calls (RPC) as seen in the Figure 3.6. During the regis-
tration clients provide information regarding “themselves”, such as a list of
drivers, resources available and other system attributes that are used by the
servers to make scheduling decisions. Clients also send periodical keep alive
messages to the server to indicate their availability.

Servers are responsible for accepting the jobs from users and scheduling
and executing them on the client machines. All the servers within a given
region are a part of a single consensus group. They elect a single leader, which
is responsible for processing all the queries and executing all the transactions.
All servers make scheduling decisions in parallel and the master ensures that
there is a uniform distribution of requests and no client is over loaded. It is
always necessary to have more than two servers to ensure high availability.
More the number of servers, the time to reach consensus would be more.
However, there is no limitation on the number of clients.

Nomad CLI or APIs are used by the users to submit jobs to the servers.
Nomad uses Consul20 (also developed by HashiCorp) as a service discovery
tool. Consul needs to be installed alongside Nomad in the client machines
and scheduled to run. DNSMasq21 is used by Nomad to intercept the requests
and feed to a local load balancer such as HAProxy22. This enables services
to be requested by the service name, which get forwarded internally to the
correct IP address and port number. Users need not worry about the dynamic
nature of containers and address them with service names instead. Nomad
provides a web- based user interface to monitor and examine the cluster. The
Nomad CLI can be used to communicate with a remote Nomad cluster as
well. This allows remote administration of different Nomad clusters from a
single machine.

20https://www.consul.io/
21http://www.thekelleys.org.uk/dnsmasq/doc.html
22http://www.haproxy.org/

Chapter 4

Access management and PrivX

The chapter presents the general concepts of access management and de-
scribes PrivX architecture in detail. The goal of this chapter is to identify a
suitable container orchestration framework for PrivX. Section 4.1 outlines ac-
cess management. Section 4.2 describes PrivX and the desired characteristics
of the container orchestrator.

4.1 Access management

Access management is a broad area that comprises of methodologies, tools,
processes and policies to maintain and comply with access privileges. It is
the process of monitoring, managing and identifying authorized access to
resources such as hosts, applications and other information technology re-
sources. It enforces the appropriate up to date access policy for every login
attempt to access the resources. Access management is challenging in the
cloud environment. The infrastructure is no longer located on the premise
but could be located across the globe. Traditional access management soft-
ware does not scale well for the cloud as it was originally built for more
static on-premise environments. Infrastructure as a Service (IaaS) model is
the most popular offering from cloud vendors, allowing enterprises to host
their infrastructure in the cloud and scale at will. With cloud computing,
organizations have large computing resources at their disposal. Enterprises
scale up when there is a surge in the traffic and scale down when the traffic
is low. For example, during the launch of a new product, the surge in the
traffic would be huge and organizations need to add more servers to handle
the demand. Once the initial bookings and sales are done the traffic pattern
returns to normal. This requires access to a few hundreds of servers in a short
time and revoking the access after the traffic has become normal. Servers

42

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 43

require access to initially provision and configure them to handle requests.
The access needs to be revoked when the need is no more, this is challenging
and time consuming.

An access control model defines relationships among permissions, opera-
tions, objects, and subjects [1]. Role based access control (RBAC) is a pop-
ular access control model [65]. It provides access control based on the user’s
roles and privileges. Let’s take an example of an organization that needs
to manage its database servers. The organization has a test and production
environment. For such a scenario, two roles, “Test-DBA” and “Prod-DBA”,
are sufficient to enforce access control. As the names imply, a user with
“Test-DBA” role has access only to the test database servers and similarly
“Prod-DBA” role for production database servers. This simple philosophy
makes RBAC one of the most popular and widely used access control mech-
anisms. It is also well suited to a distributed environment and restricting
access in cloud environment [43].

PAM helps organizations to securely provide privileged access to its assets
and conform with any compliance requirements by securing, monitoring and
managing the privileged accounts and their access [29]. Some of the common
features that all PAM solutions offer [41] are:

• Automatically discover all user (privileged) accounts across the enter-
prise

• Establish and enforce custom work flows to gain privileged access

• Securely store privileged credentials

• Record and monitor privileged access for audits

• Automatically rotate passwords

PAM solutions should be easy to integrate with an existing organization’s
infrastructure and should improve their efficiency by reducing the manual
steps involved in provisioning and access management. So, any PAM solution
should integrate well with the cloud and on-premise infrastructure and should
ideally provide a one stop solution for organizations.

4.2 PrivX

PrivX is a state of the art PAM solution developed by SSH Communications
and Security Oyj. PrivX uses RBAC and enables privileged access manage-
ment. PrivX uses short-term credentials to provide just-in-time access to

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 44

resources. Access is granted based on the user’s role. Most of the traditional
PAM solutions rely on password vaulting, password rotation and additional
client and server pieces of software needed to be installed. PrivX requires no
additional software and creates credentials that are not persisted anywhere
enabling faster and safe access to resources. PirvX implements certificate
based authentication to authenticate a user against a target server.

Certificate based authentication allows secure access by exchanging a dig-
ital certificate instead of a username or password. This prevents the common
security threats in the password based authentication such as keyboard log-
ging or Man In The Middle (MITM) attacks. Certificate based authentica-
tion can work well in the heterogeneous environment provided the certificate
is created with the username and the corresponding access groups to which
the users belong. This information enables the target servers to decide on
the access levels and restrictions for the user [42]. PrivX employs a similar
mechanism, wherein the username and the corresponding roles for the user
are included inside the certificate information enabling the right access to
resources in the target server.

Identity access management is one of the key security challenges in the
cloud computing environment [70]. Services are provisioned dynamically in
the cloud and same cloud instances could be reused to provision different
services and applications. Access granted for a particular user to a target
machine using traditional methods such as passwords or SSH keys do not
address the security challenge of the user having access to a server that runs
a different application or service from the time he was originally granted
access with [54]. Users access should be revoked immediately when the server
is used for a different purpose. This is achieved with RBAC, where the
access is controlled based on the users role which prevents access to the
newly deployed application. PirvX uses RBAC with short lived certificates
for authenticating the users, this means that the user cannot have access to
the target servers on a permanent basis. Moreover, PrivX validates the users
role for every login, preventing the user to get access to target servers that
have their roles changed.

One of the other major security issue with cloud applications is ‘Insecure
APIs’ [69]. APIs are used by the users for authenticating, provisioning and
carrying out all their necessary tasks. APIs must be designed to circumvent
any potential misuse [69]. PrivX uses role based access restrictions at API
level to verify that the user or service invoking the API has sufficient privi-
leges to do so. This prevents any potential misuse of the public APIs exposed
by PrivX. Moreover, the native cloud access mechanisms and tools do not
provide extensive auditing [51]. Auditing the access to a cloud resource is
important in terms of security and compliance requirements. PrivX provides

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 45

extensive auditing of the access to cloud resources and helps in compliance
requirements of the organization.

Privileged access management in cloud is challenging attributing to its
dynamic nature. Some of the issues with PAM in the cloud era are [25]:

• Request approvals takes a long time with traditional solutions. The dy-
namic nature of the cloud means that there could be a sudden increase
in the number of servers. Handling approvals for such scenarios can be
time consuming. This slows DevOps and reduces productive time.

• Web of roles has become too complex. Organizations tend to create
many roles over time and maintaining them becomes complex. Man-
ually mapping roles has become untenable with current infrastructure
such as Active Directory (AD).

• Vaulted credentials are a single point of failure and are a common target
for hackers. With other third-party software integrations it only gets
more complex and hard to maintain.

• Slow and expensive for the cloud era. PAM solutions do not scale well
at business speed. They are not compatible with the Agile development
methodologies.

PrivX eliminates most of the issues mentioned above. As shown in the
Figure 4.1, PrivX scans the cloud environments from all regions and updates
the hosts automatically. All the hosts and users are up to date and access is
provided based on the user’s role. There is no requirement for manual access
provisioning. PrivX does not require any additional software both on client
and server side and this reduces maintenance costs and disruptions to the
infrastructure. PrivX saves a lot of time for system and infrastructure ad-
ministrators by providing a single point solution to access, grant and monitor
users access to their resources.

4.2.1 PrivX features

PrivX is designed with a philosophy to support Agile teams that require to
scale their cloud and on-premise infrastructure cost effectively. Some of the
notable features of PrivX are:

• Dynamic role-based access is used to check the role and identity for
each connection. PrivX can easily integrate with user directories such
as AD to keep its user data up-to-date. Role requests and approvals are
streamlined and administrators can have full control over server access.

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 46

Figure 4.1: PrivX - Managing different cloud and on-premise entities [25].

• Rapid easy deployment with PrivX. PrivX does not require any ad-
ditional software on the target hosts. SSH and RDP connectivity
provided via the web browser eliminates the need for any custom or
third-party clients.

• Automatic host detection and configuration is supported in PrivX. PrivX
can discover the hosts from across cloud regions and on-board them
with minimal effort. The added advantage is that PrivX continuously
scans and update the environment in cloud, it can detect new hosts
added and the ones that have been removed or terminated automati-
cally.

• Password less authentication is a unique feature of PrivX. Maintain-
ing passwords is always a hassle and usually requires passwords to be
periodically changed.

• Web-based SSH terminal is included in PrivX which eliminates the need
for SSH clients.

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 47

4.2.2 PrivX architecture

PrivX is based on the microservice architecture. The different microservices
communicate over HTTPS using REST. Figure 4.2 shows the high-level ar-
chitecture of PrivX. The circled services in yellow in Figure 4.2 indicate the
services that we implemented as a part of this thesis. The role of each mi-
croservice is described below.

Figure 4.2: PrivX architecture [24].

• Authentication service implements OAuth21 to validate the user cre-
dentials against identities stored in the role store. Microservices au-
thenticate among each other using this service [24].

• Authorizer is responsible for creating the short-lived role-based certifi-
cates. These certificates are used for authenticating the users against
target hosts.

• Host store is a place holder for all hosts and hosts-related information.
It stores information such as services (SSH or RDP) supported by the
host and target-user-to-role mappings.

• Key vault encrypts and stores PrivX secrets. Stored credentials for
target hosts, database encryption keys and web token signing keys are
some of the secrets that are stored in the key-vault.

1https://oauth.net/2/

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 48

• Local user store helps to maintain a list of users locally. It can be
needed in scenarios where there are no external user directories such as
AD.

• Role store binds the users to roles. The rules for binding a role to the
user are defined, and users are bound to the roles . It integrates with
external user directories such as AD to retrieve and maintain up-to-date
user information.

• Workflow engine allows administrators to define work flows for role
granting and removal. An automated email notification is sent for the
concerned users in each step.

• SSH and RDP clients enable PrivX users to connect to the target hosts
from a web based user interface.

• Web GUI of PrivX is used to interact with the PrivX system. It is
used by the administrators to configure and maintain PrivX. Examples
of actions that can be carried out from the web GUI include adding
hosts, defining roles, defining work flows and interfacing with cloud.

4.2.3 PrivX orchestrated with Kubernetes

PrivX is based on a microservice architecture and each microservice can be
realized in a Docker container. Currently PrivX is distributed as an RPM
package with each individual microservice as a service (process). A highly
available setup of PrivX is achieved through complex scripts. An external
load balancer with sticky session support is required to maintain high avail-
ability. A watchdog service is required to watch and restart the failing ser-
vices in PrivX. It is complex to monitor the system when multiple instances
of each microservice are running. Moreover, scalability is challenging under
this deployment model. The goal of this thesis is to Dockerize the microser-
vices in PrivX to address the scalability and availability requirements. Such
a setup requires a container orchestration framework to facilitate deploying,
monitoring and scaling the Docker containers.

We described the features of open source container orchestration frame-
works in the previous chapter. The goal of this section is to identify a suitable
container orchestration framework for PrivX. We compare the features pro-
vided by these frameworks in the context of PrivX. The list of requirements
from the container orchestration framework required by PrivX are listed be-
low:

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 49

• Auto-scaling is an important requirement for PrivX. Built-in auto scal-
ing support allows to scale the service based on actual traffic patterns.

• Load balancing and service discovery should be built-in the framework.
This enables a simple deployment model without the need for additional
software.

• Logging and monitoring support is required. PrivX requires extensive
monitoring and logging as it enables access to resources.

• Secrets management for keys, tokens, passwords should be supported
by the framework and no additional software to manage the cluster
secrets should be required.

• Integrated cloud control should be built into the framework. Support
for all major cloud service providers is required. This enables a unified
deployment model that would work across the different cloud service
providers.

• Deployment model should support both on-premise and all major public
cloud service providers. This will enable a unified solution. Addition-
ally, the deployment model should support rolling updates and canary
deployment. In canary deployment pattern, a new version of the ser-
vice developed can be first tested in production in a smaller scale along
with its previous version. Once the results are satisfactory, the new
version can be scaled-up and the older version can be scaled down.

• No additional software should be required other than the chosen con-
tainer orchestration framework itself. This will keep the deployment
model simple.

• Active support from community is required to clarify and troubleshoot
the issues.

The three container orchestration frameworks which were previously stud-
ied - Kubernetes, Docker Swarm and Nomad. As per our study the three
frameworks fairly provide similar features. They are all developed and sup-
ported by large organizations. Load balancing and scaling is provided by all
of them. Nomad is gaining more traction even though relatively new in this
segment. Kubernetes has built-in auto-scaling support based on CPU uti-
lization or custom metrics. Nomad has minimal auto-scaling support based
on the number of requests pending to be served by the application. Docker
Swarm has no auto-scaling support. Load balancing and service discovery is

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 50

inbuilt both in Kubernetes and Docker Swarm. The CoreDNS2 component
of Kubernetes facilitates in service discovery. Docker engine acts as the DNS
server in Docker Swarm. With respect to load balancing Kubernetes and
Docker swarm provides built-in load balancing for services. Nomad relies on
external tools and software for the same. Logging and monitoring support
is natively available in Kubernetes. Both Docker Swarm and Nomad rely on
third party tools. Kubernetes and Docker Swarm provide secrets manage-
ment as an native feature. Nomad does not support this feature. Kubernetes
provides ‘integrated cloud control’ with its in-built cloud control manager.
The cloud control manager interacts with the underlying cloud providers and
can implement the following [14]:

• node controller responsible managing Kubernetes nodes. It can update
the Kubernetes nodes using cloud native APIs and deleting the nodes
from the cluster that are removed from the cloud;

• service controller implements the load balancers in cloud;

• route controller is responsible for enabling network routes in the cloud;

• persistent volume labels controller enables setting up of zone and region
labels on persistent volumes created; Currently it is only supported for
Amazon Web Services (AWS) and Google Cloud Platform (GCP).

Such a feature is not available in Docker Swarm or Nomad. Additionally,
both Kubernetes and Nomad have a web UI dashboard to monitor the cluster.
This feature is not available in Docker Swarm. All the three frameworks
support both on-premise and cloud deployment models. Rolling updates
and canary deployment pattern is supported by all the three frameworks. As
seen from the discussion, Kubernetes does not require any additional software
for the requirements stated above. Docker Swarm and Nomad require third
party software to satisfy certain features. Table 4.1 summarizes the same.

Finally, we examine the popularity of the frameworks in terms of GitHub
statistics. As seen in Table 4.2, Kubernetes is the most popular framework
with more than 67,000 commits3. It has one the largest number of contrib-
utors with more than 1,700 people actively contributing4. Docker Swarm
and Nomad are relatively less popular and have fewer contributors when
compared to Kubernetes.

2https://kubernetes.io/docs/tasks/administer-cluster/coredns/
3https://github.com/kubernetes/kubernetes
4https://github.com/kubernetes/kubernetes/graphs/contributors

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 51

Kubernetes Docker Swarm Nomad

Auto-scaling
Available. Based
on CPU-utilization
or custom metrics

Not available

Available
based on
pending
requests

Load balancing
and service
discovery

In-built Available
Relies on
third party
tools

Integrated
cloud control

In-built
cloud control
manager

Not available Not available

Logging and
monitoring

In-built
Relies on third
party tools

Relies on
third party
tools

Secrets
management

Available Available Not available

Dashboard Available Not Available Available

Table 4.1: Kubernetes vs Docker Swarm vs Nomad

Kubernetes [17] Docker Swarm [7] Nomad [22]
Commits 67,918 3,532 12,198
Contributors 1,743 165 259
Forks 13,625 5,202 731
Stars 38,978 1,066 3,696

Table 4.2: GitHub Statistics for various frameworks

From Table 4.1 and previous discussion it could be seen Kubernetes sat-
isfies all the requirements for PrivX. All major cloud infrastructure providers
such as Amazon, Microsoft Azure and Google support Kubernetes. Deploy-
ing applications with Kubernetes across multiple cloud vendors is stream-
lined. The process of deployment with Kubernetes is well supported and
documented by the service providers. Moreover, Kubernetes is hosted and
supported by the Cloud Native Computing Federation (CNCF) a large open
source foundation that is also a part of the Linux foundation has organiza-
tions like Google, Microsoft, Amazon as its members. This ensures constant
development and support for the framework. Furthermore, the case stud-
ies from large organizations such as Capital One and ING support the case
for Kubernetes5. For example, ‘adform’ an advertising technology enabler

5https://kubernetes.io/case-studies/

CHAPTER 4. ACCESS MANAGEMENT AND PRIVX 52

had a large OpenStack6 based private cloud infrastructure with 1,100 physi-
cal servers in 7 datacenters around the world. They had long release cycles
attributing to the fact that their developers needed to maintain these vir-
tual machines and they did not have a self healing infrastructure. They
got their release cycle reduced to minutes from hours by using Kubernetes
and redesigning their software by adopting the microservices architecture.
They were able to achieve 6 times faster auto-scaling with Kubernetes when
compared to their previous semi-manual VM bootstrapping [3].

Based on the above discussion, we choose Kubernetes to orchestrate
PrivX. With Kubernetes the pod specification templates can be created for
each service and they can be modified by the customers depending upon
their needs. For example, an organization using PrivX has users in the range
of several hundred thousands but only a few hundreds of servers requiring
access. This would require certain services like role store, local user store to
be scaled more than host store. These kind of customer specific use cases can
easily be addressed with Kubernetes. Moreover, with a strong community
support, the issues get resolved much quickly7.

6https://www.openstack.org/
7https://github.com/kubernetes/kubernetes/issues?q=is%3Aissue+is%3Aclosed

Chapter 5

Implementation

This chapter details the implementation of PrivX microservices as Docker
containers and their orchestration with Kubernetes. Section 5.1 describes
the preliminary steps performed to create the prototype environment. Sec-
tion 5.2 describes how PrivX was deployed with Kubernetes and Section 5.3
describes the additional software that was realized. Section 5.4 describes the
experiments and evaluations performed.

5.1 Preliminary steps

Following the design decision to employ Kubernetes, we create a prototype
system to test the high availability and scalability of Dockerized PrivX. The
deployment model also eliminates the need for an external load-balancer and
manual configuration of an external Postgres database. To this end, we
perform the following steps:

• Dockerize the microservices in PrivX

• Install and configure a custom Kubernetes cluster on on-premise in-
frastructure

• Create database as a service with persistent storage

• Deploy PrivX Docker containers on Kubernetes

• Test the high availability and scalability requirements of PrivX in the
prototype implementation

53

CHAPTER 5. IMPLEMENTATION 54

5.1.1 Dockerizing PrivX

We first Dockerized PrivX before deploying it on a Kubernetes cluster. In the
current RPM deployment model of PrivX, the microservices are realized as
individual services (processes) with their respective service start-up scripts.
Dockerizing the microservices involves encapsulating them inside Docker con-
tainers. The required ports, environment variables are defined in the Docker
file. Additionally, the required directory structure and configuration files for
each microservice are defined inside the Docker file. A common configuration
file (toml1) is created to define the common configuration requirements for
all the containers, such as database connection parameters and service end
points. A private GitLab Docker registry is created to host the built Docker
images. Build scripts are created to build the microservices as well as the
related Docker images and finally push the images to the registry.

The current architecture of PrivX requires a database (Postgres) to be
installed and configured externally. The Postgres2 database was Dockerized
with persistent storage through Network File System (NFS), to eliminate
the external dependency and to simplify PrivX deployment. The database is
now created as a service and initialized automatically through a startup script
inside the Docker container. The nginx service is built with sticky session
support to act as a load balancer. This eliminates the need for external load
balancers. All the microservices are self-contained with the required runtime,
directories, environment variables and configuration files.

5.1.2 System environment

We create an on-premise prototype environment for our implementation. An
on-premise prototype environment is chosen over a cloud native environment
for the implementation. Moreover, the deployment model created in Kuber-
netes for on-premise should work the same in cloud environments provided
the same system configurations are met. The prototype system comprises of
3 VMs (nodes): one master and two worker nodes. Virtualbox3 is used to
create the nodes. Table 5.1 illustrates the configuration of the nodes in the
Kubernetes cluster. The master node has 4096 MB RAM memory whereas,
each of the two worker nodes have 2048 MB of RAM memory. The host ma-
chine has a 2.60GHz 8-core processor, 16 GB RAM and runs Ubuntu 16.04
LTS. The nodes have a bridged adapter network configuration with the host
system. The master node also serves as the Network File System (NFS) server

1https://github.com/toml-lang/toml
2https://www.postgresql.org/
3https://www.virtualbox.org/

CHAPTER 5. IMPLEMENTATION 55

for the system. The nodes swap memory was disabled for performance rea-
sons4. Kubernetes tightly packs the nodes with pods to maximize resource
utilization. The deployed pod should run on the node and should not use
swap memory since swap memory is much slower than RAM memory. With
swap memory in place, it is difficult for Kubernetes to pin the deployments
with CPU and memory limits.

CPU 1 Core
Operating System Ubuntu 16.04 LTS
Kubernetes Version 1.11.2
Docker Version 17.03.2-ce

Table 5.1: Configuration of Kubernetes cluster nodes

5.1.3 Kubernetes installation

Once the prototype environment is setup, we then create a Kubernetes clus-
ter using Kubeadm5. The Kubeadm toolkit helps in bootstrapping a mini-
mum viable Kubernetes cluster in a secure way. Kubeadm supports cluster
life-cycle functions, such as upgrading, downgrading and securely manag-
ing the bootstrap tokens. Kubeadm provides kubeadm init and kubeadm

join commands for creating the Kubernetes clusters. The kubeadm init6

command is run to initialize the master node.

$ kubeadm init --pod -network -cidr <subnet -address >

It creates the necessary pods required for the master node and the to-
ken required by the worker nodes to join the cluster. The configuration file
“admin.conf” is generated by this command, this is required to connect to
the API server. The two worker nodes use kubeadm join command with the
token generated by the kubeadm init command to join the cluster.

$ kubeadm join --token <token > <masternode -ip

address:port > --discovery -token -ca -cert -hash <

ca -cert hash >

4https://github.com/kubernetes/kubernetes/issues/53533
5https://kubernetes.io/docs/setup/independent/install-kubeadm/
6https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm-init/

CHAPTER 5. IMPLEMENTATION 56

Calico7 is installed in the Kubernetes cluster. Calico provides simple,
scalable and secure virtual networking that works well with all major public
cloud service providers and private clusters as well. From Kubernetes version
1.11, CoreDNS8 is installed by default and serves as the DNS server for the
Kubernetes cluster. CoreDNS, Calico etcd, Calico controller are installed in
the master node and rest of Calico containers are installed in the worker
nodes. Kubernetes dashboard9 is deployed in the master; it provides a web-
based user interface to monitor the status of the cluster and its components.
Once the necessary components are installed, the following commands are
run to check the status of the pods and nodes in the cluster.

$ kubectl get pods --all -namespaces

$ kubectl get nodes

A status of ‘running’ for all the pods indicates that the pods are created,
deployed and running successfully. The status of ‘ready’ with the nodes
indicates that the nodes have joined the cluster and are running. Now the
Kubernetes cluster is ready for application deployment.

5.2 Deploying PrivX with Kubernetes

Once the microservices are available in Docker containers, we deploy them
with Kubernetes. The overall system architecture of the PrivX deployment
model is shown in Figure 5.1. The master node contains the core Kubernetes
and Calico pods. It also serves as the NFS server. The worker nodes con-
tain the PrivX pods, kubelet10 (node agent), proxy and Calico pods. Calico
provides the overlay network for the cluster and enables inter pod communi-
cation.

5.2.1 Database as a service

We create the Postgres database as a container service in our implementation.
Containers are short lived and stateless thus inherently lack persistent stor-
age. Hence, Kubernetes persistent volumes11 are used to persist the database

7https://www.projectcalico.org/calico-networking-for-kubernetes/
8https://coredns.io/
9https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

10https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
11https://kubernetes.io/docs/concepts/storage/persistent-volumes/

CHAPTER 5. IMPLEMENTATION 57

Figure 5.1: PrivX orchestrated with Kubernetes.

storage. PersistentVolume and PersistentVolumeClaim API resources are
used to implement the persistent storage requirements. A PersistentVolume
(PV) is a storage in the cluster that is provisioned by the system adminis-
trator. The storage could be NFS or a cloud specific storage system. The
life cycle of PV is independent of any pods that use it. A PersistentVolume-
Claim (PVC) is a request for storage by a service (pod). PVCs consumes
PV resources. A PV for database storage is created using the NFS server
(master node) as shown below.

apiVersion: v1

kind: PersistentVolume

metadata:

name: nfs -pvc

spec:

capacity:

storage: 25Gi

accessModes:

- ReadWriteMany

persistentVolumeReclaimPolicy: Retain

nfs:

CHAPTER 5. IMPLEMENTATION 58

path: /var/nfs/database

server: <NFS server ip>

Listing 5.1: Persistent volume specification.

The PV definition indicates the kind as ‘PersistentVolume’ and specifies
the storage capacity and specifies that the storage is of type NFS along with
the path and NFS server IP. The PV created is consumed by a PVC as
defined below.

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

name: nfs -pvc

spec:

accessModes:

- ReadWriteMany

resources:

requests:

storage: 25Gi

Listing 5.2: Persistent volume claim specification.

The PVC is linked to the PV based on the size specified in both the
definitions. The status of the PV and PVC can be checked using the following
commands. A status of ‘bound’ indicates that the persistent storage have
been created and linked successfully.

$ kubectl get pv

$ kubectl get pvc

The Postgres database pod has a service and deployment definitions as
indicated below. It can be seen that the PVC created is consumed by the
deployment specification. The persistent storage is mounted to the database
data directory.

apiVersion: v1

kind: Service

metadata:

labels:

CHAPTER 5. IMPLEMENTATION 59

service: postgres -nfs

name: postgres -nfs

spec:

ports:

- name: "5432"

port: 5432

targetPort: 5432

selector:

service: postgres -nfs

type: NodePort

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: postgres -nfs

spec:

replicas: 1

template:

metadata:

labels:

service: postgres -nfs

spec:

containers:

- env:

image: launcher.gcr.io/google/postgresql9

name: postgres -nfs

volumeMounts:

- name: pg-data

mountPath: "/var/lib/postgresql/data"

ports:

- containerPort: 5432

resources: {}

volumes:

- name: pg-data

persistentVolumeClaim:

claimName: nfs -pvc

restartPolicy: Always

status: {}

Listing 5.3: Postgres service and deployment specification.

CHAPTER 5. IMPLEMENTATION 60

5.2.2 PrivX services orchestrated

As seen in Figure 5.1, we create the microservices in PrivX as a service
in Kubernetes along with a corresponding deployment specification. Next,
we create a Kubernetes secret [26] object to hold the image registry secrets.
This secret is used during image pull. Kubernetes secret objects minimize the
risk of accidental exposure and provide a streamlined mechanism to handle
secrets. An example podspec for the ‘role-store’ service is shown below.

apiVersion: v1

kind: Service

metadata:

labels:

service: role -store

name: role -store

spec:

ports:

- name: "8081"

port: 8081

targetPort: 8081

selector:

service: role -store

type: NodePort

apiVersion: extensions/v1beta1

kind: Deployment

metadata:

name: role -store

spec:

replicas: 2

template:

metadata:

labels:

service: role -store

spec:

containers:

- env:

- name: SSH_LOG_LEVEL

value: INFO

image: <GitLab image registry path >

name: role -store

CHAPTER 5. IMPLEMENTATION 61

volumeMounts:

- name: keyvault

mountPath: "/opt/privx/keyvault"

imagePullPolicy: Always

imagePullSecrets:

- name: gitlab -registry

volumes:

- name: keyvault

persistentVolumeClaim:

claimName: nfs -keyvault

restartPolicy: Always

Listing 5.4: Role-store service and deployment specification

The Service specification exposes the ports and creates a service name.
The Deployment specification mentions the number of replicas, the environ-
ment variables for the service, image path and the volume mounts. Addi-
tionally, the deployment specification mentions the Kubernetes secret object
to be used during image pull. A similar podspec is created for all the ser-
vices in PrivX and deployed in the Kubernetes cluster. We created a total
of 31 Kubernetes objects (12 services, 12 deployments, 3 PVs, 3 PVcs and 1
secret) for deploying PrivX in our prototype system.

5.3 Additional software realized

As part of the thesis, the following steps were accomplished.

• Automating the process of building Docker images for all the services in
PrivX, and pushing them to a private Docker image registry in GitLab.

• Kubernetes cluster creation is automated. The newly developed script
takes care of the following.

– Minimum system requirement checks for creating the cluster.

– Creating the pod overlay network with Calico.

– Creating the Kubernetes dashboard (Web-UI).

– Creating the NFS server (The master node acts as the NFS server).

• PrivX deployment is a automated with script, that performs the fol-
lowing actions.

CHAPTER 5. IMPLEMENTATION 62

– Creating and deploying the required PV and PVCs and verifying
that their status is ‘bound’.

– Creating and deploying the PrivX services using the podspec (yaml
definition).

• Application log aggregation tool is created to collect the logs from dif-
ferent services. Aggregating the individual microservices logs is chal-
lenging due to their distributed nature. The tool masks any secrets
before collecting to ensure that no user secrets are collected and logged.
Additionally, the tool runs several system commands to collect PrivX
system information such as the hardware, software, networking, CPU
and memory usage. The tool also collects additional configuration files,
system logs and other information that are useful for debugging pur-
poses.

• A smart scaling tool is created to scale the services (pods) based on pre-
defined criterion and rules. The tool checks for predefined conditions,
and once the condition is met, it scales the necessary pods. For exam-
ple, a predefined rule could be set to scale the ‘ssh-proxy’ service when
the number of active SSH connections exceed a certain limit. Similarly,
when the number of connections reduce, the tool scales down the ser-
vice after ensuring that there are no active connections from the given
‘ssh-proxy’ instance.

• Host-store microservice is implemented, which acts as place holder for
all hosts (both on the cloud and on-premise) in the organizations in-
frastructure. Automatic scanning and updating of hosts across cloud
service providers such as Google, Azure, Amazon and OpenStack is
implemented. This ensures that PrivX has up-to-date information re-
garding the hosts. Each host defines a set of services offered by it such
as SSH or RDP and contains a list of target principals (user accounts
in the hosts). This enables connecting to the target host based on the
user roles. Other host related meta-data is also stored which help in
filtering and searching for specific hosts. Services like ssh-proxy and
rdp-proxy communicate with the host-store to resolve a particular host
for connection establishment. The microservice also implements the li-
censing restrictions i.e., number of active hosts that can be present in
the PrivX system.

CHAPTER 5. IMPLEMENTATION 63

5.4 Evaluation and results

We evaluate the service recovery time for the core PrivX services. As dis-
cussed earlier, PrivX has a watchdog service in the current RPM deployment
model to monitor and restart the failed services in PrivX. The prototype
system created was used for evaluating the service recovery time in the Ku-
bernetes deployment model. For the RPM deployment model, a CentOS
VM with the system environment as described in the Table 5.2 is used. The
host machine has a 2.60GHz 8-core processor, 16 GB RAM and runs Ubuntu
16.04 LTS.

CPU 1 Core
RAM 4096 MB
Operating System CentOS Linux 7

Table 5.2: Configuration of CentOS virtual machine

Basic deployment model of PrivX consists of 8 services - auth, authorizer,
host-store, keyvault, user-store, role-store, ssh-proxy and workflow-engine.
These 8 services are considered for our evaluation and experiments. We then
measure the the time taken by a service to recover after it has been brought
down. We refer to this as service recovery time in our experiments. The
corresponding service pod for each service is brought down and the time
is measured until the pod is in ‘running’ status again in the Kubernetes
deployment. In the RPM deployment the corresponding service (process) is
killed and the time is measured until the service status indicates as ‘active’.
10 rounds of experiments are conducted for each service in their respective
deployment models. The average service recovery time is calculated for each
service in the two deployment models. The results of the experiment is
summarized in Table 5.3.

The results indicate that there is no significant difference in the service
recovery time between the two deployment models. The RPM based deploy-
ment model has a slightly better performance in terms of service recovery
time.However, in absolute terms, the recovery time in case Kubernetes is also
very low. Network latency might also have an effect on the Kubernetes de-
ployment model as the images might not be available in the node and might
need to be pulled from registry while recreating a replica.

It should be noted that in Kubernetes deployment model recreating the
failed services involves recreating the service and deploying it on a worker
node whereas in RPM deployment model it is restarting the failed service
locally. Network latency has an effect on the Kubernetes deployment model.

CHAPTER 5. IMPLEMENTATION 64

Service

Mean recovery time
in Kubernetes
deployment - prototype
system (ms)

Mean recovery
time in RPM
deployment(ms)

auth 0.0048151 0.0012466
authorizer 0.0035281 0.0012466
host-store 0.0047840 0.0011211
keyvault 0.0045735 0.0012251
user-store 0.0044905 0.0011564
role-store 0.0041297 0.0012825
ssh-proxy 0.0049788 0.0013479
workflow-engine 0.0069978 0.0011637

Table 5.3: Mean service recovery time in Kubernetes and RPM deployment
models

The RPM deployment model has only one instance of the service running
when compared to a minimum of 2 instances (replicas) of each service run-
ning in the Kubernetes deployment model. This results in the service being
unavailable during the recovery time mentioned in the Table 5.3 for the
RPM deployment model. Whereas, in Kubernetes deployment model, due to
horizontal scaling and multiple replicas available for each service, the given
service is always available and the service recovery time (for a single replica)
may only cause a momentary performance bottleneck for the corresponding
service during the service recovery time. A momentary performance degra-
dation is acceptable for PrivX when compared to service unavailability which
results in erroneous application behavior. Let us consider the scenario of the
‘auth’ service being unavailable during its recovery time in the RPM deploy-
ment model. Any access request made during this time would fail in this
model since the service is not available for authenticating the users access
request. This is not the case with the Kubernetes deployment model, where
the service is always available and only a sudden surge in the number of
access requests would result in a slightly delayed response. Considering the
results and the above discussion it can be seen that PrivX deployed with
Kubernetes offers a more resilient deployment model.

Chapter 6

Conclusion

Over the years, access management has evolved from a gatekeeper to enabler
of business growth by enabling organizations to get their jobs done securely,
efficiently and cost effectively [9], eventually becoming a key tool for risk
and asset management in organizations. PrivX is an access management
software developed by SSH Communications Security Oyj. In this thesis,
we containerized PrivX and deployed it with Kubernetes. The main goals
of this work is to setup a custom container orchestration environment that
would enable PrivX to be deployed both on-premise and on public cloud
service providers. We carried out a feature comparison of container orches-
tration frameworks: Kubernetes, Docker Swarm and Nomad. We evaluated
these features with respect to PrivX requirements and in terms of support
from open source community. We found that Kubernetes is the most suitable
option for PrivX deployment.

Next, we containerized the microservices in PrivX. The database was also
created as a service and encapsulated in a Docker container with persistent
storage. We then created an automated custom Kubernetes cluster that
was used to deploy the Dockerized microservices of PrivX. The scalability of
PrivX in our prototype system (Kubernetes deployment model) was tested
with the ‘smart scaling tool’ that was created. It was observed that PrivX
could scale-out horizontally when the requirement to handle more traffic was
there and scale-down seamlessly when the traffic reduced with the ‘smart
scaling tool’. Additionally, the watchdog service is not required in the Ku-
bernetes model as it is natively available in Kubernetes. Kubernetes natively
provides high-availability of services based on the replica count mentioned
in the deployment specification of each service. This eliminated the need for
complex set-up scripts used in the RPM deployment model. Even though,
the cumulative image sizes of the individual services (dockerized) is greater
than the single RPM distribution, the services are self contained and can be

65

CHAPTER 6. CONCLUSION 66

deployed across a cluster or any Docker container supported framework. Next
we evaluated the service recovery time for each of the services in PrivX both
in RPM deployment model and in the prototype Kubernetes deployment
model. The results indicates that there is no significant difference between
the two models. The services were unavailable during their recovery time
in the RPM deployment model, whereas, the services were always available
in the Kubernetes deployment due to their higher replica count. Finally,
we found that Kubernetes helps in easy and rapid deployment of PrivX and
provides a unified solution for both on-premise and cloud deployment models.

The concepts presented in this thesis can be extended in the following
ways.

• The proof of concept auto-scaling tool can be extended as a dedicated
microservice in PrivX. The rules can be made configurable and analyt-
ics could be collected and used to define custom scaling models for each
customer. Auto scaling of worker nodes would also enable distribution
of work among the nodes i.e., reallocating some pods from overloaded
nodes.

• We used two worker nodes and a single master node in our implemen-
tation. This can be extended to a cluster comprising more master and
worker nodes to provide more processing power to support large-scale
deployments. Moreover, a comparison between on-premise Kubernetes
deployment and cloud native Kubernetes deployment models could be
made to assess the performance of PrivX. Deploying PrivX on a hybrid
cloud environment [49] would be an interesting future use case.

• A study on deploying PrivX on IoT devices is an interesting topic for
future research. IoT devices collect large amounts of data and any
unauthorized access to them would lead to massive privacy breach [48].
PrivX deployed in an IoT ecosystem will enable streamlined access
management and protect them from misuse. PrivX provides a browser
based Linux shell that could be used to deploy, configure and monitor
the IoT devices that inherently lack any display or keyboard.

Bibliography

[1] Access control models. https://pdfs.semanticscholar.org/dd05/

c09a0772a3beeb3db675f8b07cf80e539e6d.pdf. (Accessed : 2018-09-07).

[2] Architecture. https://www.nomadproject.io/docs/internals/

architecture.html. Accessed: 2018-06-15.

[3] CASE STUDY: adform. https://kubernetes.io/case-studies/

adform/. Accessed: 2018-09-10.

[4] Chapter 1. introduction to control groups (cgroups). https:

//access.redhat.com/documentation/en-us/red_hat_enterprise_

linux/6/html/resource_management_guide/ch01. Accessed: 2018-06-
01.

[5] Chapter 1.2. linux containers architecture. https://access.redhat.

com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/

html/overview_of_containers_in_red_hat_systems/introduction_to_

linux_containers. Accessed: 2018-06-01.

[6] Docker Engine. https://docs.docker.com/engine/docker-overview/

#docker-engine. Accessed: 2018-06-20.

[7] Docker swarm github. https://github.com/docker/swarm. Accessed:
2018-07-22.

[8] Enabling microservices with containers and orchestration docker, mesos,
and kubernetes explained. https://www.mongodb.com/containers-and-

orchestration-explained. Accessed: 2018-07-03.

[9] The evolution of identity and access management. http://media.

govtech.net/CA_Resource_Center/evolution_of_iam_wp.pdf. (Ac-
cessed : 2018-09-12).

[10] Experiences from failing with microservices. https://www.infoq.com/

news/2014/08/failing-microservices. Accessed: 2018-06-25.

67

https://pdfs.semanticscholar.org/dd05/c09a0772a3beeb3db675f8b07cf80e539e6d.pdf
https://pdfs.semanticscholar.org/dd05/c09a0772a3beeb3db675f8b07cf80e539e6d.pdf
https://www.nomadproject.io/docs/internals/architecture.html
https://www.nomadproject.io/docs/internals/architecture.html
https://kubernetes.io/case-studies/adform/
https://kubernetes.io/case-studies/adform/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://docs.docker.com/engine/docker-overview/#docker-engine
https://docs.docker.com/engine/docker-overview/#docker-engine
https://github.com/docker/swarm
https://www.mongodb.com/containers-and-orchestration-explained
https://www.mongodb.com/containers-and-orchestration-explained
http://media.govtech.net/CA_Resource_Center/evolution_of_iam_wp.pdf
http://media.govtech.net/CA_Resource_Center/evolution_of_iam_wp.pdf
https://www.infoq.com/news/2014/08/failing-microservices
https://www.infoq.com/news/2014/08/failing-microservices

BIBLIOGRAPHY 68

[11] How swarm works. https://docs.docker.com/engine/swarm/how-

swarm-mode-works/services/. (Accessed : 2018-06-26).

[12] Images and layers. https://docs.docker.com/storage/storagedriver/

#images-and-layers. Accessed: 2018-05-20.

[13] Introduction to nomad. https://kubernetes.io/docs/concepts/

overview/what-is-kubernetes. Accessed: 2018-06-15.

[14] Kubernetes Cloud Controller Manager. https://kubernetes.io/docs/

tasks/administer-cluster/running-cloud-controller/. Accessed:
2018-09-10.

[15] Kubernetes cloud controller manager - kubernetes. https:

//kubernetes.io/docs/tasks/administer-cluster/running-cloud-

controller/. Accessed: 2018-04-25.

[16] Kubernetes components. https://kubernetes.io/docs/concepts/

overview/components/. Accessed: 2018-04-23.

[17] Kubernetes github. https://github.com/kubernetes/kubernetes. Ac-
cessed: 2018-07-22.

[18] Microservices architecture, containers and docker. https:

//www.ibm.com/developerworks/community/blogs/1ba56fe3-efad-

432f-a1ab-58ba3910b073/entry/microservices_architecture_

containers_and_docker?lang=en. Accessed: 2018-07-01.

[19] Microservices Decoded. https://dzone.com/articles/scalable-cloud-
computing-with-microservices. Accessed: 2018-06-21.

[20] Microservices: Five Architectural Constraints. https://www.nirmata.

com/2015/02/02/microservices-five-architectural-constraints/.
Accessed: 2018-07-06.

[21] Multi-Stage Docker Build. https://docs.docker.com/develop/

develop-images/multistage-build. Accessed: 2018-06-20.

[22] Nomad github. https://github.com/hashicorp/nomad. Accessed: 2018-
07-22.

[23] Privx. https://www.ssh.com/products/privx/. Accessed: 2018-06-29.

[24] Privx admin manual. https://help.ssh.com/helpdesk/attachments/

36010481405. Accessed: 2018-07-22.

https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/services/
https://docs.docker.com/storage/storagedriver/#images-and-layers
https://docs.docker.com/storage/storagedriver/#images-and-layers
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/tasks/administer-cluster/running-cloud-controller/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://github.com/kubernetes/kubernetes
https://www.ibm.com/developerworks/community/blogs/1ba56fe3-efad-432f-a1ab-58ba3910b073/entry/microservices_architecture_containers_and_docker?lang=en
https://www.ibm.com/developerworks/community/blogs/1ba56fe3-efad-432f-a1ab-58ba3910b073/entry/microservices_architecture_containers_and_docker?lang=en
https://www.ibm.com/developerworks/community/blogs/1ba56fe3-efad-432f-a1ab-58ba3910b073/entry/microservices_architecture_containers_and_docker?lang=en
https://www.ibm.com/developerworks/community/blogs/1ba56fe3-efad-432f-a1ab-58ba3910b073/entry/microservices_architecture_containers_and_docker?lang=en
https://dzone.com/articles/scalable-cloud-computing-with-microservices
https://dzone.com/articles/scalable-cloud-computing-with-microservices
https://www.nirmata.com/2015/02/02/microservices-five-architectural-constraints/
https://www.nirmata.com/2015/02/02/microservices-five-architectural-constraints/
https://docs.docker.com/develop/develop-images/multistage-build
https://docs.docker.com/develop/develop-images/multistage-build
https://github.com/hashicorp/nomad
https://www.ssh.com/products/privx/
https://help.ssh.com/helpdesk/attachments/36010481405
https://help.ssh.com/helpdesk/attachments/36010481405

BIBLIOGRAPHY 69

[25] Privx datasheet. https://info.ssh.com/privx_datasheet. Accessed:
2018-07-22.

[26] Secrets. https://kubernetes.io/docs/concepts/configuration/

secret/. Accessed: 2018-09-01.

[27] What is a container. https://www.docker.com/what-container. Ac-
cessed: 2018-07-01.

[28] What is kubernetes? https://www.nomadproject.io/intro/index.html.
Accessed: 2018-06-05.

[29] What is privileged access management (pam) software? https:

//www.gartner.com/reviews/market/privileged-access-management-

solutions. Accessed: 2018-06-25.

[30] Anderson, C. Docker [software engineering]. IEEE Software 32, 3
(2015), 102–c3.

[31] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I., et al. A view of cloud computing. Communications of the ACM
53, 4 (2010), 50–58.

[32] Balalaie, A., Heydarnoori, A., and Jamshidi, P. Microservices
architecture enables devops: Migration to a cloud-native architecture.
IEEE Software 33, 3 (2016), 42–52.

[33] Balzan, D. J. B. Distributed computing framework based on software
containers for heterogeneous embedded devices.

[34] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. Xen and
the art of virtualization. In ACM SIGOPS operating systems review
(2003), vol. 37, ACM, pp. 164–177.

[35] Bass, L., Weber, I., and Zhu, L. DevOps: A software architect’s
perspective. Addison-Wesley Professional, 2015.

[36] Bennett, K. H., and Rajlich, V. T. Software maintenance and
evolution: a roadmap. In Proceedings of the Conference on the Future
of Software Engineering (2000), ACM, pp. 73–87.

[37] Bernstein, D. Containers and cloud: From lxc to docker to kuber-
netes. IEEE Cloud Computing 1, 3 (2014), 81–84.

https://info.ssh.com/privx_datasheet
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://www.docker.com/what-container
https://www.nomadproject.io/intro/index.html
https://www.gartner.com/reviews/market/privileged-access-management-solutions
https://www.gartner.com/reviews/market/privileged-access-management-solutions
https://www.gartner.com/reviews/market/privileged-access-management-solutions

BIBLIOGRAPHY 70

[38] Bhardwaj, S., Jain, L., and Jain, S. Cloud computing: A study of
infrastructure as a service (iaas). International Journal of engineering
and information Technology 2, 1 (2010), 60–63.

[39] Boettiger, C. An introduction to docker for reproducible research.
ACM SIGOPS Operating Systems Review 49, 1 (2015), 71–79.

[40] Bui, T. Analysis of docker security. arXiv preprint arXiv:1501.02967
(2015).

[41] Bunyard, M. What is next-generation privileged account
management? https://securityintelligence.com/what-is-next-

generation-privileged-account-management/. Accessed: 2018-06-25.

[42] Butt, A. B., Hillyard, P. B., and Su, J. Certificate-based au-
thentication system for heterogeneous environments, June 22 2004. US
Patent 6,754,829.

[43] Deinhart, K., Gligor, V., Lingenfelder, C., and Lorenz, S.
Method and system for advanced role-based access control in distributed
and centralized computer systems, June 8 1999. US Patent 5,911,143.

[44] Dmitry, N., and Manfred, S.-S. On micro-services architecture.
International Journal of Open Information Technologies 2, 9 (2014).

[45] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,
Montesi, F., Mustafin, R., and Safina, L. Microservices: yester-
day, today, and tomorrow. arXiv preprint arXiv:1606.04036 (2016).

[46] Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N.
Devops. IEEE Software 33, 3 (2016), 94–100.

[47] Fowler, M., and Lewis, J. Microservices. https://martinfowler.

com/articles/microservices.html. Accessed: 2018-06-05.

[48] Fremantle, P., Aziz, B., Kopeckỳ, J., and Scott, P. Federated
identity and access management for the internet of things. In Secure In-
ternet of Things (SIoT), 2014 International Workshop on (2014), IEEE,
pp. 10–17.

[49] Goyal, S. Public vs private vs hybrid vs community-cloud comput-
ing: a critical review. International Journal of Computer Network and
Information Security 6, 3 (2014), 20.

https://securityintelligence.com/what-is-next-generation-privileged-account-management/
https://securityintelligence.com/what-is-next-generation-privileged-account-management/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

BIBLIOGRAPHY 71

[50] Graziano, C. D. A performance analysis of xen and kvm hypervisors
for hosting the xen worlds project.

[51] Grobauer, B., Walloschek, T., and Stocker, E. Understanding
cloud computing vulnerabilities. IEEE Security & Privacy 9, 2 (2011),
50–57.

[52] Herbsleb, J. D., and Moitra, D. Global software development.
IEEE software 18, 2 (2001), 16–20.

[53] Hightower, K., Burns, B., and Beda, J. Kubernetes: Up and
Running: Dive Into the Future of Infrastructure. ” O’Reilly Media,
Inc.”, 2017.

[54] Hur, J., and Noh, D. K. Attribute-based access control with efficient
revocation in data outsourcing systems. IEEE Transactions on Parallel
and Distributed Systems 22, 7 (2011), 1214–1221.

[55] Jaramillo, D., Nguyen, D. V., and Smart, R. Leveraging mi-
croservices architecture by using docker technology. In SoutheastCon,
2016 (2016), IEEE, pp. 1–5.

[56] Javed, A., et al. Container-based iot sensor node on raspberry pi
and the kubernetes cluster framework.

[57] Joshi, S. Organization & cultural impact of microservices architecture.
In International Conference on Applied Human Factors and Ergonomics
(2017), Springer, pp. 89–95.

[58] Krause, L. Microservices: Patterns and Applications: Designing fine-
grained services by applying patterns. El Autor, 2015.

[59] Lewis, J., and Fowler, M. Microservices: a definition of this new
architectural term. Mars (2014).

[60] Melo, M. F. Developing microservices for paas with spring and cloud
foundry, 2014.

[61] Nerur, S., Mahapatra, R., and Mangalaraj, G. Challenges of
migrating to agile methodologies. Communications of the ACM 48, 5
(2005), 72–78.

[62] Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., and
Josuttis, N. M. Microservices in practice, part 2: Service integration
and sustainability. IEEE Software 34, 2 (2017), 97–104.

BIBLIOGRAPHY 72

[63] Popek, G. J., and Goldberg, R. P. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM
17, 7 (1974), 412–421.

[64] Rensin, D. K. Kubernetes-scheduling the future at cloud scale.

[65] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. Role-based access control models. Computer 29, 2 (1996), 38–47.

[66] Schwaber, K., and Beedle, M. Agile software development with
Scrum, vol. 1. Prentice Hall Upper Saddle River, 2002.

[67] Sharma, P., Chaufournier, L., Shenoy, P., and Tay, Y. Con-
tainers and virtual machines at scale: A comparative study. In Pro-
ceedings of the 17th International Middleware Conference (2016), ACM,
p. 1.

[68] Singleton, A. The economics of microservices. IEEE Cloud Comput-
ing 3, 5 (2016), 16–20.

[69] Sirisha, A., and Kumari, G. G. Api access control in cloud using
the role based access control model. In Trendz in Information Sciences
& Computing (TISC), 2010 (2010), IEEE, pp. 135–137.

[70] Srinivasan, M. K., Sarukesi, K., Rodrigues, P., Manoj, M. S.,
and Revathy, P. State-of-the-art cloud computing security tax-
onomies: a classification of security challenges in the present cloud com-
puting environment. In Proceedings of the international conference on
advances in computing, communications and informatics (2012), ACM,
pp. 470–476.

[71] Tosatto, A., Ruiu, P., and Attanasio, A. Container-based or-
chestration in cloud: state of the art and challenges. In Complex, Intelli-
gent, and Software Intensive Systems (CISIS), 2015 Ninth International
Conference on (2015), IEEE, pp. 70–75.

[72] Truyen, E., Van Landuyt, D., Reniers, V., Rafique, A., La-
gaisse, B., and Joosen, W. Towards a container-based architecture
for multi-tenant saas applications. In Proceedings of the 15th Interna-
tional Workshop on Adaptive and Reflective Middleware (2016), ACM,
p. 6.

[73] Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D.,
Tune, E., and Wilkes, J. Large-scale cluster management at google

BIBLIOGRAPHY 73

with borg. In Proceedings of the Tenth European Conference on Com-
puter Systems (2015), ACM, p. 18.

[74] Xavier, M. G., Neves, M. V., Rossi, F. D., Ferreto, T. C.,
Lange, T., and De Rose, C. A. Performance evaluation of container-
based virtualization for high performance computing environments. In
Parallel, Distributed and Network-Based Processing (PDP), 2013 21st
Euromicro International Conference on (2013), IEEE, pp. 233–240.

[75] Xu, X. From cloud computing to cloud manufacturing. Robotics and
computer-integrated manufacturing 28, 1 (2012), 75–86.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Scope and goals
	1.2 Contribution
	1.3 Structure

	2 Virtualization
	2.1 Virtualization
	2.2 Hypervisor-based virtualization
	2.3 Operating system level virtualization
	2.4 Docker

	3 Microservices and orchestration
	3.1 Monolithic application
	3.2 Microservices
	3.3 Docker containers for microservices
	3.4 Container orchestration
	3.4.1 Kubernetes
	3.4.2 Docker Swarm
	3.4.3 Nomad

	4 Access management and PrivX
	4.1 Access management
	4.2 PrivX
	4.2.1 PrivX features
	4.2.2 PrivX architecture
	4.2.3 PrivX orchestrated with Kubernetes

	5 Implementation
	5.1 Preliminary steps
	5.1.1 Dockerizing PrivX
	5.1.2 System environment
	5.1.3 Kubernetes installation

	5.2 Deploying PrivX with Kubernetes
	5.2.1 Database as a service
	5.2.2 PrivX services orchestrated

	5.3 Additional software realized
	5.4 Evaluation and results

	6 Conclusion

