
University of Pennsylvania
ScholarlyCommons

Departmental Papers (ESE) Department of Electrical & Systems Engineering

8-2018

What is a Good Pattern of Life Model? Guidance
for Simulations
Barry G. Silverman
University of Pennsylvania, basil@seas.upenn.edu

Gnana K. Bharathy
University of Pennsylvania, bharathy@seas.upenn.edu

Nathan Weyer
University of Pennsylvania

Follow this and additional works at: https://repository.upenn.edu/ese_papers

Part of the Electrical and Computer Engineering Commons, and the Systems Engineering
Commons

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ese_papers/842
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Barry G. Silverman, Gnana K. Bharathy, and Nathan Weyer, "What is a Good Pattern of Life Model? Guidance for Simulations",
Simulation . August 2018. http://dx.doi.org/10.1177/0037549718795040

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fese_papers%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/ese?utm_source=repository.upenn.edu%2Fese_papers%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fese_papers%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=repository.upenn.edu%2Fese_papers%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=repository.upenn.edu%2Fese_papers%2F842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1177/0037549718795040
https://repository.upenn.edu/ese_papers/842
mailto:repository@pobox.upenn.edu


What is a Good Pattern of Life Model? Guidance for Simulations

Abstract
We have been modeling an ever-increasing scale of applications with agents that simulate the pattern of life
(PoL) and real-world human behaviors in diverse regions of the world. The goal is to support sociocultural
training and analysis. To measure progress, we propose the definition of a measure of goodness for such
simulated agents, and review the issues and challenges associated with first-generation (1G) agents. Then we
present a second generation (2G) agent hybrid approach that seeks to improve realism in terms of emergent
daily activities, social awareness, and micro-decision making in simulations. We offer a PoL case study with a
mix of 1G and 2G approaches that was able to replace the pucksters and avatar operators needed in large-scale
immersion exercises. We conclude by observing that a 1G PoL simulation might still be best where large-scale,
pre-scripted training scenarios will suffice, while the 2G approach will be important for analysis or if it is vital
to learn about adaptive opponents or unexpected or emergent effects of actions. Lessons are shared about
ways to blend 1G and 2G approaches to get the best of each.
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Abstract 
We have been modeling an ever-increasing scale of applications with agents that simulate the Pattern of 
Life (PoL) and real-world human behaviors in diverse regions of the world. The goal is to support socio-
cultural training and analysis. To measure progress, in Section 1 we propose the definition of a measure 
of goodness for such simulated agents, and review the issues and challenges associated with the first 
generation (1G) agents. In Section 2, we present a second generation (2G) agent hybrid approach that 
seeks to improve realism in terms of emergent daily activities, social awareness, and micro-decision 
making in simulations. Section 3 offers a PoL case study with a mix of 1G and 2G approaches that was 
able to replace the pucksters and avatar operators needed in largescale immersion exercises. The final 
section concludes by observing that a 1G PoL simulation may still be best where large-scale, pre-scripted 
training scenarios will suffice, while the 2G approach will be important for analysis or if it is vital to learn 
about adaptive opponents and/or unexpected/emergent effects of actions. Lessons are shared about ways 
to blend 1G and 2G approaches to get the best of each.  
 
Keywords:  
Pattern of life, cultural simulation, agent-based models, adaptive behavior 
 
 
1. Introduction and purpose 
 
We are experimenting on a society simulation capability that is realistic enough to be useful for 
emulating the pattern of life (PoL) in different environments. Such a capability could be useful 
either for analysis of and/or for training soldiers/police/responders in a variety of community 
stabilization topics such as, among others: counter-insurgency, instability reduction, self-
sustainment, provincial reconstruction, disaster relief, etc. While the relevant social science 
theory is incomplete, and the PoL training needs are not fully mapped (e.g., see [1]), we have 
nevertheless been tasked to construct a best practice set of tools that we describe here. With PoL 
simulations, artificial intelligence and human behavior modeling (HBM) research must concern 
itself with mind-body issues, social concerns, and reasoning about daily activities as peoples 
would in various cultures around the world. The more realistically the simulated agents reflect 
the real world, the greater will be the users’ sense of place and immersion into the scenario of 
interest. 

In the realm of national defense, there are many potential reasons to use a PoL simulation 
from both the training and analysis viewpoints. A commonly cited purpose is (a) to teach soldiers 
how to recognize and practice operating under archetypical vs anomalous patterns of behavior. 
One of many possible examples is a market that is too empty during business hours and thereby 
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might presage an IED explosion. This type of thinking is the goal of a program known as 
Combat Hunter [2].  Another very common PoL training goal is (b) how to learn local norms, go 
forth as “ambassadors”, and build relationships with the populace in a local culture so as to 
figure out what are the key issues promoting or preventing security, stabilization, transition, and 
reconstruction [e.g., see 3]. Yet another is (c) how to use a brigade/battalion to detect, deter, and 
defeat a network of (e.g., 150 insurgents) hiding amongst a region of 100,000s of civilians 
carrying out their PoL: e.g.,  see [4]. Many more training/analysis goals might exist for PoL 
simulations. A few other obvious military/diplomatic ones are (d) Mission Rehearsal (for 
example, a remotely targeted drone strike or in-person arrest) in a heavily populated area, or (e) 
analysis of the potential effects of a Secure, Stabilize, Transition and Recover (SSTR) campaign 
on the populace of a region or nation [3]. As a result, to the extent possible, PoL simulations 
need to be flexible, reusable, and extendable for new needs as they are enumerated.  

The current practice in simulation exercises intended to help answer all these questions is 
largely based on human-played avatars (pucksters) who carry out the daily lives and dialogs. But 
this is expensive and time-consuming. Alternatively, a growing number of war games and public 
health/disaster rehearsal sims include hand-scripted finite state machines [5]. These are 1st 
generation (1G) agents that try to achieve realism via the Markovian approach, keeping agents 
simplistic and rigid, though computationally efficient and, hence, highly scalable in terms of 
numbers of agents. When simulation scenarios unfold according to plan, these PoL agents can be 
a very effective way to enhance the player’s immersion and sense of place. 

However, simulation exercises often lead to unexpected situations that the 1G agents were 
never pre-programmed to handle. Since their goal is to look smart or realistic long enough to 
escape the player’s critical eye, they only have a small amount of problem solving or re-planning 
of goals under limited circumstances. The problem is that once simulation begins, the original 
assumptions behind the pre-composed behaviors might no longer hold, and the 1G agents will 
not have any way to reason about a new situation.   Other common complaints about these 1G 
simulation entities and game-world agents (hand-scripted, finite state machine agents) are that 
they are shallow, narrow and brittle, have no relationship to others, and are unaware of the 
greater world. Also, they have no larger purpose and no ongoing daily life or aspirations.  

In attempts to build more realistic agents, one prominent school of thought is focused on 
building more complex and inclusive finite state machines (Markov chains) that may eventually 
be able to respond to every possible scenario that arises in a simulation. While such efforts do 
often improve the behaviors of the 1G agents in the short-run (as it provides more variety of 
“life-like” actions for viewing), the Achilles’ heel persists: the instance space (in which each 
sequence of acts, involving actor agent, target, form of action and possible social relationships 
may serve as an instance) is so enormous, the task of specifying the range of good instances is 
intractable. Furthermore, as the actual subject of study (real-life human decision making process) 
is in itself not a probabilistic finite state machine (though it may often behave like one), attempts 
to model pattern of life with such an approach would at best lead to a simulated agent under-
prepared for rare-case scenarios.  In brief, while 1G agents are the most efficient, scalable 
approach in our toolbox, there are times when we need an alternate approach that is similar to 
real-life agents, rather than just a black-box surrogate. 

 
 

1.1. What is a good PoL? 
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Ideally, we wish for 2nd generation (2G) agents that exhibit “realism” in three areas: their 
exhibited activities, network relations, and situated behaviors. We define these three areas further 
below. If all three areas can be deemed reasonable in the social environment in response to a 
priori information or events as compared to real-life human behavior, we may consider the 
agents to be PoL good. Specifically, to measure POL Goodness, we propose a scoring schema as 
shown in Table 1 and as described more fully below. This shows the tripartite as the rows, and 
three levels of capability as the columns – low, medium, and high. We give definitions in each 
cell. To score an agent for POL Goodness, there is 1 point per cell. A 1G agent could have only 
Low capability in each row, or possibly 1 or 2 of the Medium column entries. Thus any score of 
3 to 4 or less might be PoL Limited. A 2G agent could have capability in all cells, though that is 
unlikely. It is also possible that someone working on a 2G agent ignores some of the low and/or 
medium capabilities, so they would still have a PoL Limited score. Anything above a score of 6 
or greater is what we will call a PoL Good agent.  
 

Table 1 – PoL Goodness is a Count of the Number of Cells that Describe a Given Agent 
 Low Medium High 

Activities of 
Daily Life 
(ADLs) 

*Prescripted ADLs 
following clock 
*Navigates on own to 
destinations, avoiding 
obstacles. 

Simple rules to handle 
a few common ADL 
issues in 1 area (eg, 
errands, OR combat, 
OR crowds) 

Dynamically (re)sets 
priorities and 
(re)plans ADLs due to 
shifts in internal needs 
and external events  

Nets/Social Skills Reacts to nearest 
neighbors on a landscape 

Connects to agents 
across a single-layer 
network 

Has relationships and 
connections across 
multi-layer nets  

Cognition Can express values & 
reactions passed into it 
from a “god” source 

Limited rules to react 
to a domain (single-
layer net) 

Adaptively appraises 
world against its own 
values. 

 
To address PoL-goodness in general, researchers have fielded a growing number of cases of 

2G agent-based models. However, achieving PoL-goodness is challenging for 2G agents as well. 
As pointed out in Van Hemel et al.[6] and Numrich and Picucci [7], the 2G approaches typically 
achieve adaptivity in one dimension and often rely on one or a few narrowly focused models 
drawn from a given discipline such as social nets, cognitive models, or system dynamics. The 2G 
agents often suffer from inability to integrate across disciplines and thus examples abound of 
problems: e.g., cognitive agents are unaware when you kill another agent standing nearby, or 
social agents cannot independently make decisions and form cognitive appraisals of the 
unexpected or nonlinear effects in the world at large. Van Hemel et al.[6], Numrich and Picucci 
[7] and Folsom-Kovarick et al. [8] all point out the problems of narrow disciplines leading to 
narrowly focused (but deep) models and the need to move beyond this. 

To address these concerns, the PoL-good idea requires agents to encompass three sets of 
capabilities. We focus in this research on possible improvements along these dimensions. 
 
1.1.1 Daily Life Activity Issues. The agents must be able to generate the normally expected 
pattern of daily life within their culture and demographic conditions. A cutting edge of PoL 
research is to automate the development of these PoL behaviors for a random urban 
environment, thereby reducing the human development time required: e.g., see [9-11], among 
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others. These agents are set up with day timers so that markets are busy at the right time of the 
day, commuters appear at rush hours, and streets get deserted when locals suspect an IED is 
about to be detonated. This is useful for reflecting normal vs. anomalous patterns, but it is 
superficial and PoL workflows are imposed on the agents rather than emerging from them. Such 
1G PoL agents are easy to generate since they have no larger purpose and no ongoing daily life 
or aspirations. They are there to give the appearance that various scenes are populated 
appropriately and so collateral damage statistics will be accurately reflected if a mission is 
attempted. In some PoL applications, a market or street may look busy, but if you follow the 
agents around the corner they are going nowhere, standing still, or just waiting before they 
reenter the crowd again. The few cases where they do live out daily life with some sense of 
purpose is in commercial entertainment games (e.g., The Sims) where the agents exist in make-
believe worlds. We suspect this lack of social life is because they are built for cluttering up 
worlds rather than for recreating societies. In fact, an early PoL app for recreating urban traffic 
was actually named ClutterSim, an unfortunate moniker that suggests how thoroughly developers 
under-estimate and objectify agent populations [12]. Agents that are just objects moving 
according to an external clock and workflow will fail the PoL-good test as soon as they have to 
interact with users or with unexpected situations. One often needs to use some degree of 2G 
agency to ease this dilemma (ie, Medium or High on row 1 of Table 1). 
 
1.1.2 Network/Social Science Issues. A second dimension of PoL-goodness is for the agents to be 
social, to manage relations, and to interact in groups and across networks. This dimension tends 
to be ignored by 1G agents. Also, it’s challenging for many types of 2G agents as well. As 
mentioned in [6, 7], 2G agents tend to specialize. They are either good at this criterion (social) or 
the next one (cognition), but not both. Also, where sociologic models involve the concept of 
networks, they usually consider a single-layered network, yet PoL simulations often require the 
modeling of multi-layer networks since that is how people live in reality (e.g.,  kinship links, 
economic activity, political/ego nets, and religious connections, to mention a few). Current game 
agents in general are poor at relationship management, have no sense of ongoing allegiance or 
relationship buildup, and poor understanding of cultural transgression and atonement dynamics. 
Fortunately, artificial society simulation has advanced to the point where complex social systems 
are modeled bottom up. Micro-decision making of individual agents who may influence each 
other is combined until macro-behaviors of the larger population emerge: e.g., see [13]. It is vital 
to bring such approaches to bear in PoL simulations, although to date doing that across multi-
layer nets is a rarity. It is usually limited to single layer or just local neighborhood relations.  
 
1.1.3 Situational Reactions and Cognitive Issues. Finally, it is important for agents to be 
situationally aware; to have the capability to reason about potential disruptions to their routines 
and networks; and to adapt behaviors in meaningful ways. The goal is that autonomous agents 
would populate a society where their micro-decision making would lead to emergent macro-level 
behaviors relevant to their cultural norms and value systems. This is bottom up, emergent 
reasoning. One way to achieve this emergence and adaptivity is to shift the paradigm so the PoL 
behavior and workflows emerge from the agents, rather than being inputs to drive the agents. 
Instead of relying on 1G scripting patterns and workflows as needed, we are interested in culling 
best-practice theories from the behavior literatures (e.g., psychology, sociology, political science, 
economics, etc.) and implementing these as parameters, metrics, and meta-models to drive the 
PoL agents in the virtual environment. We describe our algorithm for this in Section 2.6. 
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Unfortunately, many of the cognitive models used in psychology are complicated (they cannot 
easily scale up due to computational inefficiency) and besides are often designed for narrow or 
micro-cognitive foci. Those that are potentially useful for autonomous agent reasoning about 
ADL tasks are rarely oriented to social issues such as realizing their neighbor has been shot or 
that they are a member of a community that observes cultural norms and standards or that 
exhibits differing cultural styles of thought. While there are 2G agent engines that may satisfy 
this cognition sub-criterion, there are few off-the-shelf solutions that satisfy this and the other 
criteria. 
 
 
1.2. Advances sought for a meso-level approach to agent modeling 
 
Our goal is to improve the PoL-goodness of agents in game-worlds by adding greater depth and 
breadth via federated capabilities. Most 2G agents tend to be too deep and narrow to accomplish 
this, so we are interested in a hybrid meso-level, 2G capability that allows us to include aspects 
from many disciplines at once. As a result, we do not want a single model of behavior, but the 
ability to synthesize or plug together a range of relevant models.  The goal is thus to federate a 
rich base of models (in a standards-compliant, plugin-plugout way) to replace humans having to 
drive the avatars and to allow the agent sims to be able to mimic social dynamics and faithfully 
express real-world stakeholder issues through action choices and conversational interactions.  

Section 2 explains our Meso-HBM hybrid approach and how it plugs in models of 
diverse social science theories across disciplines. We have made the agents cognitively rich 
(broad and deep), socially connected on many levels, and conversational about their world and 
allegiances. This approach relies on a socio-cognitive agent technology known as PMFserv, 
along with the StateSim engine that models larger regions, higher echelons of society, 3rd world 
economies, and the distribution of public goods and services. On the technology side, our goal is 
to explore how social science theories and models could be used to drive agent behaviors so that 
autonomous socio-cognitive agents populate a society. Their micro-decision making leads to 
emergent macro-behaviors relevant to their cultural norms, value systems, and collective 
perceptions. We make no claims that this is the best modeling approach. We are just trying to 
assess if we get further than with other approaches, a question we empirically explore in the case 
studies. 
 
 
1.3. Addressing the scale vs. behavior divide 
 
As Folsom-Kovarik et al. [8] point out, the PoL field reflects a divide between applications of 1G 
agents that scale well and those with 2G agents with more adaptive behaviors. There are ever 
larger scale 1G agent worlds, such as, for instance, Ge et al [22] and Zhang et al [23] who study 
epidemics with the help of an artificial city of 19.6 million agents that each carry out 10 life 
activities per day. However, the agents are just pre-scripted activity patterns that are a useful 
device for studying spread of disease. There are no large scale demonstrations of 2G agents due 
to computational constraints. Using a 2G approach known as Beliefs, Desires, and Intentions 
(BDI) agents, Cho et al. [18] found that runtime slowed in direct proportion to the number of 
BDI agents in a simulated crowd. Hindriks et al [19] embedded them as gamebots in Unreal and 
found they could not scale beyond a few BDI agents without loss of performance. In 2016, 
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Adams & Gaudou [20] did an extensive survey of BDI agents in social simulations and show 
there are no large scale implementations of BDI agents to date. 
 The Folsom-Kovarik et al [8] recommended solution for reaching scale with higher 
fidelity behavior is to model mostly 1G agents and switch in 2G agents only when needed for 
“vital interactions”. The same is said in Wolfe et al [21] about judiciously adding BDI agents. 
While neither specifies how this might work in detail, one can imagine several use cases that 
might implement this idea, such as, among others: (1) using light or 1G agents in the background 
and heavy or 2G agents in the foreground of whatever user perspective exists; (2) using 1G 
agents and swapping in 2G smarts whenever a user tries to interact with a given agent; or (3) 
creating an agent hierarchy where 2G group leader agents have all the important decisions and 
also determine the behaviors of their large number of 1G followers. Each of these ideas (and 
others) has benefits and costs, and each needs to be tested if research is to make progress.  

In our research we have investigated two use cases to date. The first one scales our 2G agents 
to the size of a village of about 100 agents. We reported on that use case earlier: see [14]. The 
second case study, reported here, implements idea (3) above and presents lessons learned on that 
approach to coping with the “divide”. Specifically, these two cases allow us to respectively 
investigate the following: 
• R1: Can meso-level human behavior models improve the realism (PoL-goodness) of small 

PoL simulations? 
• R2: Will the PoL-goodness of large-scale simulations improve due to a hierarchy of 2G 

leader agents in charge of the 1G followers? 
Section 3 presents the second case study to explore these research questions and to see if the 
HBM approach is scalable, reusable, and able to make improvements relative to the PoL-good 
issues. We did not have funding to conduct formal experiments with controls. Hence these are 
research questions that we evaluated by obtaining reactions from users to what was built. Section 
4 summarizes lessons learned.   
 
 
2. Background on meso-HBMs: StateSim 
 
For exploring Meso-HBM approaches, we have developed a model of models framework called 
StateSim. StateSim is a model of a state (or cross-state or sub-state) region and the important 
political groups, their ethnic (and other) conflicts, economic and security conditions, political 
processes, domestic practices and external influences. It is also the framework we use to 
assemble our 2G agents and to provide them with a social context in which they can observe and 
interact with other agents, the landscape, and institutions in their world. By constructing our 2G 
cognitive agents within StateSim, we directly address the social side of the tripartite. That is, 
StateSim forces the agents to confront many social life contexts (economic, political, religious, 
etc.) and to choose actions that influence their networks in each of these contexts. These 
capabilities permit StateSim agents to be used either analytically or for immersive training as we 
now explain.  

In the analytical usage mode, StateSim agents are unconnected from physical terrain, bodies, 
and related artifacts. In this manner, they can run much faster-than-realtime and can be used for 
predicting how micro-decision making and events can lead to emergence of macro-behaviors and 
equilibria shifts. These portions of StateSim, described in Sections 2.1-2.3 (though also in the 
rest of Section 2), were built under three programs sponsored by Defense Advanced Research 
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Projects Agency (DARPA). In analytical mode, DARPA tested it against 100s of quarterly 
Events of Interest (EOI) such as coups, rebellions, and repression for each quarter from 2006 – 
2008 for each of several Pacific rim nations (Bangladesh, Korea, Sri Lanka, Thailand, and 
Vietnam). DARPA indicated it could predict EOIs with >80% accuracy, recall 88%, and 
precision 64%. Aside from the DARPA backcasts (also called retrospective forecasts), in dozens 
of other correspondence trials, StateSim has demonstrated better than 80% correlation with the 
action choices of leaders and followers (insurgencies, rebellions, political repressions, and inter-
group violence) for numerous countries in Asia, Africa, and the MidEast. See Bharathy and 
Silverman [15]. 

 In immersive training mode, StateSim is slowed to realtime, reconnected to agent bodies, 
and aligned with artifacts and organizations that appear on physical landscapes. This allows 
StateSim to be run in the PoL style of usage that was described earlier. We typically do this by 
embedding StateSim behind a 3rd party game engine to drive the micro-decision making of the 
3rd party’s 1G agents and to give those agents the missing social context and networks for their 
actions. Sections 2.4 – 2.6 describe how this works (though the rest of Section 2 does also). A 
more complete case study of such an application of StateSim is presented in [14] which won 1st 
place for Best AI/Pattern of Life in the Federal Virtual World Competition2. Finally, Section 3.2 
attempts an experiment where StateSim is used in both analytical and immersive modes 
simultaneously. There, 2G leader agents run unembodied behind the scenes (analytically) while 
1G follower agents run PoL on screen. 
 
 
2.1. Profiling factions  
 
StateSim is a model of models that facilitates the codification of alternative theories of factional 
interaction and the evaluation of policy alternatives. StateSim is a tool where you set up a 
conflict scenario in which the factional leader and follower agents all run autonomously.  You 
are the sole human interacting and using a set of Diplomatic, Informational, Military, and 
Economic (DIME) actions to influence outcomes and Political, Military, Economic, Social, 
Information, and Infrastructure (PMESII) effects (see Figure 1). Factions are modeled as in the 
center of Figure 1 where each has a leader, various sub-faction leaders or “henchmen” (e.g., core, 
fringe, other), a set of starting resources (Economy, E, Security, S, and Politics, P), and a 
representative setup of 1,000s of follower agents. A leader is assumed to manage his faction’s E- 
and S- storage tanks so as to appeal to his followers and to each of the other tribes or factions it 
wants in its alliance. Each of the leaders of those factions, however, will similarly manage their 
own E and S assets in trying to keep their sub-factions and memberships happy. Followers 
determine the level of the P-tank by voting their membership level (see Section 2.2). A high P-
tank means that there are more members to recruit for security missions and/or to train and 
deploy in economic ventures.  So leaders often find it difficult to move to alignments and 
positions that are very far from the motivations of their memberships. 

StateSim runs a set of multiple games simultaneously. Within a faction one may observe 
games between rival leaders, between leaders and followers, and follower on follower. The 
across-faction games include attempts to cooperate and/or compete with other factions’ leaders 
and followers, and/or attempts to contain factions aimed at your own downfall. For discussion’s 

 
2 NonKin Village received this prize for Best AI/Pattern of Life in the 2011 Federal Virtual World Competition. More about NonKin 

is at: http://www.acasa.upenn.edu/nonKin/nonkin-description.htm 
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sake, consider these as iterated semi-cooperative games. This game formulation is the simplest 
game one can analyze involving conflicts between (and within) factions. Using it helps to clarify 
many of the key elements of these conflicts.  

 

 
Figure 1. Models and Components Used in StateSim Scenarios  

(Legend: E=economic assets, S=security assets, and P=political influence level) 

 
2.2. Personality profiling models 

One of StateSim’s strengths is that its factional leader and follower agents are cognitively 
detailed. The idea is to have 2G agents that utilize micro-decision making based on the profiles 
or tendencies of the actual people of the region being modeled. Profiling of personalities has not 
yet reached the stage of a mature science with first principles; however, there are best-of-breed 
profiling instruments with respectable field trials and high inter-rater reliability. These are useful 
for creating agent frameworks with greater degrees of realism.  
 Profiling Leaders – In StateSim, each leader and follower is modeled within a 
framework known as PMFserv [14, 16]. This adds a mind-body library of models to StateSim. 
For immersive applications, it allows the agents to have a physiology with some detail, while in 
larger scale sims, we often turn the body models off. One of the StateSim models allows leaders’ 
(and followers’) cultural values and personality traits to be profiled. These profiles are captured 
in Goal, Standards and Preference (GSP) trees [14]. These are multi-attribute value structures 
where each tree node is weighted with Bayesian probabilities or importance weights. A 
Preference Tree is one’s long term desires for world situations and relations (e.g., no weapons of 
mass destruction, stop global warming, etc.) that may or may not be achieved in the scope of a 
scenario. In StateSim agents the preference tree translates into a weighted hierarchy of territories 
and constituencies (e.g., no tokens of leader X in resource Y of territory Z). The Standards Tree 
defines the methods a leader is willing to take to attain his/her preferences, and what code that 
others should live by as well. We also add specific standards that capture the doctrine a leader 
adheres to when considering his Economic and Security tanks. Finally, the Goal Tree holds 
short-term needs the agent seeks to satisfy each turn (e.g., vulnerability avoidance, power, rest, 
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etc.). The GSP tree is a value model editor that allows one to (a) implement leader and follower 
profile instruments as nodes on the trees and (b) set the weights on the nodes which in turn 
implements a personality profile (an example GSP tree is shown in Section 2.6). 

GSP trees are used by the agent for all decisions - e.g., selecting a next game action, 
determining faction alliance moves, or deciding on a speech act - thereby giving each agent a 
robust and individual worldview.  When contemplating a decision, the agent calculates the 
subjective expected utility (SEU) it expects to derive from every action available to it, as 
constrained by perceptions, and chooses the alternative that maximizes SEU.  Probabilities assess 
likelihood of success.  

Profiling Followers – In addition to Leaders, StateSim factions also have followers who 
autonomously compute their strength of membership in each group, affinity for leaders, and 
resulting motivations toward action. This works similarly to how leaders reason and due to space 
limits, we will refer the reader to [14-16] for full details. We will simply state here that the 
followers compute their grievance state (GS) for each faction, ranging from –4 to +4 (the choice 
of range bears no significant meaning, as we simply normalize all the values in the computation 
process) and use this to determine their actions. As an example, suppose an agent identifies 
himself with Faction B, but lives under the rule of Faction A. The top state (GS+4) is total 
support of a given Group, say A. A faction getting a mid-point grievance scale (GS-0) means that 
agent is undecided and/or helpless to resist what A wants. At the other extreme of GS-4, the 
Faction B agent who lives under Faction or Leader A has already joined a resistance faction C 
working against A.  At the extremes on either end, the agent will submit to militaristic 
commands of the leader of that group, while at the next lower level it will be only willing to go 
to protests, and verbally and economically support the activities of that group’s leaders.  
 

2.3. The economy and institutional agencies 
 

 Each faction or group’s economic production depends on their constituency size, capital, 
education, health, employment level, legal protections, access to basic resources (water, etc.), 
and level of government repression.  In the balance of this section we examine how the 
institutions of a single faction work and may be influenced. The write-up focuses on public 
institutions to keep it brief, but we also model private ones and business enterprises that the 
actors may manage, work at, get goods and services from, and so on.  One can substitute more 
detailed, third party models of these institutions and enterprises without affecting the ability of 
our cognitive agents to interact with them. Thus the models discussed in this section are defaults 
and one can swap in other models without affecting how the actors think through their resource-
based, ethno-cultural conflicts. 

An institution's primary function is to convert funding into services for groups.  Groups in 
turn, provide service to members.  Groups, including the government, provide funding and 
infrastructure usage rights.  In turn, each group has a level of influence over the institution which 
it leverages to change the service distribution to its own group and region.  Influence can be used 
to increase favoritism (for one's own group, for example) but it can also be used to attempt to 
promote fairness.  Institutions also are endowed with a certain level of efficiency.  Efficiency is 
considered the fraction of each dollar that is applied to service output, as opposed to lost in 
administration or misuse. 

The institutions currently modeled are public works, health, education, legal protections, and 
elections. Also, competing groups may set up competing institutional models. In this case, this 
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gives greater influence and control to the leaders of those groups over the institutions and their 
public good allocations. 
 
 
2.4. Regional resource dynamics and “human terrain” reasoning 
 
Because conflicts are invariably linked to control of resources (broadly defined), a total systems 
perspective dictates a model of resources arrayed in their respective territories under the control 
of specific leaders. Resources include people, economy and social services, media, authority, 
buildings and infrastructure, weapons, media channels, emissaries, military troops and so forth. 
Leaders manage different amounts of resources in their own and other leaders’ territories; and 
there is the option/risk of seizing or having one’s assets seized. As earlier membership discussion 
mentioned, some of a given leader’s assets (e.g., followers, workers, foot soldiers, etc.) may 
variously choose the level at which they support their leader, or rebel and exit the group. This 
strength of membership thus directly affects a leader’s authority and size of many key resources 
(political strength, work force, security level) which in turn constrain the actions it can take. As a 
result, better leaders take care with how they treat their followers and allies, and tend to allocate 
public goods to secure these allegiances. In this manner, the constituency’s wishes and cultural 
norms tend to have an influence on outcomes over time.  

As a result of these StateSim resource realities, agents of all types need to be able to reason 
about the spatiality of a region, distribution of resources, and location of allies and opponents. 
For instance, leaders will need a high level understanding of the regions so they can assess 
threats, wage campaigns and gauge success. Similarly, henchmen will need an understanding of 
the overall health of an area along with potential targets, safe havens, and level of resources 
available. Also, followers will need to understand the proximity and type of structures and 
services around them in order to carry out activities of daily life, mission tasks, and social 
interactions, while staying out of harm’s way. 

To facilitate these needs, we implemented a terrain reasoning capability within StateSim. 
However, because we want the agents to be reusable and embeddable behind multiple 3rd party 
simulators, it is more important that agents be able to rapidly assess and reason about the “human 
terrain” rather than the actual physical terrain.  Let us explain the difference. Most military 
simulators have (1G) agents that navigate a physical terrain from point A to B based on some 
coordinate system (lat-lon, x-y, etc.) but they have only surface (or no) understanding of what 
exists at those locations. There is no need to replicate this geo-spatial detail in StateSim. By 
contrast, StateSim agents are unaware of maps and geo-spatial locations. Leader agents are 
aware of regions and can tally up the power and vulnerabilities of other leaders in those regions, 
plus summary stats for # followers, # targets, # resources, etc. They use that information to plan 
out workflows they want their followers to execute. Followers, in turn, are aware of nodes in an 
abstracted regional or local network and meta-data about those nodes (e.g., type of building, 
level of security, services or goods it can provide, etc.). For instance, by using their workflows 
and choosing courses of action (COAs), follower agents migrate across a node network to go to 
work, eat meals, buy goods, pray, socialize, go home, etc. When they plug into 3rd party “proxy” 
agents (e.g., OneSAF, VBS2, Unreal, etc), StateSim agents can direct those proxies to where 
they want them to go and when. StateSim agents sleep while the 3rd party proxies navigate to the 
actual geo-location of the relevant node, and then awaken and decide what their proxy should do 
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next based on completing current workflows, carrying out new orders from leader agents, or 
simply responding to internal needs and starting other workflows. 

We have designed a taxonomy to categorize and describe complicated objects that would be 
needed in a virtual environment with sophisticated agents and potential human player interaction 
capability. Considering our desire to expose culture in our models, we embed culturally-affected 
“collective perceptions.” Specifically, we use a culture’s systems of regulation and core beliefs 
to influence how and when structures and environmental features are perceived. For example, 
behaviors related to food purchasing may be driven by norms like market days or religious 
observances. Similarly, gender differences may affect accessible locations and interactions 
between agents. 
 
 
2.5.  Towards a taxonomy of actions and workflows 
   
Our research to date on PoL applications has left us with a large taxonomy of PoL actions in a 
hierarchy that can be re-used as building blocks for next-generation agents. This can promote the 
development of a taxonomy of common action sequences useful across scenarios. That in turn, 
might enable faster construction of more complicated plans by hiding lower-level details and 
reusing lower-level action modules. Each category of agent in this taxonomy has its unique set of 
available actions and workflows. For example, group leaders have the highest level set (list of 
DIME actions), US/Coalition forces and Insurgents have mostly civil-military-related actions 
and workflows, and civilians have mostly non-kinetic related ones. These are packages of 
hierarchical action sets/workflows which may be expanded to a sequence of sub-level 
actions/workflows. As happens in PoL simulations, this expands to many 100s of pages of 
diagrams that must be coded, tested, verified, and maintained. 
 As mentioned in Section 2.3, in StateSim the temporal and spatial dimensions of the actions 
are handled abstractly so that they are reusable from scenario to scenario and across diverse 3rd 
party simulators. Temporally, actions are tied to StateSim tick rates which can be defined at the 
modeler’s discretion (e.g.,  15 minutes is often chosen for immersive sims, while 1 or 2 weeks is 
often the tick interval for strategic sims). As described in the 2 case studies in Section3, we often 
embed StateSim behind 3rd party simulators via some peer-to-peer protocol to drive the behavior 
of their actors. In these cases, StateSim agents are not tied to real-time, so they often hibernate 
while awaiting a 3rd party sim to carry out their instructions, awaking in time to check what they 
want done next. Likewise our terrain reasoning is similarly abstracted and allows StateSim 
agents to be highly portable. 
 
2.6.  Algorithm for utility-based decision making to generate workflows 
  
We have stated in this paper that it is possible for 2G agents to generate their own workflows. 
Thus workflows are outputs that emerge from the agents, rather than inputs that guide the agents. 
Here is how this works. When a 2G agent carries out ‘daily life’, this does not specify what 
actions to take. Rather it relies heavily on the GSP value tree described in earlier Section 2.2. It 
works as follows (a more complete description is in [14, 16]). When authorized to conduct daily 
life activities, the agent continually performs the following “cognitive appraisal” decision loop 
on each tick of the simulation: 
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1) Observe the world – use perception (sensors) to determine what has happened to oneself, to 
others, and to the world at large since the previous tick of the simulation. Was the agent’s 
previous decision carried out successfully (or not), and what effects did it have in the world? 
 
2) Orient internal parameters – Update all internal parameters to reflect the changes observed 
since the last iteration. Thus, update hunger (stomach tank), fatigue (need for sleep tank), stress 
levels, GSP tree leaf nodes, relationship strengths and alignments, and so on. Updating the GSP 
tree leaf nodes causes emotions to further activate or decay, thereby leading to overall sense of 
utility of the current state of the world.  
 
3) Decide what to do next – This is done by re-invoking the GSP tree and emotion module to 
appraise the value of each of the available set of actions, one at a time. The overall utility of the 
world is computed if that action is taken (and its likely consequences occurred). These choices 
are ordered from highest to lowest utility, and the best response algorithm selects the highest 
utility action choice. 
 
4) Act – The highest utility action choice is taken, with a random probability of it actually getting 
executed as desired.   
  

 Figure 2. An Agent’s GSP Tree Activations, Emotions, and Utilities 

 As an example of this algorithm, let us hypothesize that there is an agent with GSPs as shown 
on the left of Figure 2. We can see this agent likes to maintain current behavior, has a short term 
gratification horizon, and places low efficacy on instrumentality (i.e.,  doesn’t believe his actions 
can change outcomes). In this example, this agent likes to eat junk food and watch TV, and 
eschews the Gym and healthfood. As time goes on in the simulation, his energy level drops and 
it observes its own physiology (Step 1) and sees it is hungry (Step 2).   Appraising all its choices 
such as going to the Gym, taking Medicine, etc., it estimates Eating French Fries as the highest 
utility choice through the following process (Step 3). The GSP activations for any given choice 
are displayed on the leaf node branches of the GSP tree on the left side of Figure 2. There is a 
succeed (left) and fail (right) tank on each GSP node. The Figure currently shows the node 
success and failure levels for eating French fries. The resulting emotions about eating the fries 
are shown in the middle histograms. Summing up these positive and negative emotions gives the 
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utility score for French Fries. The utility of all possible actions are compared on the right side. Its 
top choice is eating the fries, while its second choice is to move toward the TV. It takes that 
action and then starts the algorithm again. Over time, the agent builds its own workflow as an 
output of its sequence of choices. 

It should be noted that the StateSim engine can run the minds of 2G or 1G agents. This is 
done via a toggle switch that removes the cognitive model from a given agent’s model library 
and replaces it with an FSM engine. In the latter case, the 1G agent will run pre-stored 
workflows. Thus, the 1G agents in Case 2 below carry out daily life and other missions 
according to pre-canned routines. It is possible for 2G and 1G agents to be mixed together. For 
instance, if the leader of a group of 1G agents is a 2G agent, it can use his cognition to determine 
what actions it wants its followers to carry out. For instance, an insurgent leader  might send 
some agents out on the daily life mission and others will carry out a specific IED mission against 
a target of the 2G leader’s choosing. The 2G agent uses his cognitive appraisal algorithm to 
determine who is an enemy to be attacked, and indicates how many followers should go on the 
attack (strength of the attack). If there are any 2G followers on the attack mission, they will use 
their own cognitive appraisal loop and determine how and when they want to do the attack (they 
might even abandon the attack if their GSPs lead them that way). The followers that are 1G have 
no such choice mechanisms. They simply activate on the IED mission workflows and carry them 
out against the specified target. 
 
3. Results to date and a scale-up case study 
 
Our primary research question posed at the outset is whether meso-level human behavior models 
(2G agents) can be PoL-good when used in tandem with 1G agents in large-scale simulations. It 
has been demonstrated countless times that 1G agents work well in large scale immersive 
simulations. Trainees learn the lessons, and users tend to be satisfied with the experience. 
However, as was discussed in Sect 1, these exercises are expensive, require a large number of 
pucksters to guide all the avatars, and take a lot of time and effort to set up and run. Pucksters are 
required since the 1G agents cannot be expected to fully and properly play the roles, carry out the 
missions, convey the cultural nuances, illustrate emergence of secondary and tertiary effects, or 
convey the scenario lessons. Based on earlier Table 1, it would seem in theory that 2G agents 
have the PoL Goodness to be able to satisfy such concerns. If this is also true in practice, it 
would represent a breakthrough since one could readily conduct/repeat the simulation exercises 
without all the lead time, setup effort, and expense of the pucksters for each repitition. In Section 
1.3, we posed this question as R2, and in this section we explore the answer.  
 

In our earlier research (R1) we first sought to answer whether 2G agents can improve realism 
and adaptivity in small immersive worlds. According to the sponsors, we were successful in 
demonstrating that and the software won an open competition [14].  In the current paper, we are 
trying to scale up from an immersive world of 100 agents (earlier case #1) to a strategic planning 
world of 100,000 agents (current case #2). In both cases, we are reusing the same HBMs to drive 
behaviors of up to 100 agents of the 3rd party PoL software.  

In case #2, the case being reported in this article, we still have up to about 100 HBM agents, 
but this is a strategy style game and trainee interaction is constrained to defining the 
patrols/missions for 10,000 blue force 1G agents who carry these out to implement the players’ 
plan. The HBM capability is reserved for the population (white) and insurgent (red) leader agents 
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and henchman, since these are the significant autonomous actors that we wish to make as 
realistic as possible. As opposed to having 100% of the agents following pre-scripted workflows 
(guided by pucksters), we will see whether the leaders being smart HBMs leads to acceptable 
outcomes. We will explore acceptability in terms of (1) acceptance by the customer that the 
intended lessons are able to be taught; (2) that the simulation can be set up and run as desired at 
different sites; and (3) the training instructors can run the simulation exercises themselves with 
no outside support (eg, computer operators, puckster players, and other support staff). 
 
 
3.1. Case study - attack the network (AtN): scale-up to province  

 
3.1.1 Purpose. We begin this case by describing a serious game, called Metis, whose goal is to 
facilitate the training of how to detect, deter, detain, and destroy counter-insurgent networks 
(consisting of 100-200 members) operating in a population of up to 100,000 civilians. 
Specifically, Metis is a cultural agent-driven simulation to support Army staff training in Attack-
the-Network and Counterinsurgency operations: JWC (2011). As a result, Metis allows the staff 
to train real world decision-making and discover the impact of their decisions without real world 
risks.  

The US Army sponsored Metis as a way of training the Army Decision Making Process 
applied to Attack the Network (AtN) doctrine [eg., see 4]. They specified a number of 
parameters such as size of the population, fixing the size of the insurgent network, and where to 
situate the game. Specifically, Metis is set in a northern province of Afghanistan covering a 
region with 5 districts, 2 of which are urban and 3 are rural. Aside from urban and rural groups, 
there are 3 Sunni cultural clans, the Taliban, government, drug lord families, and ISAF (US led 
coalition or blue force). Both the government and Taliban have competing institutional services 
and goods to distribute, though the Taliban often carry out night missions, illegal checkpoints 
(taxing those who wish to pass), kidnappings and ransoms, and other means of fund raising. 
Young male adult “opportunists” find work with the Taliban and the drug lords. The black 
market (opium fields) supports drug lords, but also migrant workers, opportunists, and the 
Taliban. Insurgent cells have leaders, financiers, bomb-makers (buy parts, carry illegal materials, 
assemble IEDs), and foot soldiers of varying loyalty. They are organized into independent cells, 
and if any are caught, their cell phones may be stripped to find their calling network and names 
of other agents to detain and question. Foot soldiers conduct reconnaissance, plant/detonate IEDs 
and suicide attacks, and carry out indirect and direct fire missions. 
 
3.1.2 Pattern of Life (PoL) . All of the ethno-political factions and actors in Metis are driven by 
StateSim agents including faction leaders and followers. Up to about 100 factional leader and 
key follower agents are fully developed StateSim socio-cognitive models (PoL Goodness = 5 
covering most of the right 2 columns of Table 1). These agents profile real world actors with 
similar political, economic, ethnic, and military goals. The leader agents make DIME decisions 
that they expect to be carried out by their followers. Key henchmen (full HBM followers) react 
to these decisions and outcomes, forming opinions about what leaders they support or not, 
mobilization levels of their group, and strength of membership. The tens of thousands of 
factional followers, foot soldiers, and workers are modeled as 1G agents in StateSim (PoL 
Goodness = 3 covering the left side of Table 1). These latter agents follow pre-scripted 
workflows, rules, and state transition graphs to simulate human activity across multiple 
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networks: criminal, government, coalition, insurgent, etc. As described at the end of Section 2.5, 
they gladly carry out the orders of the factional leaders, provided the full-HBM followers are so 
motivated. However, if the full-HBM followers become disenchanted with their leadership, 
orders will be carried out half-heartedly or not at all. In this fashion leaders begin to lose power 
and if they do not appease their followership, members might instead begin to defect and join 
other factions, subject to saliences of group exit and entry.  

These 1G agents continually update their internal state with input from the 2G agents to 
reflect satisfaction with their situation, internal needs, alignments, and daily activities they are 
carrying out (and where they are on the node network of facilities, infrastructure, and buildings). 
In Metis, there are no 3rd party agents displayed continuously moving in real-time across the 
landscape. Instead, the Metis screens require discrete visual feedback from StateSim, such as 
showing the routes that blue agents take on patrols, the Significant Actions (SigActs) that happen 
at various nodes, and casualty statistics that might result based on how occupied those nodes 
were. So, a market node with an IED going off in daytime would have more casualties than in 
the evening.  

 
3.1.3 Training Goals. Metis is designed to run on a desktop computer, but allows whole staff 
interaction from individual workstations through a client-server approach.   The user interfaces 
replicate the look and feel of Military Decision Making Process workflows that trainees would 
use on a deployment in a Tactical Operations Center.  As can be seen in Figure 3, a 
Brigade/Battalion staff would figure out mission tasks, schedules, and routes for all the platoons 
and squads (10,000 soldier agents), including what assets they require to safely accomplish those 
missions. These missions implement the Commander’s course of action (COA) and can cover the 
gamut of the 100s of actions possible in StateSim. 
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.  
 

3.1.4 Effects and Outcomes. When the simulation runs, autonomous white and red leaders (and 
key henchmen) make decisions. The collection of up to 100,000 white agents carry out their 
daily PoL activities; and the red agents conduct insurgent activities, workflows, and missions. 
The blue forces interact with all of them as they “move across” the landscape on patrols, at 
security checkpoints, etc. At the end of each blue unit’s patrol, those units provide textual reports 
of what happened, plus a SigActs log is recorded and information extracted from interviews or 
detainee cell phone extractions (i.e., cellex) are likewise shared.  The SigAct log for one 6 week 
run is summarized in a pie chart in Figure  4(a). By modeling patrol reporting, SigActs, and the 
system interfaces, Metis allows the staff to use their existing processes and tools to create and 
share products to facilitate their situational understanding of what is happening in the sim and to 
foster their decision making process. It is possible for blue players to read the Patrol Reports, 
SigAct Logs, and other extracted information to make forecasts of what red is trying to do. Red 
actions follow typical workflow steps. Each step has certain resource needs and timing. If a red 
agent is apprehended performing a step, one can infer what other red agents might be about to 
do, when it might happen, and what other SigActs and roles to be on the lookout for.  At the end 
of every interval, blue force courses of action are summarized into overall simulation metrics as 
shown in Figure 4(b). Here we see a 6 week example of how the COAs led to slightly better 
governance (2nd line from top) and slightly worse security (4th line from the top). All other 
metrics appear flat, so there is little improvement in this short interval.    

 
 
a) Significant Actions (SigActs) Occurring in the Various Regions 

Figure 3.  Edit the Blue Force Courses of Action 
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      (# of actions of each type during the run)	

 

b) Summary Showing if a Course of Action (COA) Improves the Metrics 

 

Figure 4.  Some of the Outcomes of a Six Week Run. 

3.1.5 Agent Adaptivity and Sensitivity Analysis..  
 Many parameters in Metis are fixed to accommodate the specs of the customer. This includes 
things like population size, coalition memberships, insurgent force size, and so on. StateSim is 
far more adaptive than this reflects and it permits agents to shift allegiances, leaders to change 
sides, and followers to join other groups. However, in Metis, the StateSim group size had to be 
set to block member entry/exit and thus there are only a fixed number of hostile agents to catch. 
In real life, rebel groups are often seen to shift in size based on government policies, perceived 
inequities, collateral damage affecting neutral parties, and so on.  To directly test the 
effectiveness of this adaptive feature, we ran a controlled trial in which the government leader’s 
personality (see GSP tree weights in earlier Figure 2) was varied. Recall that leaders will make 
action choices based on their profiled personality. We are often asked by diplomats to vary a 
given leader’s personality profile as if he received a call from our President asking 
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(incentivizing) him to be more moderate. In this case we had government Leader A who is in-
group biased (i.e., he favors urban elites vs. rural poor), focuses on narrow interests, and is 
controlling. We also created an alternative government Leader B, profiled to be outgroup 
inclusive, focused on greater good, and open-minded. Otherwise the two leaders were identical.  
The scenario omitted blue forces and involved the host nation government and their security 
forces (green) arrayed against a small rebel group (red) with various civilian groups (white) 
caught in the middle including urban elites and rural poor. The rebel group wants a form of 
sharia law with them in charge of the region. They mostly operate in the area of the rural poor, 
come from that region, and have many kinship links straddling those two groups. We removed 
actions of rebels to intimidate civilians, so the scenario would depend entirely on civilians’ own 
motivations. We then ran the scenario forward under each government leader to see actions they 
would choose and what population reactions would emerge.  
 

 
 

Figure  5.  Impact of Leader Personality on Rural Poor  
(A:	Ingroup	Biased,	Narrow	Focus,	Controlling.	

B:	Outgroup	Inclusive,	Larger	Good	Focused,	Open.) 
 
The resulting civilian reactions are portrayed in Figure 5. The bars correspond to the sentiment or 
membership position of the rural poor relative to the government. The reader should recognize 
the x-axis in Figure 5 represents 5 of the grievance positions of the membership scale in Section 
2.2.  The height of the bars represents the percent of the rural poor that are choosing that 
grievance level. These are the average of the 2 weeks at the end of the year-long run. 
Specifically, in Figure 5 we can observe that under Leader A the rural populace grievances are 
on the right side, and they are heavily choosing the more extreme action sets. This is because 
Leader A is causing them to be oppressed, have lower quality of life and services, and suffer 
collateral damage of governmental attacks on rebels. Under Leader B, the rural poor are not 
happy with their treatment by the government (especially relative to the urban elites’ treatment) 
but the majority go about their daily lives doing nothing about it except disagreeing. Only about 
10% are opting to join the opposition (rebels). The result is more than sentiment, as it leads them 
to alternative daily action sets related to their choice of membership position. 
 These type of results reflect 2G agent micro-decisionmaking leading to emergent 
outcomes. It is important to be able to model such effects if one is to fully analyze the likely 
impacts of DIME actions. In the case of Metis, however, there is sufficient challenge to learning 
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how to use AtN doctrine and just solving the case of fixed size groups. The dynamics are, 
however, available for a later stage of AtN training. 

3.1.6 Acceptance Test Results. At the end of this project, a company we teamed with was 
tasked to field and deploy Metis in 10 Army locations that train command staffs. This is 
equivalent to repeating an experiment 10 times. We were not allowed to visit those sites or 
participate in those deployments due to their classified status. The feedback we were allowed to 
collect was that deployments were successful, participants are satisfied with this tool, and the 
Army considers it a success.  In essence, these are the results we were seeking to find out in the 
acceptance testing. Specifically, we	wanted	to	explore	acceptability	in	terms	of:		

(1)	acceptance	by	the	customer	that	the	intended	lessons	are	able	to	be	taught	–	Indeed	the	
Army	accepted	Metis	and	approved	its	distribution	for	AtN	training	of	brigade/battalion	staffs.	

(2)	that	the	simulation	can	be	set	up	and	run	as	desired	at	different	sites	–	This	was	proven	
since	it	was	done	10	times,	once	at	each	of	the	School	houses	doing	command	staff	training.	

(3)	 the	 training	 instructors	 can	 run	 the	 simulation	 exercises	 themselves	 with	 no	 outside	
support	 (eg,	 computer	 operators,	 puckster	 players,	 and	other	 support	 staff)	 –	 In	 fact,	 that	 is	
what	was	stated	when	each	site	approved	the	deployment	and	adopted	it	for	instructional	use. 

 
 
 
4. Conclusions and lessons learned 
 
 The first decade of PoL simulations saw the most popular approach to be human pucksters 
playing all the roles. The second most common approach is what we labeled as 1st generation 
(1G) agents consisting of Markov chains or FSMs with pre-scripted rule sets. This approach 
scales to 100,000s or higher numbers of agents and much research is ongoing to speed up and 
automate the generation of the rules and workflows/chains. For training of fixed scenarios 
requiring very large civilian populations with entirely pre-scripted behavior branches and no 
need for agent decision autonomy or connectivity, the 1G approach may very well be the best 
PoL-good choice. Often, however, in practice, military training simulations of this scale still 
require lengthy setup times and large staffs of pucksters guiding the avatars, computer operators, 
scorers and observers, and so on.  

By contrast, in some training scenarios (and in all analytic ones), it is important that the agent 
activities are not rigidly pre-set. Instead, workflows and activities are expected to adapt 
dynamically, as a function of agent micro-decision-making as they perceive, react to, and try to 
influence others in the multi-layer network space. In such cases, it would be ideal if 2G agents or 
a combination of 1G and 2G were realistic enough to accomplish the training objectives and 
thereby save costs and provide self-service training without the need for all the operators, 
pucksters, and so on. To that purpose, Section 2 has explored the idea of a 2G agent framework 
fueled by a meso-level model of HBM models (StateSim) that cuts across and synthesizes many 
disciplines (economic, political, cultural, cognitive, civil, etc.). We then applied this 2G approach 
to a case study to test it. 

Specifically, this test was to scale to 100,000 agents using a hybrid approach. In this case, 
99% of the agents are 1G (PoL Goodness = 3) and carry out many dozens of pre-scripted, street-
level workflows of daily life (10,000s of citizens), insurgent activities (the 150 red agents), and 
courses of action for security, stabilization, transition, and recovery (10,000 blue agents). But 
civilians and insurgents are guided by approximately one hundred 2G agents (PoL Goodness = 5) 
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that fill all the factional leader and key henchmen roles. These 2G agents autonomously make all 
the red and white factional decisions, mimic the behaviors of their real world counterparts, and 
react to situations emotively and moralistically. The latter sets the attitude, mobilization, and 
level of support of all the 1G agents for/against the various leaders. Case Study 2 demonstrated 
these dynamics and the PoL-goodness of their micro-decision making leading to emergent 
macro-behavior of the larger collective depending on which leader personality ran the 
government. This type of adaptive behavior is hard to accomplish with 1G agents alone. 

In attempts to improve PoL-goodness, we must realize the limitations of the existing 
Markovian approach which only builds unthinking automatons – such agents only mimic their 
real-life counterparts in output actions while bearing little resemblances in underlying 
mechanisms (human reasoning, social relationships and so forth). Looking ahead, as 
demonstrated in our case studies, the HBM-driven agents with actual decision-making process 
and other human-like properties offer adaptive performance in simulations. In conclusion, we 
believe (1) though they are far more scalable than 2G agents, there are strict limits to PoL-
goodness with 1G Markovian agents, and (2) scaling can be achieved and improved with 
judicious mix of HBM-driven 2G agents. This should provide an improved degree of PoL-
goodness in simulations under scenarios requiring adaptive and emergent behavior. 
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