7 research outputs found

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    IP Restoration vs. WDM Protection: Is There an Optimal choice?

    Get PDF

    Resource Allocation Schemes And Performance Evaluation Models For Wavelength Division Multiplexed Optical Networks

    Get PDF
    Wavelength division multiplexed (WDM) optical networks are rapidly becoming the technology of choice in network infrastructure and next-generation Internet architectures. WDM networks have the potential to provide unprecedented bandwidth, reduce processing cost, achieve protocol transparency, and enable efficient failure handling. This dissertation addresses the important issues of improving the performance and enhancing the reliability of WDM networks as well as modeling and evaluating the performance of these networks. Optical wavelength conversion is one of the emerging WDM enabling technologies that can significantly improve bandwidth utilization in optical networks. A new approach for the sparse placement of full wavelength converters based on the concept of the k-Dominating Set (k-DS) of a graph is presented. The k-DS approach is also extended to the case of limited conversion capability using three scalable and cost-effective switch designs: flexible node-sharing, strict node-sharing and static mapping. Compared to full search algorithms previously proposed in the literature, the K-DS approach has better blocking performance, has better time complexity and avoids the local minimum problem. The performance benefit of the K-DS approach is demonstrated by extensive simulation. Fiber delay line (FDL) is another emerging WDM technology that can be used to obtain limited optical buffering capability. A placement algorithm, k-WDS, for the sparse placement of FDLs at a set of selected nodes in Optical Burst Switching (OBS) networks is proposed. The algorithm can handle both uniform and non-uniform traffic patterns. Extensive performance tests have shown that k-WDS provides more efficient placement of optical fiber delay lines than the well-known approach of placing the resources at nodes with the highest experienced burst loss. Performance results that compare the benefit of using FDLs versus using optical wavelength converters (OWCs) are presented. A new algorithm, A-WDS, for the placement of an arbitrary numbers of FDLs and OWCs is introduced and is evaluated under different non-uniform traffic loads. This dissertation also introduces a new cost-effective optical switch design using FDL and a QoS-enhanced JET (just enough time) protocol suitable for optical burst switched WDM networks. The enhanced JET protocol allows classes of traffic to benefit from FDLs and OWCs while minimizing the end-to-end delay for high priority bursts. Performance evaluation models of WDM networks represent an important research area that has received increased attention. A new analytical model that captures link dependencies in all-optical WDM networks under uniform traffic is presented. The model enables the estimation of connection blocking probabilities more accurately than previously possible. The basic formula of the dependency between two links in this model reflects their degree of adjacency, the degree of connectivity of the nodes composing them and their carried traffic. The usefulness of the model is illustrated by applying it to the sparse wavelength converters placement problem in WDM networks. A lightpath containing converters is divided into smaller sub-paths such that each sub-path is a wavelength continuous path and the nodes shared between these sub-paths are full wavelength conversion capable. The blocking probability of the entire path is obtained by computing the blocking probabilities of the individual sub-paths. The analytical-based sparse placement algorithm is validated by comparing it with its simulation-based counterpart using a number of network topologies. Rapid recovery from failure and high levels of reliability are extremely important in WDM networks. A new Fault Tolerant Path Protection scheme, FTPP, for WDM mesh networks based on the alarming state of network nodes and links is introduced. The results of extensive simulation tests show that FTPP outperforms known path protection schemes in terms of loss of service ratio and network throughput. The simulation tests used a wide range of values for the load intensity, the failure arrival rate and the failure holding time. The FTPP scheme is next extended to the differentiated services model and its connection blocking performance is evaluated. Finally, a QoS-enhanced FTPP (QEFTPP) routing and path protection scheme in WDM networks is presented. QEFTPP uses preemption to minimize the connection blocking percentage for high priority traffic. Extensive simulation results have shown that QEFTPP achieves a clear QoS differentiation among the traffic classes and provides a good overall network performance

    Resilience mechanisms for carrier-grade networks

    Get PDF
    In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. These requirements are pushing network carriers for high transport capacity, energy efficiency, as well as high-availability services with low latency. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Indeed, optical transport technologies are the foundation supporting the current telecommunication network backbones, because of the high transmission bandwidth achieved in fiber optical networks. Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization, specifically with transmission rates above 100 Gbps. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). Recently, a new protection scheme referred to as Network Coding Protection (NCP) has emerged as an innovative solution to proactively enable protection in an agile and efficient manner by means of throughput improvement techniques such as Network Coding. It is an intuitive reasoning that the throughput advantages of NCP might be magnified by means of the flexible-grid provided by EONs. The goal of this thesis is three-fold. The first, is to study the advantages of NCP schemes in planning scenarios. For this purpose, this thesis focuses on the performance of NCP assuming both a fixed as well as a flexible spectrum grid. However, conversely to planning scenarios, in dynamic scenarios the accuracy of Network State Information (NSI) is crucial since inaccurate NSI might substantially affect the performance of an NCP scheme. The second contribution of this thesis is to study the performance of protection schemes in dynamic scenarios considering inaccurate NSI. For this purpose, this thesis explores prediction techniques in order to mitigate the negative effects of inaccurate NSI. On the other hand, Internet users are continuously demanding new requirements that cannot be supported by the current host-oriented communication model.This communication model is not suitable for future Internet architectures such as the so-called Internet of Things (IoT). Fortunately, there is a new trend in network research referred to as ID/Locator Split Architectures (ILSAs) which is a non-disruptive technique to mitigate the issues related to host-oriented communications. Moreover, a new routing architecture referred to as Path Computation Element (PCE) has emerged with the aim of overcoming the well-known issues of the current routing schemes. Undoubtedly, routing and protection schemes need to be enhanced to fully exploit the advantages provided by new network architectures.In light of this, the third goal of this thesis introduces a novel PCE-like architecture termed as Context-Aware PCE. In a context-aware PCE scenario, the driver of a path computation is not a host/location, as in conventional PCE architectures, rather it is an interest for a service defined within a context.En los 煤ltimos a帽os la llegada de nuevas aplicaciones del llamado Internet del Futuro (FI) est谩 creando requerimientos sumamente exigentes. Estos requerimientos est谩n empujando a los proveedores de redes a incrementar sus capacidades de transporte, eficiencia energ茅tica, y sus prestaciones de servicios de alta disponibilidad con baja latencia. Es una pr谩ctica sumamente extendida para proveer servicios (FI) la adopci贸n de un modelo multi-capa el cual consiste en el uso de tecnolog铆as IP/MPLS as铆 como tambi茅n 贸pticas como por ejemplo Wavelength Division Multiplexing (WDM). De hecho, las tecnolog铆as de transporte son el sustento del backbone de las redes de telecomunicaciones actuales debido al gran ancho de banda que proveen las redes de fibra 贸ptica. Las redes 贸pticas tradicionales consisten en el uso de un espectro fijo de 50 GHz. Esto resulta en una baja utilizaci贸n del espectro 脫ptico, espec铆ficamente con tasas de transmisiones superiores a 100 Gbps. Recientemente, las redes 贸pticas est谩n experimentado cambios significativos con el prop贸sito de proveer un espectro flexible que pueda explotar el potencial de las redes 贸pticas. Esto ha llevado a un nuevo paradigma denominado Redes 脫pticas El谩sticas (EON). Por otro lado, un nuevo esquema de protecci贸n llamado Network Coding Protection (NCP) ha emergido como una soluci贸n innovadora para habilitar de manera proactiva protecci贸n eficiente y 谩gil usando t茅cnicas de mejora de throughput como es Network Coding (NC). Es un razonamiento l贸gico pensar que las ventajas relacionadas con throughput de NCP pueden ser magnificadas mediante el espectro flexible prove铆do por las redes EONs. El objetivo de esta tesis es triple. El primero es estudiar las ventajas de esquemas NCP en un escenario de planificaci贸n. Para este prop贸sito, esta tesis se enfoca en el rendimiento de NCP asumiendo un espectro fijo y un espectro flexible. Sin embargo, contrario a escenarios de planificaci贸n, en escenarios din谩micos la precisi贸n relacionada de la Informaci贸n de Estado de Red (NSI) es crucial, ya que la imprecisi贸n de NSI puede afectar sustancialmente el rendimiento de un esquema NCP. La segunda contribuci贸n de esta tesis es el estudio del rendimiento de esquemas de protecci贸n en escenarios din谩micos considerando NSI no precisa. Para este prop贸sito, esta tesis explora t茅cnicas predictivas con el prop贸sito de mitigar los efectos negativos de NSI impreciso. Por otro lado, los usuarios de Internet est谩n demandando continuamente nuevos requerimientos los cuales no pueden ser soportados por el modelo de comunicaci贸n orientado a hosts. Este modelo de comunicaciones no es factible para arquitecturas FI como es el Internet de las cosas (IoT). Afortunadamente, existe un nueva l铆nea investigativa llamada ID/Locator Split Architectures (ILSAs) la cual es una t茅cnica no disruptiva para mitigar los problemas relacionadas con el modelo de comunicaci贸n orientado a hosts. Adem谩s, un nuevo esquema de enrutamiento llamado as Path Computation Element (PCE) ha emergido con el prop贸sito de superar los problemas bien conocidos de los esquemas de enrutamiento tradicionales. Indudablemente, los esquemas de enrutamiento y protecci贸n deben ser mejorados para que estos puedan explotar las ventajas introducidas por las nuevas arquitecturas de redes. A luz de esto, el tercer objetivo de esta tesis es introducir una nueva arquitectura PCE denominada Context-Aware PCE. En un escenario context-aware PCE, el objetivo de una acci贸n de computaci贸n de camino no es un host o localidad, como es el caso en lo esquemas PCE tradicionales. M谩s bien, es un inter茅s por un servicio definido dentro de una informaci贸n de contexto

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets
    corecore