3,805 research outputs found

    On the relationship between uniform and recurrent nonuniform discrete-time sampling schemes

    Get PDF
    Recurrent nonuniform discrete-time signal samples can be regarded as a combination of K mutual delayed sequences of uniform discrete-time signal samples taken at one Kth of the Nyquist sampling rate. This paper introduces a new alternative discrete-time analysis model of the recurrent nonuniform sampling scenario. This model can be described by the analysis part of a uniform discrete Fourier transform (DFT) modulated filterbank from which the K uniformly distributed and down sampled frequency bands are mixed in a very specific way. This description gives a clear relationship between uniform and recurrent nonuniform discrete-time sampling schemes. A side benefit of this model is an efficient structure with which one can reconstruct uniform discrete-time Nyquist signal samples from recurrent nonuniform samples with known mutual delays between the nonuniform distributed samples. This reconstruction structure can be viewed as a natural extension of the synthesis part of an uniform DFT modulated filterbank

    On the Relationship Between Uniform and Recurrent Nonuniform Discrete-Time Sampling Schemes

    Full text link

    Single- and Multiple-Shell Uniform Sampling Schemes for Diffusion MRI Using Spherical Codes

    Get PDF
    In diffusion MRI (dMRI), a good sampling scheme is important for efficient acquisition and robust reconstruction. Diffusion weighted signal is normally acquired on single or multiple shells in q-space. Signal samples are typically distributed uniformly on different shells to make them invariant to the orientation of structures within tissue, or the laboratory coordinate frame. The Electrostatic Energy Minimization (EEM) method, originally proposed for single shell sampling scheme in dMRI, was recently generalized to multi-shell schemes, called Generalized EEM (GEEM). GEEM has been successfully used in the Human Connectome Project (HCP). However, EEM does not directly address the goal of optimal sampling, i.e., achieving large angular separation between sampling points. In this paper, we propose a more natural formulation, called Spherical Code (SC), to directly maximize the minimal angle between different samples in single or multiple shells. We consider not only continuous problems to design single or multiple shell sampling schemes, but also discrete problems to uniformly extract sub-sampled schemes from an existing single or multiple shell scheme, and to order samples in an existing scheme. We propose five algorithms to solve the above problems, including an incremental SC (ISC), a sophisticated greedy algorithm called Iterative Maximum Overlap Construction (IMOC), an 1-Opt greedy method, a Mixed Integer Linear Programming (MILP) method, and a Constrained Non-Linear Optimization (CNLO) method. To our knowledge, this is the first work to use the SC formulation for single or multiple shell sampling schemes in dMRI. Experimental results indicate that SC methods obtain larger angular separation and better rotational invariance than the state-of-the-art EEM and GEEM. The related codes and a tutorial have been released in DMRITool.Comment: Accepted by IEEE transactions on Medical Imaging. Codes have been released in dmritool https://diffusionmritool.github.io/tutorial_qspacesampling.htm

    From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals

    Full text link
    Conventional sub-Nyquist sampling methods for analog signals exploit prior information about the spectral support. In this paper, we consider the challenging problem of blind sub-Nyquist sampling of multiband signals, whose unknown frequency support occupies only a small portion of a wide spectrum. Our primary design goals are efficient hardware implementation and low computational load on the supporting digital processing. We propose a system, named the modulated wideband converter, which first multiplies the analog signal by a bank of periodic waveforms. The product is then lowpass filtered and sampled uniformly at a low rate, which is orders of magnitude smaller than Nyquist. Perfect recovery from the proposed samples is achieved under certain necessary and sufficient conditions. We also develop a digital architecture, which allows either reconstruction of the analog input, or processing of any band of interest at a low rate, that is, without interpolating to the high Nyquist rate. Numerical simulations demonstrate many engineering aspects: robustness to noise and mismodeling, potential hardware simplifications, realtime performance for signals with time-varying support and stability to quantization effects. We compare our system with two previous approaches: periodic nonuniform sampling, which is bandwidth limited by existing hardware devices, and the random demodulator, which is restricted to discrete multitone signals and has a high computational load. In the broader context of Nyquist sampling, our scheme has the potential to break through the bandwidth barrier of state-of-the-art analog conversion technologies such as interleaved converters.Comment: 17 pages, 12 figures, to appear in IEEE Journal of Selected Topics in Signal Processing, the special issue on Compressed Sensin

    Filter bank based fractional delay filter implementation for widely accurate broadband steering vectors

    Get PDF
    Applications such as broadband angle of arrival estimation require the implementation of accurate broadband steering vectors, which generally rely on fractional delay filter designs. These designs commonly exhibit a rapidly decreasing performance as the Nyquist rate is approached. To overcome this, we propose a filter bank based approach, where standard fractional delay filters operate on a series of frequency-shifted oversampled subband signals, such that they appear in the filter's lowpass region. Simulations demonstrate the appeal of this approach

    A Fast Mellin and Scale Transform

    Get PDF
    A fast algorithm for the discrete-scale (and -Mellin) transform is proposed. It performs a discrete-time discrete-scale approximation of the continuous-time transform, with subquadratic asymptotic complexity. The algorithm is based on a well-known relation between the Mellin and Fourier transforms, and it is practical and accurate. The paper gives some theoretical background on the Mellin, -Mellin, and scale transforms. Then the algorithm is presented and analyzed in terms of computational complexity and precision. The effects of different interpolation procedures used in the algorithm are discussed

    Signal Reconstruction From Nonuniform Samples Using Prolate Spheroidal Wave Functions: Theory and Application

    Get PDF
    Nonuniform sampling occurs in many applications due to imperfect sensors, mismatchedclocks or event-triggered phenomena. Indeed, natural images, biomedical responses andsensor network transmission have bursty structure so in order to obtain samples that correspondto the information content of the signal, one needs to collect more samples when thesignal changes fast and fewer samples otherwise which creates nonuniformly distibuted samples.On the other hand, with the advancements in the integrated circuit technology, smallscale and ultra low-power devices are available for several applications ranging from invasivebiomedical implants to environmental monitoring. However the advancements in the devicetechnologies also require data acquisition methods to be changed from the uniform (clockbased, synchronous) to nonuniform (clockless, asynchronous) processing. An important advancementis in the data reconstruction theorems from sub-Nyquist rate samples which wasrecently introduced as compressive sensing and that redenes the uncertainty principle. Inthis dissertation, we considered the problem of signal reconstruction from nonuniform samples.Our method is based on the Prolate Spheroidal Wave Functions (PSWF) which can beused in the reconstruction of time-limited and essentially band-limited signals from missingsamples, in event-driven sampling and in the case of asynchronous sigma delta modulation.We provide an implementable, general reconstruction framework for the issues relatedto reduction in the number of samples and estimation of nonuniform sample times. We alsoprovide a reconstruction method for level crossing sampling with regularization. Another way is to use projection onto convex sets (POCS) method. In this method we combinea time-frequency approach with the POCS iterative method and use PSWF for the reconstructionwhen there are missing samples. Additionally, we realize time decoding modulationfor an asynchronous sigma delta modulator which has potential applications in low-powerbiomedical implants
    corecore