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On the Relationship Between Uniform and Recurrent
Nonuniform Discrete-Time Sampling Schemes

Piet Sommen and Kees Janse

Abstract—Recurrent nonuniform discrete-time signal samples
can be regarded as a combination of mutual delayed sequences
of uniform discrete-time signal samples taken at one th of the
Nyquist sampling rate. This paper introduces a new alternative
discrete-time analysis model of the recurrent nonuniform sam-
pling scenario. This model can be described by the analysis part
of a uniform discrete Fourier transfrom (DFT) modulated filter-
bank from which the uniformly distributed and downsampled
frequency bands are mixed in a very specific way. This description
gives a clear relationship between uniform and recurrent nonuni-
form discrete-time sampling schemes. A side benefit of this model
is an efficient structure with which one can reconstruct uniform
discrete-time Nyquist signal samples from recurrent nonuniform
samples with known mutual delays between the nonuniform
distributed samples. This reconstruction structure can be viewed
as a natural extension of the synthesis part of an uniform DFT
modulated filterbank.

Index Terms—Discrete Fourier transfrom (DFT), nonuniform
DFT, recurrent nonuniform sampling, sampling, uniform DFT
modulated filterbank.

I. INTRODUCTION

T HE most common form of sampling in discrete-time
signal processing is uniform sampling. However, there

are a variety of applications in which the signals are sampled
differently. Some of these applications are mentioned and
discussed in [4], [8], and [9]. In the current paper, we do not
focus on one specific application. For this reason we will
use a very high-speed analog-to-digital (A/D) convertor as a
guiding example throughout this paper. Such an A/D convertor
is composed of more than one, say , parallel low-speed A/D
convertors which are combined in a time interleaved way. It is
a well-known fact that this is a power-efficient technique that
can be used to increase the maximum sample rate [8]. When
the analog input signal is bandlimited with maximum fre-
quency , where is the Nyquist sampling
rate, each of the low speed A/D convertors is sampled at a
factor of the desired Nyquist sampling rate. At the recon-
struction part of the system, the undersampled signals of the
branches are combined to construct the uniform discrete-time
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signal samples at the Nyquist sampling rate. Since
each of the low-speed A/D convertors sample the original
signal at another moment, there will be a time-offset
(delay) between the low-speed A/D convertors. In practice, it
is extremely difficult to uniformly distribute these delays in a
period of [s]. The result is that time interleaving the
signal samples make up a sequence of recurrent nonuniform
signal samples.

Reconstruction from nonuniform signal samples is con-
siderably more complex than reconstruction from uniform
signal samples and is investigated by many researchers. The
main focus of [1]–[14] is on the theoretical background and
the reconstruction schemes are computationally demanding.
Practical, efficient reconstruction algorithms are still required.
Papoulis [14] showed how Shannon’s sampling theorem can be
generalized to allow a bandlimited signal to be recovered from
uniformly spaced samples of the outputs of different linear
time-invariant filters with the signal as their input sampled at
one- th of the Nyquist rate. This result was extended in [17]
without the bandlimitation constraint, while extensions to more
dimensions can be found in [3] and [7]. A general sampling
theory for nonideal acquisition devices is derived in [16].
The emphasis of [18] is on nonbandlimited signals, pointwise
stability of reconstruction, and reconstruction from nonuniform
samples. A survey that provides a unified framework for uni-
form and nonuniform sampling and reconstruction is given in
[1].

In contrast to the bandlimited case that is studied in the
current paper, [20] and [6] study the problem of recurrent
nonuniform sampling and its reconstruction for multiband
signals. These signals do not occupy the whole frequency band
and uniform (Nyquist) sampling can become very redundant.
Furthermore in [20], the different delays are modeled as
fractional delays , with both and integer numbers.
Depending on the value of the delay, can become very large.
Above that, this number is used as upsample factor in each
of the branches of the reconstruction scheme. The current
paper does not restrict the delays to fractional delays and the
upsamplers in the branches of the reconstruction scheme are
factor upsamplers.

Papers [4] and [10] introduce a filterbank interpretation of
various sampling strategies. In case of recurrent nonuniform
sampling, the first step of the reconstruction scheme in these pa-
pers is to apply in each of the parallel branches an upsampler
of factor and the second step is to filter each of these re-
sulting upsampled signals with different filters. In [4], these fil-
ters are multilevel filters, that is these filters are piecewise con-
stant over a frequency interval . In the current paper, a
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new alternative model is introduced in such a way that there is
a simple mutual relation between the different filters of the
branches. This mutual relation can be used to switch the order of
the upsamplers and the filters, resulting in a realization scheme
with improved efficiency.

Another approach that uses discrete Fourier transfroms
(DFTs) instead of filterbanks can be found in [9]. Here, the
reconstruction of the uniform signal samples is done by first
calculating, at a uniform frequency grid with resolution ,
a DFT of the nonuniform distributed signal samples. It is shown
how these values are related to the continuous-time Fourier
transform. The inverse of this relation is used to produce
different values of the continuous-time Fourier transform at
a uniform grid with resolution . Transforming these
values back to discrete-time domain, with an inverse DFT,
results in a set of reconstructed uniform signal samples. In
order to construct a whole sequence of uniform signal samples,
this procedure is repeated. Because of the usage of the DFTs,
the described results are only valid for periodic bandlimited
signals. Similar approaches are given in [12], [15] and [19].
The last two papers also derive different techniques to find the
delays if these are not known in advance. A combinatorial solu-
tion of this problem can be found in [12], while [19] describes
a technique for real-valued delays.

Finally, the authors of [8] describe techniques for correcting
sample-time errors in a time interleaved A/D convertor. They
also give an adaptive scheme to update the unknown delays.
However they restrict themselves to branches and small
delays (sample-time errors).

The main goal of the current paper is to clarify the rela-
tionship between uniform and recurrent nonuniform sampling
schemes of bandlimited signals. For this purpose a new alter-
native discrete-time analysis model of the recurrent nonuniform
sampling scenario is introduced. This model can be described by
the analysis part of a uniform DFT modulated filterbank from
which the uniformly distributed and downsampled frequency
bands are mixed in a very specific way. This description gives
a clear relationship between uniform and recurrent nonuniform
discrete-time sampling schemes. A side benefit of this relation-
ship is an efficient reconstruction structure with which one can
reconstruct uniform discrete-time Nyquist signal samples from
recurrent nonuniform samples from which the mutual delays be-
tween the nonuniform distributed samples are known. This re-
construction structure can be viewed as a natural extension of
the synthesis part of an uniform DFT modulated filterbank [13].

The organization of this paper is as follows. In Section II we
formulate the recurrent nonuniform sampling scenario and give
a discrete-time model for this scenario. A new alternative dis-
crete-time model and its description are derived in Section III.
This alternative model can be represented by a uniform DFT
modulated filterbank as will be explained in Section IV. This
representation leads in Section V to an efficient DFT modu-
lated filterbank realization for the reconstruction of uniform dis-
crete-time Nyquist signal samples from recurrent nonuniform
samples. In Section VI we discuss simulation results and the
paper is finished with conclusions in Section VII.

Finally we note here that in practice noncausal results can
always be obtained by applying an appropriate delay. For this

Fig. 1. Example of recurrent nonuniform signal samples for� � �.

reason we will not be concerned with causality. Furthermore we
will use lower case characters for the representation of signals
in time domain and upper case characters for frequency domain
representation. Underlined boldface characters are used for vec-
tors, boldface characters for matrices, is a diagonal ma-
trix, while denotes the transpose of a vector.

II. RECURRENT NONUNIFORM SAMPLING

A. Sampling Scheme

In this paper, we focus on the recurrent nonuniform sampling
scheme. In this form of sampling, the sampling points are di-
vided into groups of points each. The groups have a recur-
rence period, which is denoted by , that is equal to times
the Nyquist period . Each period consists of nonuniform
sampling points. Denoting the sampling points in one period
by , for , the complete set of sampling
points for is given by

(1)

where . We will assume throughout this paper that
all delays are different, thus for . Furthermore,
without loss of generality, we use and for .
It is shown in [14] that the original bandlimited analog signal

is uniquely determined by the sampling points as defined in
(1). From this equation and the assumptions, it follows straight-
forward that for , with , the sequence
of recurrent nonuniform samples reduces to a sequence of uni-
form samples. It is finally noted here that recurrent nonuniform
samples can be regarded as a combination of sequences of
uniform samples taken at one th of the Nyquist rate.

Example 1: An example of a recurrent nonuniform sampling
distribution for the case is depicted in Fig. 1. This figure
shows a time axis on which the small vertical lines have a dis-
tance of [s], the Nyquist period. With the undersam-
pled period equals [s]. Within each undersampled
period of [s] we have samples. The first sample point
in each undersampled period is denoted with a at
[s]. The second sample point, denoted with a , has a delay of

[s] with respect to the first sample point. Finally, the third
sample point, denoted with a , has a delay of [s] with
respect to the first one.

B. Sampling Scenario

A recurrent nonuniform sampling scenario that covers
a wide range of applications is sketched in Fig. 2. In this
figure the uniformly distributed discrete-time signal samples

are reconstructed by using parallel
A/D converters. Each of these convertors is operating at a
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Fig. 2. Recurrent nonuniform sampling scenario with � parallel A/D con-
verters, each operating at a lower rate than the Nyquist rate ��� � ���� �� �,
and the reconstruction of the uniformly distributed discrete-time signal samples
���� � � ����� .

lower rate than the Nyquist rate such that
the average overall sampling rate is equal to the Nyquist rate

. Without loss of generality, we will assume throughout
this paper that the continuous-time signal and its delayed
versions , for , are real valued
baseband signals. Furthermore, we will assume that is
bandlimited to .

C. Discrete-Time Model

We will make our further derivation completely in the dis-
crete-time domain. For this we need a discrete-time model of
the recurrent nonuniform sampling scenario as depicted in the
left-hand side (LHS) of Fig. 2. In order to derive this discrete-
time model the first step is to model each of the undersam-
pled A/D converters by one A/D converter that is sampled at
Nyquist rate followed by a downsampler of a factor .
The second step is to model each of the analog delays in the
discrete-time domain. The frequency response function of each
of the analog delays is given by with and

the analog frequency [Hz]. Since the amplitude characteristic
of this function equals 1 for all frequencies, we will neglect it
throughout this paper. A sketch of the analog phase character-
istic is depicted in the LHS of Fig. 3. Because of the bandlimited
character of , the frequency response function of
the discrete-time delay can be modeled by the periodic func-
tion , where is the relative dis-
crete-time frequency with period . The discrete-time phase
function of is shown at the right-hand side (RHS)
of Fig. 3. In this figure, we have chosen the fundamental interval
(FI) as . In this FI the phase of the discrete-time
delay is given by the following linear function of :

(2)

Without loss of generality we will neglect, both in the equations
and the figures, a possible phase jump from to . Further on
in this paper it will appear that the phase jump from to

at the edge of the FI needs extra attention since it plays
an important role in some basic equations of the derivation. For
the uniform sampling case, thus when , this phase jump
equals and can be neglected. However for the nonuniform

Fig. 3. Phase relation between analog and discrete-time delay.

sampling case does not need to be an integer number and thus
this phase jump equals and can not be neglected.

These two steps result in the discrete-time model of the re-
current nonuniform sampling scenario as depicted at the RHS
of Fig. 4.

In order to clarify the relationship between recurrent nonuni-
form signal samples and uniform signal samples we will first
introduce in this paper an alternative discrete-time model of the
recurrent nonuniform sampling scenario.

III. ALTERNATIVE DISCRETE-TIME MODEL

A. Description of Alternative Model of One Branch

To make our further derivation, we will first focus here on one
branch and introduce an alternative model for this branch. For
this reason, we will skip the index here.

The discrete-time model of one branch of the nonuniform
sampling scenario is depicted in Fig. 5. In this figure, the dis-
crete-time input signal samples are samples at Nyquist
rate . These signal samples are delayed by the discrete-time
delay, from which the frequency response function in the FI
is given by . The resulting signal samples are
downsampled by a factor leading to the output signal sam-
ples , with .

With the twiddle factor defined as and
using the standard expression [13] for a downsampling oper-
ator , we obtain the following general expression in the
frequency domain for the discrete-time output signal samples

:

(3)

For integer values of , this equation reduces to

(4)

Thus in this case the output signal samples of Fig. 5 can be
viewed as a time aligned linear combination of uniform fre-
quency bands of the input signal samples. This simple relation-
ship does not hold for noninteger values of since we need to
take care of the phase jump, as described in the previous section
and depicted in Fig. 3. This point of attention can be verified by
the following simple example.

Example 2: In this example we use , ,
and the delay can be any noninteger number. With

these parameters we can calculate on the one hand, directly from
the model as depicted in Fig. 5, an expression for the output
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Fig. 4. Recurrent nonuniform sampling scenario. LHS:� undersampled parallel A/D convertors. RHS: Discrete-time model.

Fig. 5. Discrete-time model of one branch of nonuniform sampling scenario
with � � � � � and discrete-time delay operator ��� �.

signal samples. With relative frequency and via the IFTD this
results in

(5)

where the signal samples denote the samples on the new
time axis [s].

On the other hand we can evaluate the same result by using
(3). With we have and this equation
reduces to

(6)

We observe that the phase characteristic of the first term is a
scaled version of the original phase characteristic of . The
second term is first shifted over [rad] and then scaled. Because
of the fact that the original phase contains a jump of at the
edge of the FI, the second term contains a phase jump at .
Thus

.

Because of the phase jump at , the output samples
have to be calculated by splitting the IFTD equation as follows:

(7)

Fig. 6. Derivation of alternative discrete-time model of one branch by applying
a modulation and demodulation operator.

A valid alternative model is obtained by shifting the fre-
quency response of the delay operator before it is downsampled.
This frequency shift, that can be performed in time domain
by a modulation operator, is chosen in such a way that the
phase jump does not appear in the FI of the aliased signal
that results after the downsampling operation. This alternative
model is sketched in Fig. 6. In order to start with the original
discrete-time model, we have applied in the upper part of
the figure a modulation operator followed by a demodulation
operator. The result is that the spectrum of the input signal is
first shifted over [rad] and then shifted over the
same amount in the opposite direction. In the lower part of the
figure, the demodulation operator is first moved over the delay

, resulting in a delay from which the frequency response
is given by

(8)

Finally the demodulation operator is moved over the downsam-
pling operator which results in a demodulation operator of

.
The relation of the phase response between the original delay

and is depicted in Fig. 7. In this figure, a new
shifted Fundamental Interval is defined as

(9)

In the phase of is defined by:

(10)
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Fig. 7. Phase of original and shifted discrete-time delay.

Furthermore, by using the standard modulation and demodula-
tion operators [5], we note that

(11)

(12)

In a similar way as before, we can derive the following fre-
quency domain expression for the discrete-time output samples
of the alternative model of one branch:

(13)

Substitution of results in the following fre-
quency domain expression that describes one branch of the al-
ternative model of the recurrent nonuniform sampling scenario:

(14)
while the frequency response of the output is obtained by

(15)

Finally note that range of the running index of the summation
in (14) is defined by

(16)

and, thus, needs not to be an integer.
Example 3: In this example, we will verify (14) by using the

same parameters as in example 2. With these parameters (14)
reduces to

Applying the IFTD to results in the
following equation:

which is indeed the same result as in Example 2.

B. Description of Alternative Discrete-Time Model

By applying the modulation and demodulation operator, as
described earlier, to each of the branches of the discrete-time
model of the recurrent nonuniform sampling scenario we ob-
tain the alternative discrete-time model as depicted in Fig. 8.
Each of these branches can now be described as explained pre-
viously, which leads to the following set of equations for

:

(17)
We can combine this set of equations in the following vector-
matrix notation:

(18)

with

(19)

Finally a demodulation operator is applied to each of the
branches, which is expressed in the following vector:

(20)

Note that a nonuniform DFT matrix has been defined in [2]. In a
similar way, the matrix can be viewed as a nonuniform DFT
matrix.

From (17) and (19), it follows that the description
of the alternative discrete-time model of the recursive
nonuniform sampling scenario consists of a mixture of

uniformly distributed downsampled frequency bands
.

IV. DFT MODULATED FILTERBANK REPRESENTATION OF

ALTERNATIVE DISCRETE-TIME MODEL

From literature, it is well known that a set of uniformly
distributed downsampled frequency bands can be obtained by
the analysis part of a DFT modulated filterbank representation
[13]. In our case, however, we have to modify this representation
because of the fact that the input signal samples of the alterna-
tive discrete-time model are first modulated. For this reason, we
will first give in this section a short derivation of the analysis
part of a DFT modulated filterbank from which the input signal
samples are first modulated. In the alternative model, these re-
sulting frequency bands, of vector , are mixed by the
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Fig. 8. Alternative discrete-time model of recurrent nonuniform sampling scenario by applying modulation and demodulation operators.

Fig. 9. Basic structure of uniform filterbank from which the input signal sam-
ples are first modulated.

nonuniform DFT matrix and than filtered by the diagonal
filter matrix . In this way, we obtain a DFT modulated
filterbank representation of the alternative discrete-time model
of the recursive nonuniform sampling scenario.

For this purpose, we start with the basic structure of a uniform
filterbank of which the input signal samples are first modulated,
which is depicted in Fig. 9. At the top LHS of this figure, we
have drawn a triangular shape, denoting the amplitude charac-
teristic of the input signal samples . The input
signal samples are first modulated, which results in a shifted
input signal spectrum . The shifted amplitude charac-
teristic is shown at the bottom LHS of the figure. This spec-
trum of the modulated input signal is split into uniform fre-
quency bands of width [rad] by using parallel filters

, for . These filters are fre-
quency shifted versions of a prototype filter, which is a lowpass
filter (LPF) , with cut-off frequency . Each
of the filtered signals are downsampled by a factor of , re-
sulting in a set of parallel discrete-time signals for

denoting the time domain representation
of the downsampled frequency bands

(21)

It is well known from literature that a DFT modulated filterbank
is an efficient way for the realization of this uniform filterbank

[13]. This efficient structure uses the following polyphase de-
composition for the prototype LPF :

(22)

The DFT modulated filterbank representation is obtained by
using the polyphase decomposition for each of the filters

and then “moving” the downsamplers over these
frequency shifted and polyphase decomposed filters. This re-
sults in a delay line in which successive samples of the input
signal are collected. This delay line is followed by a set of
parallel downsamplers and polyphase filters . The fre-
quency-shifted versions of the prototype filter are obtained by
using a DFT. Furthermore, we will assume in our development
an ideal LPF prototype filter . For this ideal case, it can
be shown that the polyphase filters are all-pass and
represent the following set of (noncausal) fractional delays [5]:

(23)

As pointed out before, in our development we first modulate
the input signal samples. By “moving” this modulation operator

over the delay line and downsamplers, we obtain
the analysis part of a DFT modulated filterbank representation
from which the input signal samples are first modulated, as de-
picted in Fig. 10. At the LHS of this figure, we see the delay
line, that consists of (causal, uniform) delay elements of

[s]. These delay elements are denoted by the symbol .
At the RHS, we used the matrix , which is the inverse of
the DFT matrix from which the th element is defined as

. The (noncausal) fractional delays, that repre-
sent the ideal polyphase filters of (23), can be combined in the
diagonal filter matrix , which is the inverse of

(24)

The “move” of the modulation operator over the
delay line and downsamplers results in a set of modulators

and the matrix , which is the inverse of the fol-
lowing frequency shift matrix :

(25)
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Fig. 10. Structure of uniform DFT modulated filterbank from which the input signal samples are first modulated.

Fig. 11. DFT modulated filterbank representation of the alternative discrete-time model of the recursive nonuniform sampling scenario.

Combining this frequency shift matrix with the DFT matrix
results in a (shifted) DFT matrix that is defined as follows:

(26)

Note that this DFT matrix and the nonuniform DFT matrix
, as defined in (19), have the same structure. From this struc-

ture it follows easily that in case of uniformly distributed delays,
thus if , we obtain .

Combining all these results and using (18), we arrive at a
DFT modulated filterbank representation of the alternative dis-
crete-time model of the recursive nonuniform sampling sce-
nario, which is depicted in Fig. 11. Thus by applying an ap-
propriate modulation and demodulation operator, the relation-
ship between the recurrent nonuniform and uniform sampling
schemes can be described by the analysis part of a uniform
DFT modulated filterbank from which the uniformly dis-
tributed and downsampled frequency bands are first mixed with
the nonuniform DFT matrix . Then each of the resulting
branches is time aligned by a delay .

Finally, it is noted here that the modulation/ demodulation
operators in this figure simply reduce to

for odd
foreven .

(27)

For odd , the phase jump is automatically at the edge of the FI
of the aliased signal that results after the downsampling operator
and no frequency shift is needed. For even however, the phase
jump is exact in the middle of the aliased signal (verify, e.g.,
Example 2) that results after the downsampling operator and a
frequency shift of [rad] is needed.

V. EFFICIENT DFT MODULATED FILTERBANK REALIZATION

OF RECONSTRUCTION

An important side benefit of the filterbank description of the
alternative model is that we can now simply derive an efficient
reconstruction structure. In order to reconstruct the original
signal samples , we first give the inverse of (18), which
results in

(28)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on December 12, 2008 at 06:43 from IEEE Xplore.  Restrictions apply.



5154 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, OCTOBER 2008

Fig. 12. Efficient DFT modulated filterbank realization of reconstruction of uniform signal samples from recursive nonuniform signal samples.

Furthermore, it is known from [13] that the DFT modulated syn-
thesis filterbank is an efficient way to reconstruct a signal from
its uniform frequency bands, available in vector . This
is depicted in the RHS of Fig. 12. This figure represents the
synthesis part of an efficient DFT modulated filterbank realiza-
tion with which we can reconstruct uniform discrete-time signal
samples from recurrent nonuniform discrete-time signal
samples . The first step of this recon-
struction scheme is the modulation of the incoming signals. This
modulation is needed to obtain downsampled signals that do not
have a phase jump in the FI. In order to further process the
parallel signals, a proper time alignment is needed. This time
alignment is taken care of by the inverse of the diagonal ma-
trix . Each of the resulting signals contains a mixture
of uniform filterbands for as
defined in (21). This mixture is demixed by the inverse of ma-
trix . From this point onwards the structure is equivalent to
the synthesis part of an efficient DFT modulated uniform filter-
bank, which is the inverse of the analysis structure as depicted
in Fig. 10. For this reason, this reconstruction structure can be
viewed as a natural extension of the synthesis part of a uniform
DFT modulated filterbank.

Finally, we note here that in case of uniform sampling, thus
for , we have , with the identity matrix.
Furthermore, if we assume that is an ideal LPF, we also
have . For this specific situation, the
whole reconstruction scheme of Fig. 12 reduces, as expected, to
a time-interleaved structure which consists of a set of parallel
upsamplers and (noncausal) delays.

VI. SIMULATION RESULTS

In order to verify the results we implemented, a causal Matlab
version of the ideal noncausal structure as depicted in Fig. 12
and compared the original input signal to the causal recon-
structed signal . Causality of the reconstruction structure is ob-
tained by applying the following two delay operators.

1) Since , an extra (causal) delay of
[s] is added to each of the noncausal delays of

.
2) The transpose of the delay line at the RHS of Fig. 12 is

used, resulting in a delay of [s].

TABLE I

There are many different ways to cope with the implementa-
tion of noninteger delays [11], [13]. In our implementation, we
choose the following approach: A noninteger delay can be ap-
proximated by a fractional delay. With an integer number, a
fractional delay with resolution can be implemented very
efficiently by using the polyphase decomposition of an FIR LPF
with cut-off frequency . In our implementation, we
used a resolution of . The length of the
used fractional delay FIR filters was coefficients. Fur-
thermore, we used two different options for the reconstruction,
namely, the following:

1) “reconstruct”: Filterbank reconstruction as discussed in
this paper;

2) “time interleave”: Reconstruction by simple uniform time-
interleaving the signal samples , thus, only using
the upsamplers and the delay line. Obviously this
option is only perfect when the delays are uniformly
distributed and the results will show that small deviations
from this uniform distribution already cause significant er-
rors.

Finally, we used , and the input signal samples
are generated as

(29)

We have run three different simulations, each with 2048 signal
samples. The first one with uniformly distributed delays, the
second one with nearly uniformly distributed delays (within 5%
deviation from uniform) and in the third simulation we used
strongly nonuniformly distributed delays. The exact values of
the delays are given in Table I.
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Fig. 13. Simulation results for different distribution of delays.

The simulation results are depicted in Fig. 13. For each set of
delays the figure shows for the two reconstruction options “Re-
construct” (solid line) and “Time interleave” (dotted line) at the
LHS the amplitude characteristic [dB] and at

the RHS the phase characteristic [rad] of the recon-
structed signal samples , both as a function of the frequency

with . To make these plots we used one fragment
of 512 samples of and applied an FFT of the length 512 to
these (unwindowed) data samples. Furthermore, we compared
the samples of the chosen fragment with the corresponding orig-
inal signal samples of and calculated the following error:

.
In the first simulation result, a) uniformly distributed delays,

the plots show no difference between the “Time interleave” and
the “Reconstruct” option. The reason is that in this case the
“Time interleave” option is perfect, while the “Reconstruct” op-
tion has a very small error, . This small error
results from the imperfections of the used filters. This error
can be used as a reference for the other simulation results. In
the second simulation result, b) nearly uniformly distributed de-
lays, the error of the “Reconstruct” option is still very small,

, while the results of the “Time interleave” op-
tion already show some erroneous peaks. These peaks are also
described in [8] and [9]. Finally, the third simulation result, c)
strongly nonuniformly distributed delays, shows that the “Re-
construct” option is still very good with error ,
while the results of the “Time interleave” option become ex-
tremely bad.

VII. CONCLUSION AND FUTURE RESEARCH

In this paper, we clarified the relationship between uniform
and recurrent nonuniform sampling schemes. This insight was
obtained from a new alternative discrete-time model of the
nonuniform recurrent sampling scenario. It was shown that this
model could be described by the analysis part of a uniform DFT
modulated filterbank from which the uniformly distributed
and downsampled frequency bands are mixed by the nonuni-
form DFT matrix . A side benefit of this new model was
the introduction of an efficient structure with which one can
reconstruct uniform discrete-time Nyquist signal samples from
recurrent nonuniform samples with known mutual delays be-
tween the nonuniform distributed samples. This reconstruction
structure can be viewed as a natural extension of the synthesis
part of an uniform DFT modulated filterbank.

For real practical applications, the derived filterbank structure
has the following limitations, which are relevant topics for fu-
ture research:

1) The used filterbank is critically sampled, thus the number
of frequency bands, say , and the downsample factor
are equal . In practice, the filters are nonideal
and have a transition band, which causes leakage from one
frequency band to another. In such a case, it is better to
use noncritical (over)sampled filterbanks [13], for which

.
2) The delays are assumed to be known. In many practical sit-

uations, this is not the case. An adaptive mechanism, sim-
ilar to the ones as derived in [8], [12], and [19], is needed
to make an online estimation of the delays.

3) In practice, different delays can be (almost) equal. The re-
construction (28) makes use of the inverse of the nonuni-
form DFT matrix . This inverse matrix will become nu-
merically unstable if the delays and are almost equal
for .
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