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SIGNAL RECONSTRUCTION FROM NONUNIFORM SAMPLES USING

PROLATE SPHEROIDAL WAVE FUNCTIONS: THEORY AND

APPLICATION

Seda Senay, PhD

University of Pittsburgh, 2011

Nonuniform sampling occurs in many applications due to imperfect sensors, mismatched

clocks or event-triggered phenomena. Indeed, natural images, biomedical responses and

sensor network transmission have bursty structure so in order to obtain samples that corre-

spond to the information content of the signal, one needs to collect more samples when the

signal changes fast and fewer samples otherwise which creates nonuniformly distibuted sam-

ples. On the other hand, with the advancements in the integrated circuit technology, small

scale and ultra low-power devices are available for several applications ranging from invasive

biomedical implants to environmental monitoring. However the advancements in the device

technologies also require data acquisition methods to be changed from the uniform (clock

based, synchronous) to nonuniform (clockless, asynchronous) processing. An important ad-

vancement is in the data reconstruction theorems from sub-Nyquist rate samples which was

recently introduced as compressive sensing and that redefines the uncertainty principle. In

this dissertation, we considered the problem of signal reconstruction from nonuniform sam-

ples. Our method is based on the Prolate Spheroidal Wave Functions (PSWF) which can be

used in the reconstruction of time-limited and essentially band-limited signals from missing

samples, in event-driven sampling and in the case of asynchronous sigma delta modulation.

We provide an implementable, general reconstruction framework for the issues related

to reduction in the number of samples and estimation of nonuniform sample times. We also

provide a reconstruction method for level crossing sampling with regularization. Another
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way is to use projection onto convex sets (POCS) method. In this method we combine

a time-frequency approach with the POCS iterative method and use PSWF for the recon-

struction when there are missing samples. Additionally, we realize time decoding modulation

for an asynchronous sigma delta modulator which has potential applications in low-power

biomedical implants.
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1.0 INTRODUCTION

In many practical areas, such as medical imaging, geophysics, astronomy and communica-

tion systems, it is often not appropriate to assume uniformly spaced samples. Nonuniform

sampling occurs in many applications, due to imperfect sensors, mismatched clocks or event-

triggered phenomena [1, 2]. Indeed, natural images, biomedical responses and sensor net-

work transmission have bursty structure so in order to obtain samples that correspond to

the structure (information content) of the sampled signals, one needs to collect more samples

when the signal changes fast and fewer samples otherwise which creates nonuniformly dis-

tributed samples. Nonuniform sampling is also desirable for data compression since during

nonuniform sampling, higher instantaneous bandwidth/precision is obtained and resolution

is improved without increasing the bit rate. In the case of data compression, level-crossing

(LC) or event-based sampling is quite efficient [3]. LC sampling is a threshold based nonuni-

form sampling method which creates samples whenever the signal crosses the predefined

thresholds providing reduction in the amount of data to be transmitted especially in wireless

sensor networks.

On the other hand, with the advancements in the integrated circuit technology, small

scale and ultra low-power devices are available to be used for several applications ranging

from invasive biomedical implants to environmental monitoring. However the advancements

in the device technologies also require data acquisition methods to be changed from the uni-

form (clock based, synchronous) to nonuniform (clockless, asynchronous) processing. Syn-

chronous data gathering and continuous transmission create constrains when attempting to

limit size and energy consumption of the sensors. One most recent advancement in the data

acquisition methods in connection with the developments in integrated circuit technology is

called continuous time digital signal processing [4]. Another important advancement is in the
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data reconstruction theorems from sub-Nyquist rate samples which redefines the uncertainty

principle. These new kind of reconstruction methods are known as compressive sensing (CS)

[6]. In CS, random measurements allow perfect reconstruction for ideal sparse signals when

there is no measurement noise. For other signal and noise distributions CS method loses its

efficiency and becomes less useful for practical applications.

In this dissertation, we considered the problem of signal reconstruction from nonuniform

samples in connection with the CS method such that a signal dependent nonuniform sampling

method takes the place of random measurements and eliminates the restriction of the signal

being sparse. In that case we can process all kind of signals. However, a question remains:

can we still obtain a perfect reconstruction? Our method is based on the Prolate Spheroidal

Wave Functions (PSWF), also known as Slepian functions, that can be modified for use in the

realization of signal reconstruction from missing samples, in event-driven (signal dependent)

sampling and in the case of asynchronous sigma delta modulation [7, 16, 3].

We provide an implementable, general reconstruction framework for the issues related

to reduction in the number of samples and estimation of nonuniform sample times. We also

provide a reconstruction method for level crossing sampling with regularization. Another

way is to use projection onto convex sets (POCS) method. In this method we combine a

time-frequency approach with the POCS iterative method and use PSWF for the recon-

struction where there are missing samples. Additionally, we realize reconstruction from time

codes for an asynchronous sigma delta modulator which has potential applications in low

power biomedical implants. Our future work is to make PSWF based reconstruction more

applicable for event-based sampling in low-power applications such as health monitoring and

wireless sensor networks.

1.1 DISSERTATION OUTLINE

As a background, in Chapter 2, we explain the theory of nonuniform sampling and prolate

spheroidal wave functions (PSWF). In this dissertation, we consider reconstructing a time-

limited and nearly bandlimited signal from its nonuniformly spaced samples using the discrete

2



form of PSWF [7]. The PSWF are the natural basis of the space of simultaneously band-

limited and time-limited functions. No functions can be completely band-limited and time-

limited simultaneously, but the prolates are the closest functions to fit this description.

This is why they are of such interest in information theory, signal processing and optics.

In Chapter 3, we show our approach for nonuniform sampling problem together with the

necessary derivations, analysis and results. Although, there are some difficulties associated

with nonuniform sampling and its applications in the signal recovery, the advantages of

the nonuniform sampling are many. First of all, it is possible to obtain signal dependent

nonuniform sampling scheme by using a level crosser (LC) sampler [3, 8]. The LC sampling

is not a new method but it is known as being the most efficient way of sampling due to its

economical sampling which is akin to compressive sampling [8, 3, 6]. The conventional LC

sampling is threshold based where the samples are taken in the time domain when the signal

crosses any of the predefined uniformly separated levels. The efficiency of LC sampling is

due to its being signal-driven.

In LC sampling the data collection depends on the signal: more samples are taken when

the signal is bursty and fewer otherwise. Chapter 4 is about LC sampling and reconstruc-

tion where we compare the compressive sensing to PSWF based reconstruction. Chapter 5

is about a time-frequency approach and iterative reconstruction for nonuniform reconstruc-

tion problem. In this chapter we explain a time-frequency method which is called Discrete

Evolutionary Transform (DET) [11, 12] and use it for the reconstruction using a Projection

Onto Convex Sets (POCS) method [14, 15] based on PSWF.

In Chapter 6, we explain asynchronous sigma delta modulators (ASDMs) and accompa-

nying time encoding modulation [16, 17, 4] and show how our reconstruction method can

be used. Likewise we present an orthogonal frequency division multiplexing communication

method applicable to a group of sensors that are using ASDMs. Chapter 7 is an overview of

future work that we want to continue exploring.
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1.2 CONTRIBUTIONS AND RELATED PUBLICATIONS
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sample times. We use properties of the prolate spheroidal wave functions (PSWF) and

provide an efficient way of signal reconstruction.
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8. S. Senay, L. F. Chaparro, M. Sun, and R. J. Sclabassi, “Compressive sensing and random
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2.0 BACKGROUND

2.1 NONUNIFORM SAMPLING

Over the past 60 years, a great deal of research has been done to improve Shannon’s sampling

theory [18]. Some of the extensions of the theory have been about sampling of band-pass

signals [19], nonuniform sampling [23], and application of joint time-frequency methods for

dealing with sampling of non-stationary signals [25]. A recent approach applies wavelet

structures [27] to develop new sampling and reconstruction techniques. In signal recovery

problems with missing data, sparsity and bandlimiting, the important work [28] about the

generalized uncertainty principle provides useful concepts. In this chapter, we consider the

basics of nonuniform sampling theory and describe some of the problems associated with

them for which we would like to find solutions. A number of applications that use nonuniform

sampling either inherently or by choice are:

1. Medical applications : Health monitoring can benefit from nonuniform sampling since

nonuniform sampling allows economical data acquisition which is the aim in most of

the developing device technologies that are to be used in invasive biomedical implants

[4, 16, 80].

2. Sensor networks: Event-based sampling or send-on-delta method are some of the

ways of efficient nonuniform sampling for sensors providing reduction in the number of

samples to be transmitted [5].

3. Radar : Many radar applications result in nonuniform data on a two-dimensional grid

[29]. In one-dimensional radar measurements, (e.g., long range radars or pulse radars)

frequency estimation is used to detect movements by Doppler effects. Usually, that
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frequency is much larger than the possible Nyquist frequency, so different nonuniform

sampling techniques can be used to increase performance. Also, in military applications

the use of nonuniform sampling makes detection and jamming of the radar harder.

4. Automotive applications : In today’s vehicles there exist many sensors for different

purposes. For example, toothed wheels with sensors registering when teeth pass the

sensor give a nonuniformly sampled signal, effected by the wheel speed [1].

5. Astronomical time series: Due to weather conditions and equipment failures, the

collected astronomical data are nonuniformly spaced. One special application is in stellar

physics such that luminosity of variable stars are recorded to describe their frequency

contents [30]. For example, detection of periods in both the number of sunspots and

observed properties of other stars is an important task for astronomers. These data are

often nonuniformly sampled as well as sparse and noisy.

6. Packet data traffic: In routers, some data flow controlling algorithms are based on

packet data arrivals. It is clear that data packets will arrive totally at random, therefore

several of the network calculations have to deal with nonuniform sampling. At these

arrival instants these algorithms are assumed to collect measurements, calculate decision

variables and perform a suitable action [1].

Nonuniform sampling may appear due to imperfections in the hardware, as well. For instance,

interleaved analog to digital (A/D) converters are used to increase sampling rates [31]. If N

A/D converters are used to sample a signal, the nth A/D converter samples at times

tk,n = (kN + n)T (2.1)

to get an overall inter-sampling time T for n = 1, · · · , N and k an integer. The results from

the individual A/D converters are multiplexed to get the sampled sequence y(kT ). Individual

A/D converters suffer from time errors, δn, due to the internal clocks, and the sampling clock

also suffers from noise, which gives rise to jitter, τk,n. The actual sampling time for the nth

A/D converter is therefore,

tk,n = (kN + n)T + δn + τk,n. (2.2)
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Here δn is constant for individual A/D converters and τk,n is random. The resulting sequence

t1,1, t1,2, ..., t1,N , t2,1, ..., t2,N , ... is clearly nonuniform. Nonuniform sampling can occur in dif-

ferent forms and if the probability distribution for the sampling times tm, is represented as

pm(t), depending on the type of sampling, pm(t) can be deduced from the probability density

function (pdf), pτ (t), of the sampling noise, τm. Basic models for nonuniform sampling times

are as follows [1]:

• Additive random (AR) sampling: the sampling times are constructed by adding the

sampling noise to the previous sampling time,

tm = tm−1 + τm =
m∑
k=1

τk, t0 = 0 (2.3)

where τm ∈ (0,∞) and E[τm] = T . This means that E[tm] = mT , while the variance

increases with m. The pdf is given as a convolution of the sampling noise pdf m times.

For example, the exponential distribution gives a Poisson sampling process. The central

limit theorem gives that pm(t) will approach a Gaussian distribution when m goes to

infinity, since it is the pdf of a sum of m independent identically distributed variable.

• Stochastic jitter (SJ) sampling: the sampling noise is added to the expected sampling

time,

tm = mT + τm, (2.4)

with τm ∈ (−T/2, T/2) and E[τm] = 0. In this case the variance is constant over time

and the pdf of tm is given directly by the pdf of τm. One natural distribution is the

uniform distribution, pτ (t) = 1/T , −T/2 < t < T/2, but it is also possible to imagine a

truncated Gaussian distribution or other bounded distributions.

• Missing data (MD) sampling: the underlying sampling procedure is uniform but

sometimes samples are missed. This can, for example, be described with a discrete

sampling noise,

tm = tm−1 + τm, (2.5)

and τm ∈ T, 2T, ... which is a special case of AR sampling, with a discrete pdf for the

sampling noise.
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2.1.1 Nonuniform Reconstruction Methods

In order to know (i) how a function f can be stably reconstructed from its nonuniform

samples and (ii) the conditions under which f can be uniquely defined by its samples, many

theories for nonuniform sampling have been derived [32, 34, 36, 37]. The following section

is an overview of some algorithms to reconstruct signals from their nonuniform samples.

2.1.1.1 Iterative Reconstruction An iterative reconstruction algorithm is an alter-

nating mapping method using the information from the nonuniform sample values and the

spectral support of a signal f . A two-step iterative algorithm is typical and it works as

follows:

1. Using and approximation operator A, an auxiliary signal Af is constructed from the

given sampling values of f .

2. The signal Af , which is generally not bandlimited, is projected onto the space of Ω

bandlimited signals by an orthogonal projection P . This projection smoothes Af and

eliminates its discontinuities.

The projection of f , Pf can be interpreted as convolution of f with a sinc-type function if

P is described as a low pass filter, such that

Pf = sinc ∗ f

The approximated signal, fa after implementing the above steps is fa = Af ∗ sinc. The

next iteration creates a new auxiliary signal Af (1), denoting the difference f −Af ∗ sinc by

f (1), we have to add f (1) to the filtered Af (1) to obtain f (2), giving the following formula for

(n+ 1)th iteration:

f (n+1) = f (n) + A(f − f (n)) ∗ sinc (2.6)

= f (n) − Af (n) ∗ sinc+ Af ∗ sinc

More information on the choice of the approximation operator, numerical implementation

and convergence of the iteration issues, can be found in [23].

9



2.1.1.2 The Frame Approach A set of functions {fi}i∈I is a frame in a Hilbert space

H, if for two constants 0 < A ≤ B,

A||f ||2 ≤
∑
i∈I

| < f, fi > |2 ≤ B ‖ f ‖2,

for all f ∈ H. The frame operator S is invertible and

Sf =
∑
i

< f, fi > fi

which gives f = S−1(Sf) = S(S−1f) for f ∈ B2
Ω. where B2

Ω is the space of Ω bandlimited

functions. Since the Sf can be obtained from {f(xi)}pi=1 and the knowledge of the spectral

support Ω, it is possible to reconstructf from sampling values. Frames are associated with

oversampling and redundancy. We meet frames in nonuniform sampling methods when it

is difficult to sample at exactly the right rate. If the sampling rate is exactly right, the

interpolating functions sinc(t − tn) are a basis for the bandlimited space and they are a

frame when we oversample.

If the uniformly taken samples satisfy the Nyquist criteria, the set of shifted sinc functions

becomes a frame which is also a tight frame. There are some sufficient conditions that must

be satisfied for the set of shifted sinc functions to be a frame [33]:

1. Kadec 1/4 theorem: If {xi}i∈Z satisfy |2xiΩ − i| ≤ L < 1
4
, then shifted sinc functions

form an exact frame and there exists a biorthonormal sequence {gi} such that f(x) =∑
i f(xi)gi(x). This theorem only allows a maximal deviation of 1/4 of the distance

between two sampling points of the uniform set.

2. Duffin-Schafer theorem: Given a sequence {xi}, if there exist constants α,D > 0 on

0 < Ω < γ such that

|xi − xj| ≥ α > 0 ∀i 6= j

|xi −
i

j
| ≥ D ∀i

then shifted sinc functions form a frame which are linearly dependent. This linear de-

pendency is useful for good reconstruction of f , if some samples are missing or not exact

due to round off error or noise. In this case, the inexact frames are preferable to exact

frames and orthogonal bases.
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2.1.1.3 Pseudo-inverse Matrix Reconstruction Method Pseudo-inverse methods

consider the nonuniform sampling problem from an algebraic point of view based on the

solution of systems of linear equation. Pseudo-inverse methods work efficiently when the

number of sampling points and the size of the spectrum are small [2]. One can prefer using

iterative methods, if only a small percentage of sampling points are missing and the gaps

between sampling points are not too large. However, if these conditions are not met, pseudo-

inverse methods become an alternative to recover signals from nonuniform samples.

• Let M be a matrix with p row vectors of length n which can be shifted versions of

some function g ∈ L2, in particular g is the sinc function. If the rows of M are linearly

independent, the orthogonal projection of a given function f ∈ B2
Ω onto the linear span

of M can be described by

PMf = fMT (MMT )−1M

There is a unique series representation of f by f =
∑p

i=1 λigi(. − i), where λi are the

coefficients. If M is not of full rank p, the λi are not unique, then pseudo inverse M †

approach is needed which allows to determine the minimal norm least squares solution

∧ = {λi}pi=1 of f =
∑p

i=1 λigi(. − i) using ∧ = fM †. That way one can obtain an

approximation fa for f for which ||fa− f ||2 is minimal. The problem with this approach

is calculation of ∧ requires the whole f , however we only have some samples of f . Using

the following formulas, one can obtain ∧ without the use of whole signal f :

M † = (MMT )M = MT (MMT )†

so that ∧ = fMT (MMT )† where fMT = 〈f, g(.− xi)〉pi=1 = f(xi)
p
i=1 [9]. One can find a

connection between frame approach and the method described above: Frame expansion

f =
∑p

n=1〈f, S−1fn〉fn and for λn := 〈, S−1fn〉 the sequence (λ)pn=1 is a minimal norm

solution.

• The other way is to consider linear mapping from the space of Fourier coefficients to

the space of sampling sets (described by matrix M) such that the following equation is

obtained

f̂(Ω)M = (f(xi))
p
i=1
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and multiplying M † by (f(xi))
p
i=1 results in minimal norm sequence of k Fourier coeffi-

cients of the approximation signal f̂a. The computation time depends mostly on the size

of M and if the number of sampling points and the spectrum are small, the algorithm

works efficiently.

2.1.1.4 POCS Method Projection onto convex sets (POCS) method is a recursive al-

gorithm for finding a point in the intersection of closed convex sets [14]. The theory of POCS

method was developed in 1967 and first applied to images in 1982. Considering a Hilbert

space L2 with norm ||.|| of all square integrable functions and a convex set C ⊂ L2(R), for

any f ∈ L2(R), the projection Pf of f onto C is by definition the nearest neighbor to f in

C such that if C is closed and convex, Pf exists and is uniquely determined by f and C as

||f − Pf || = ming∈C ||f − g||

Nearly most data of an unknown signal f ∈ L2(R) can be interpreted as a constraint that

restricts f to lie in a closed convex set Ci, i = 1, ..., p. In such a case there are p closed

convex sets for p unknown properties and f must lie in the intersection

C0 :=

p⋂
i=1

Ci

Then a point in C0 must be found given the sets Ci and projection operators Pi projecting

onto Ci for p = 1, ..., p. The convergence properties of the sequence (f (k)) are based on the

theorems given by [14] such as

f (k+1) = PpPp−1...P1f
(k), k = 0, 1, ...

An important example for C is the set of all square integrable functions. In other words Ci

is the set of band-limited functions whose values at the sampling point xi coincides with the

value of the sampled function. There are basically two different methods to reconstruct a

signal by POCS: 1. Iterative algorithm, 2. One step method.
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1. Iterative algorithm: The information of the sampling values is used step by step as a

correction term and each step a certain multiple of the shifted sinc function is added to

the approximation such that

f (k+1) = PpPp−1...P1f
(k) (2.7)

f (0)(x) := h(x) (2.8)

where h(x) is the initial estimate. The algorithm converges to a point in the set C0 :=⋂p
i=1Ci, which is in general the original signal f .

2. One step method: The aim of the one step method is to project directly onto the inter-

section set C0 which can be defined as C0 = g|g ∈ BΩ|2 for g(xi) = f(xi), i = 1, ..., p. The

g(xi) = α⇐⇒ 〈g, sinc(.− xi)〉, hence the projection of f onto C0 is P0 = (f(xi))A
−1M

where M is composed of shifted sinc functions and A := MMT .

Additionally there are other methods such as the ones that use polyphase filter banks for

efficient reconstruction of nonuniformly decimated bandlimited signals [38] or by means of

time-varying discrete-time FIR filters [39]. In the case of signal reconstruction from sparse

samples, compressive sensing [6] is the most attractive method for both signal processing

and mathematics communities. Compressive sensing is also a form of nonuniform sampling

together with reconstruction, therefore in the following part we will explain it.

2.1.1.5 Compressive Sensing Compressive sampling (CS), also known as sparse sam-

pling, is basically the process of creating an underdetermined system of equations where

there are far fewer equations than unknowns and finding sparse solutions to this system

utilizing the prior knowledge that the signal is sparse or compressible [55, 65]. Given a basis

{ψi}Ni=1, a signal x ∈ <N can be represented in terms of N coefficients {si}Ni=1 as

x =
N∑
i=1

siψi, (2.9)

which can also be written as x = Ψs where Ψ is N × N and has ψi as its columns. In CS

the signal x is not acquired directly, but rather M < N linear measurements

y = Φx = ΦΨs = Θs (2.10)
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are taken using M × N measurement matrix Φ. If the signal is K sparse then K << N

entries are nonzero and M is preferred to be as close as possible to K. In order to recover a

good estimate of x, the measurement matrix must satisfy the restricted isometry property

(RIP) [6]. According to RIP at least M = K log(N/K) measurements are needed. For K-

sparse signals, since M < N there are infinitely many solutions s̃ that satisfy Θs̃ = y. This

is because if Θs = y then Θ(s + r) = y for any vector r in the null space of Θ. The signal

reconstruction algorithm aims to find the signal’s sparse coefficient vector ŝ in the N −M

dimensional null space. Using `1 optimization approach, the recovery is given as

ŝ = arg min||̃s||1 such that Θs̃ = y (2.11)

Some other recovery algorithms are orthogonal matching pursuit [56] and StOMP [57].

2.2 PROLATE SPHEROIDAL WAVE FUNCTIONS

In this dissertation, our contributions emerge from using some properties of the prolate

spheroidal wave functions (PSWF) which are also known as Slepian functions. The question

to what extent are functions which are confined to a finite bandwidth also concentrated in

the time domain? that was posed by Claude E. Shannon raised the interests of researchers

in the late 1950’s. In the 1960’s David Slepian and others published papers defining the

dimensionality of time-frequency region and showed that the PSWF are the set of functions

that simultaneously optimized energy concentration in time and in frequency when either

or both has a finite interval. However, the initial work of Slepian and others were valid for

continuous time and frequency. Later, in 1978 Slepian published his prominent work where

he defined the discrete prolate spheroidal sequences (DPSS).

In our work, we aim to provide PSWF- based reconstruction solutions for nonuniformly

sampled signals that are not necessarily bandlimited. Our motivation is to find a stable

reconstruction method for the signals from their nonuniform samples using a basis other

than sinc function such that we can obtain a finite dimensional solution without making the

reconstruction problem ill posed. We will see that practical problems of the classical sampling
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theory under the assumption of band-limitedness and the use of a sinc interpolation kernel

can be dealt successfully when PSWF are used as the basis of interpolation. The following

section will explain the theory and properties of PSWF and of DPSS that have inspired us

to choose them as the tool for the realization of the work in this dissertation.

2.2.1 Notation and Properties

The notation for the PSWF used in this dissertation is ϕn(t). Indeed, the PSWF are depen-

dent on a total of four parameters:

• t : the continuous time parameter

• n : the order of the function

• τ : the interval on which the function is known

• γ : the bandwidth parameter

where γ = τσ and σ is the finite bandwidth or cutoff frequency of ϕn(t) of a given order n.

Spheroidal Wave Functions (SWF) are solutions of the Laplace equation that are found

by writing the equation in spheroidal coordinates and applying the technique of separation

of variables, just like the use of spherical coordinates lead to spherical harmonics. They are

called oblate spheroidal wave functions or oblate harmonics if oblate spheroidal coordinates

are used and prolate spheroidal wave functions or prolate harmonics if prolate spheroidal

coordinates are used [20]. Prolate spheroidal coordinates are a three-dimensional orthogonal

coordinate system that result from rotating a spheroid around its major axis, i.e., the axis

on which the foci are located. Rotation about the other axis produces the oblate spheroidal

coordinates. Prolate spheroidal coordinates can be used to solve various partial differential

equations in which the boundary conditions match its symmetry and shape, such as solving

for a field produced by two centers, which are taken as the foci on the z-axis. One example

is solving for the wave function of an electron moving in the electromagnetic field of two

positively charged nuclei. Considering the spheroidal differential equation [20, 98],

d

dx
((1− x2)

dw

dx
) + (λ+ γ2(1− x2)− µ2

1− x2
)w = 0, (2.12)
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with real parameters λ, γ2 and µ for µ = 0, 1, 2, . . ., the PSWF are solutions of (2.12) that

are bounded on (-1,1). The properties of PSWF {ϕn(t)} can be itemized as follows:

• They exist for special values of λ which are eigenvalues and for γ = 0, they are the

associated Legendre functions [96]. In the case of µ = 0 with γ2 > 0, the SWF are called

the PSWF which can be fully symbolized as {ϕn,σ,τ (t)} where γ = τσ and τ, σ > 0.

• The most interesting property that ϕn,σ,τ (t) satisfy is the double orthogonality relations

∫ τ

−τ
ϕn,σ,τ (t)ϕm,σ,τ (t)dt = λnδm,n (2.13)∫ ∞

−∞
ϕn,σ,τ (t)ϕm,σ,τ (t)dt = δm,n (2.14)

• The PSWF are also the eigenfunctions of the two integral equations

∫ τ

−τ
ϕn,σ,τ (x)

sinσ(t− x)

π(t− x)
dx = λn,σ,τϕn,σ,τ (t) (2.15)∫ τ

−τ
ϕn,σ,τ (t)e

−jσω/τdt = γn,σ,τϕn,σ,τ (ω) (2.16)

and since they are bandlimited in (−σ, σ),

∫ τ

−τ
ϕn,σ,τ (x)

sinσ(t− x)

π(t− x)
dx = ϕn,σ,τ (t) (2.17)

From (2.17),

sinσ(t− x)

π(t− x)
=
∞∑
n=0

ϕn,σ,τ (t)ϕn,σ,τ (x) (2.18)

and the discrete orthogonality relation is obtained

∞∑
n=0

ϕn,σ,τ (kπ/σ)ϕn,σ,τ (mπ/σ) = δk,m (2.19)
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• The Fourier transform of the PSWF satisfy the following relations,

∫ ∞
−∞

e−jtωϕn,σ,τ (t)dt = (−j)n
√

2πτ/(σλn)ϕn,σ,τ (τω/σ)χσ(ω) (2.20)∫ τ

−τ
e−jtωϕn,σ,τ (t)dt = (j)n

√
2πτλn/σϕn,σ,τ (τω/σ) (2.21)

where χσ(ω) is the characteristic function of (−σ, σ). We can normalize the PSWF by

setting τ = 1 and hence γ = σ so that they are orthonormal on (−1, 1) where ϕn,σ,1 can

be shown as ϕn which gives,

∫ 1

1

e−jtσωϕn(t) = γnϕn(ω)

where γn = (j)n
√

2πτλn/σ and after rearranging

e−jtσω =
∑
n

γnϕn(ω)ϕn(t) (2.22)

for t, ω ∈ [−1, 1].

• As can be measured from the value of λn(γ), the energy of PSWF becomes less concen-

trated as the order n increases in the interval [−1, 1] for fixed values of γ. This property

makes the summation of eigenvalues a finite value [22].

∞∑
n=0

λn(γ) =
2γ

π
(2.23)

The first d(2γ)/πe eigenvalues are close to 1 and for n beyond d(2γ)/πe, the eigenvalues

become close to 0.

• The oscillation frequency of PSWF increases as γ increases. The various orders of PSWF

are aperiodic which poses an alternative for the study of cyclic behavior of any type of

motion since cyclic patterns are by nature aperiodic.
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2.2.2 Discrete Prolate Spheroidal Sequences

The computational and derivational complexity have been the main reasons for the unpop-

ularity of PSWF in engineering and scientific areas for many years. The hardness in their

computation is not an obstacle anymore, thanks to the speed of the today’s computers and

the developed algorithms [20, 21, 22]. Although generation of the function set for studying

them can be dealt successfully with today’s computer speeds, it is still difficult to implement

the algorithm that generates the function set for higher orders of n and high bandwidth

values of γ [26]. The algorithms that have been proposed so far can be analyzed in terms

of their advantages and disadvantages. As for the generation of function sets with higher

orders of n and γ, one approach is to follow the expansion:

ϕn,σ,τ (t) =
∞∑
k=0

βnkPk(t) (2.24)

where Pk(t) is the normalized Legendre polynomial of order k. The coefficients βnk can be

calculated from a recurrence relation [22].

In his work Slepian claimed that ϕn,σ,τ (t) were simply normalized versions of the SWF

of order zero. In order to find the eigenvalues, he used the radial solution in spheroidal wave

coordinates of the Helmholtz wave equation of first type

λn,σ,τ =
2γ

π
[R0n(γ, 1)2] (2.25)

and for the ϕn,σ,τ (t), the angular solution of the Helmholtz wave equation of the first type

λn,σ,τ =

√
λn(γ)/τ

µn(γ)
S0n(γ,

t

τ
) (2.26)

where

µn(γ) =

√∫ 1

−1

(S0n(γ, t))2dt (2.27)

The solution to S0n(γ, t) is found using the following expansion:

Smn(γ, t) =
∞∑

r=0,1

dmnr (γ)Pm
m+r(t) (2.28)
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where Pm
m+r(t) is the Legendre polynomial and dmnr (γ) is the expansion coefficient. The

coefficient can be obtained in an iterative way as shown in [20]. This approach to generate

ϕn,σ,τ (t) is only valid for the time interval [−1, 1]. Outside this interval the following equation

can be applied [41]:

ϕn,στ (t) = (
λn(γ)

τNn

)1/2κ

M(n)∑
r=0,1

(−1)(r−n)/2d0n
r (γ)jr(

γt

τ
) (2.29)

where jr are spherical Bessel functions. The recovery of one-dimensional discrete functions

from uniformly separated samples using PSWF has been explored by [22, 47, 52]. In practical

applications, PSWF is converted into the discrete prolate spheroidal sequences (DPSS) which

can be defined as ϕn,σ,τ [kT ], where T is the sampling period for k being an integer. When

using DPSS for signal recovery, the number of DPSS coefficients and the frequency parameter

γ should be decided. This is a special property that makes the DPSS analysis different than

the Fourier series analysis. The function to be analyzed can be represented with DPSS basis

with regard to a truncation based on the energy concentration of the eigenvalues. The free

parameter γ can be decided based on the desired accuracy of the representation.

The DPSS are also closely related to the eigenfunctions of the harmonic oscillator in quan-

tum mechanics which describe the location probability of a particle trapped in a parabolic

potential well. The solution to this kind of concentration problem is similar to the solutions

of maximally concentrating orthogonal functions in time. The difference is that the DPSS

are maximally concentrated between the times −T/2 and T/2, whereas the harmonic oscil-

lator eigenfunctions extend to ±∞ although they are exponentially damped. The oscillator

eigenfunctions are products of Hermite polynomials with symmetric Gaussian functions.

The harmonic oscillator eigenfunctions are their own Fourier transforms with appropriate

scale changes. The same holds true for their time-sampled forms: the DPSS and their dis-

crete Fourier transforms are identical except for appropriate scale factors (asymptotically the

DPSS become Hermite functions). Figure 1 shows an example of a DPSS where N = 100 is

the length in time, NW = 2 is the time bandwidth product and K = 8 for the MATLAB

function dpss which is used as: [E,V] = DPSS(N,NW,K). Here dpss function creates K most

band-limited discrete prolate spheroidal sequences and their corresponding concentrations

(in vector V). In order to get eigenvalues, first the eigenvalues of a tridiagonal matrix are
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found. It then uses inverse iteration using the exact eigenvalues on a starting vector with

approximate shape, to get the eigenvectors required. It then computes the eigenvalues V of

the Toeplitz sinc matrix using a fast autocorrelation technique [79].
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Figure 1: Left: The first 4 most band-limited DPSS (N=100, NW=2), Right: Corresponding

spectra.

2.2.3 Discrete Prolate Spheroidal Sequences and Sampling Theory

When a function needs to be interpolated, integrated and differentiated, it is assumed to

be approximated by a polynomial of certain order. However, the polynomial is almost

never constructed explicitly. It is possible to assume that the function to be interpolated

is bandlimited and use PSWF as a tool of numerical analysis for interpolation, quadrature

and differentiation formulas for bandlimited functions [22]. The PSWF have already been

used for the recovery of signals from uniformly spaced samples. In one of the approaches,

the recovery of infinite length signals was proposed [47]. According to this approach when

the discrete set of samples are concentrated on the interval [−t0, t0], then the function f(t)

can be recovered as

f(t) '
τ∑

k=−τ

y[k]{
2τ∑
n=0

ϕn[k]ϕn(t)}χτ (t) (2.30)
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where the characteristic function χ compensates for the truncation to a finite discrete set of

y[k]. The other approach is to find the roots or quadrature nodes of the PSWF set [22] such

that a function can be interpolated as

f(t) = ρ1ϕ1(t) + ρ2ϕ2(t) + · · ·+ ρnϕn(t) (2.31)

However, this method is limited to the functions of which zero crossings coincide to the

zero crossings of a given PSWF. Indeed, the classical space in which to study all aspects of

sampling is the space of finite energy signals (Paley −WienerSpace : PWΩ), bandlimited

to [−Ω/2,Ω/2] and leads to the expansion:

f(t) =
∑
n

f(n/Ω)
sin π(Ωt− n)

π(Ωt− n)
. (2.32)

The Paley-Wiener provides a good model for reconstruction of bandlimited signals. However,

since bandlimited signals are analytic no such signal can be compactly supported [63]. We

can suppose the values of f ∈ PWΩ are negligible outside an interval [−T/2, T/2], then in

the sampling results only f(n/Ω) contribute to the reconstruction sum and for small error

the the sum may be truncated to

f(t) =

[TΩ/2]∑
[−TΩ/2]

f(n/Ω)
sin π(Ωt− n)

π(Ωt− n)
(2.33)

and it can be deduced that the functions bandlimited to [−Ω/2,Ω/2] and approximately

time-limited to [−T/2, T/2] have dimension 2[TΩ/2] + 1 ≈ TΩ. This result comes from the

work of Landau, Slepian and Pollak [34, 7] the so called Bell Labs theory, concerning time

and bandlimiting. Although Bell Labs theory addressed several aspects of time-frequency

localization, it did not address potentially useful connections between time-frequency local-

ization and sampling [63]. Some of the examples of such connections are [98, 47]. Loosely

speaking a function is time-frequency (T,Ω) localized if it is a sum of eigenfunctions of PΩQT

having eigenvalues close to one where QΩ and PT are the bandlimiting and time limiting op-

erators, respectively [63]. In the real applications the assumption of bandlimitedness is not

always true and the serious drawback is that the above result can only be applied to uni-

formly sampled signals [10]. The simplest way is to treat a function as being essentially time
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and bandlimited and to assume that the most of the signal energy is concentrated in a time-

frequency rectangle. There is no joint eigenfunction for the eigenvalue λ = 1, since there are

no simultaneously time and band limited functions. It can be said that f(t) is essentially

time and bandlimited, if f(t) nearly lies in the span of those eigenfunctions for λ ≈ 1. This

fundamental result can be used in practical applications. If we again represent time limiting

operator as QT and bandlimiting operator as PΩ, the application of these operators on the

(2.32) leads to

QTPΩf(x) =

∫ T

−T
f(t)

sin π(Ωx− t)
π(Ωx− t)

dt. (2.34)

Since the kernel K(x, t) = ΩsincΩ(x−t)χ[−T/2,T/2](t) satisfies ||K||2L2(<×<) = ΩT <∞, PΩQT

is a Hilbert-Schmidt operator and ||PΩQT ||2HS = ||K||2L2(<×<) = ΩT such that PΩQT is com-

pact on PWΩ. The eigen values of that compact operator are all positive and arranged as

λ0 ≤ λ1 ≤, · · · . The associated eigenfunctions may be chosen to be real and after normal-

ization they set an orthonormal basis for PWΩ. PSWF are eigenfunctions of PΩQT . The

eigenvalues can also be interpreted as the time concentration of bandlimited functions. On

the other hand, computing the trace of PΩQT gives

tr(PΩQT ) =
∞∑
j=0

λj =

∫
K(t, t)dt =

∫ T/2

−T/2
Ωdt = ΩT. (2.35)

In the continuous domain for a function f(t), the analysis equation using the PSWF:

an = λ−1
n

∫ t0

−t0
f(t)ϕn(t)dt (2.36)

where an represents the expansion coefficients. The synthesis equation is

f(t) =
∞∑
n=0

anϕn(t)dt (2.37)

and for the discrete case, the analysis and synthesis equations are

an =
t0

Mλn

M∑
k=−M

y[k]ϕn[k] (2.38)

f(t) '
N∑
n=0

anϕn(t) (2.39)
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As a result, we obtain the function f(t) as:

f(t) ' t0
M

N∑
n=0

ϕn(t)

λn
{

M∑
k=−M

y[k]ϕn[k]} (2.40)

Accuracy of approximation depends on truncation value N and cut off frequency of the M th

DPSS, which will be explained in the following chapter.
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3.0 SIGNAL RECONSTRUCTION FROM NONUNIFORM SAMPLES

USING PROLATE SPHEROIDAL WAVE FUNCTIONS

In this chapter, we show our approach for nonuniform sampling problem together with the

necessary derivations, analysis and results. According to the classical uncertainty principle,

if an analog signal x(t) that is essentially zero outside an interval of length ∆t has a Fourier

transform X(Ω), that is also essentially zero outside an interval of length ∆Ω, the following

relation holds

∆Ω∆t ≥ 1/4π, (3.1)

indicating that x(t) and X(Ω) cannot both be highly concentrated. The authors in [28]

propose a more general principle that does not require the signal and its Fourier transform

to be concentrated on intervals. According to this new uncertainty principle, it is rather the

number of non-zero terms — the signal “sparseness”— in either domain that is important.

Thus, if x(t) is practically zero outside a set T , of measure |T |, and X(Ω) is practically zero

outside a set W , of measure |W|, then

|T ||W| ≥ 1− δ,

where δ is a small number related to the definition of “practically zero”.

The generalized uncertainty principle shows that something unexpected is possible such

as the recovery of a signal or image even if a significant amount of data are missing [32]. This

new uncertainty principle has important consequences in the sampling and reconstruction of

signals and has led to the new theories of compressive sensing [60, 64] and of random filtering

[13] that exploit the sparseness of the signals in some basis for the reconstruction to use fewer
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samples than the Nyquist sampling rate would require. According to Shannon’s sampling

theory, if a finite energy signal x(t) has a Fourier transform X(Ω) that is bandlimited

x(t) ∈ B = {x(t) ∈ L2(R) : X(Ω) = 0, |Ω| > Ωmax},

then x(t) can be reconstructed from its uniform samples {x(kTs)}:

x(t) =
∑
k

x(kTs)S(t− kTs) (3.2)

where Ts < π/Ωmax is the sampling period and S(t) represents the sinc function.

Dimensionality reduction in the reconstruction of signals is an important issue in practical

implementations. Considering that the time-frequency dimension is typically overestimated

in the case of non-stationary signals where the frequency changes with time, a signal represen-

tation method called the Fractional Fourier Transform (FrFT) allows us to obtain optimum

time-frequency dimensions. The assumption of band-limitedness for a signal makes sense in

applications where the bandwidth of the signal is known a priori. However, bandwidth is

not an exact measure of the frequency content of a signal but a mathematical idealization.

Practically, it is time-limited signals that are being sampled, but such signals are not well

represented by the sinc interpolation, since the sinc function spreads its energy over a wide

time range. Attempting to approximate the infinite interpolation by a finite one, the signal

reconstruction problem becomes ill-posed [2].

In the following section, we consider the general problems associated with the solution

of linear equations that also provides a background for the nonuniform signal reconstruction

problem. Next, we consider the problems caused by truncating Shannon’s sinc interpolation

in time. Later on, we present the PSWF interpolation of time-limited signals that are

essentially bandlimited. This is followed by the nonuniform sampling and reconstruction.

We discuss how to estimate the nonuniform sampling times as well as the minimal dimension

of a signal, with a special consideration given to non-stationary signals considering the

Landau-Pollak-Slepian dimensionality theorem [7, 62] which says that a discrete signal with

a bandwidth β and N samples in a finite interval, has at most Nβ degrees of freedom.
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3.1 ANALYSIS OF SOLUTION FOR LINEAR SYSTEM OF EQUATIONS

The numerical processing of data (signals and images) require discrete form of data by means

of sampling. In that case, instead of the signal or image f , only it’s sampled values f(xi)

are stored. One wants to recover the original data from these samples. However, this is an

ill-posed problem since the subspace of functions f with f(xi) = yi are infinite dimension.

In practical applications it is assumed that {f} are bandlimited. Indeed, images and signals

are not arbitrary functions, they have some smoothness and decay properties [23].

3.1.1 Problems with ill-conditioned matrices

The numerical solution for the very ill-conditioned linear system of equations is more com-

plicated than the treatment of well-conditioned systems because of the following reasons

[46]:

• The kind of ill conditioning must be known: rank deficiency or ill posed? Is it possible to

include additional information to stabilize the solution i.e., to regularize? what additional

information is available and is it suitable for stabilization purposes?

• The type of numerical regularization method must be known in order to treat the prob-

lem efficiently and reliably on a computer. Are both the analysis and solution sections

important? Should one prefer a direct or an iterative method? How much stabilization

should be added?

In other words, it is not possible to deal satisfactorily with ill-conditioned problems without

both theoretical and numerical analysis. Any discussion of ill-conditioned matrices requires

the knowledge of the SVD of matrix A. There are two important classes of problems to

consider and many practical problems belong to one of these two classes [46]:

• rank-deficient problems are characterized by the matrix A having a cluster of small

singular values and there is a well-defined gap between large and small singular values.

This implies that one or more rows and columns of A are nearly linear combinations of

some or all of the remaining rows and columns. Therefore the matrix A contains almost

redundant information and the key to the numerical treatment of such problems is to
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extract the linearly independent information in A, to arrive at another problem with a

well conditioned matrix.

• discrete ill-posed problems arise from the discretization of ill-posed problems such as

Fredholm integral equations of the first kind. Here all the singular values of A, as well as

the SVD components of the solution, on the average decay gradually to zero such that a

discrete Picard condition is satisfied. Since there is no gap in the singular value spectrum,

there is no notion of a numerical rank for these matrices. For discrete ill-posed problems,

the goal is to find a balance between the residual norm and the size of the solution that

matches the errors in the data as well as one’s expectations to the computed solution

where the size can be measured by a norm, a seminorm, or a Sobolev norm.

Due to the large condition number of A, both classes of problems are effectively under-

determined such that many of the regularization methods can be used for both classes of

problems. Moreover, in both cases there is a strong relation between the amount of extracted

linearly independent information, the norm of the solution and the corresponding residual.

The difference between the two problem classes is the gap in singular value spectrum versus

an overall decay. If the matrix is ill conditioned and the problem does not belong to either

of the two classes, the regularization can not produce a suitable solution which can be dealt

with iterative refinement or extended precision software [46].

3.1.2 The singular value decomposition analysis

The singular value decomposition (SVD) reveals all the difficulties associated with the ill-

conditioning of the matrix A. Let A∈ Rm×n be a rectangular or square matrix and assuming

m ≥ n. The SVD of A is a decomposition of the form [46]:

A = UΣV T =
n∑
i=1

uiσivi
T (3.3)

where U = (u1, ..., un) ∈ Rm×n and V = (v1, ..., vn) ∈ Rn×n are matrices with orthonormal

columns, UTU = V TV = In, and the matrix Σ = diag(σ1, ..., σn). The singular values

are always well conditioned with respect to perturbations: if A is perturbed by a matrix

E, then ||E||2 is an upper bound for the absolute perturbation of each singular value. The
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singular values σi can also be defined as stationary values of ||Ax||2/||x||2. From the relations

ATA = V Σ2V T and AAT = UΣ2UT , it is seen that the SVD of A is strongly linked to the

eigenvalue decompositions of the symmetric semi-definite matrices ATA and AAT . This

shows that the SVD is unique for the given matrix A, up to a sign change in the pair (ui, vi)

except for singular vectors associated with multiple singular values where only the spaces

spanned by the vectors are unique. In the discrete ill-posed problems, the features of the

SVD [46]:

• The singular values σi decay gradually to zero with no particular gap in the spectrum,

an increase of the dimensions of A will increase the number of small singular values.

• The left and right singular vectors ui and vi tend to have more sign changes in their

elements as the index i increases as σi decreases.

Another use of SVD is in connection with least squares problems, possibly rank deficient. If

A is invertible, then its inverse is given by A−1 =
∑n

i=1 viσ
−1
i ui

T . The solution to Ax = b is

x =
∑n

i=1 σ
−1

i(u
T
ib)vi. Otherwise, the pseudoinverse or Moore-Penrose generalized inverse

A† is given by

A† ≡
rank(A)∑
i=1

viσ
−1
i ui

T (3.4)

and the least squares solution xLS to the least squares problem ||Ax− b||2 with minimum

2-norm, if rank(A) < n is given by

xLS = A†b =

rank(A)∑
i=1

uT ib

σi
vi (3.5)

The sensitivity of the solutions vector x and xLS to perturbations of A and b can be measured

by the 2-norm condition number of A. Condition number of A is defined by:

cond(A) ≡ ||A||2||A†||2 = σ1/σrank(A) (3.6)
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3.2 ANALYSIS FOR TRUNCATED SINC INTERPOLATION

In this section, we will analyze numerical problems in the reconstruction of signals if the

kernel is the sinc function. Let us consider the case of π-bandlimited signals, i.e., Ωmax = π,

and define the corresponding sinc function as

S(t) =
sin πt

πt
−∞ < t <∞.

If the set of time-shifted sinc functions {S(t− tk)k∈Z} is a frame for the bandlimited signals,

then a bandlimited signal x(t) is uniquely represented by [2]

x(t) =
∑
k∈Z

ck S(t− tk). (3.7)

Here the entries {ck} of an infinite vector c are the solution of the Grammian matrix equation

Rc = b (3.8)

where R is a matrix with entries {Rmn = S(tm − tn)} and b a vector with entries {x(tk)},

both of infinite dimension. Thus according to equation (3.7), the reconstruction of x(t) is

obtained from its samples c = R†b, where R† is the pseudo-inverse of R.

When the shifted sinc functions form a frame which are linearly dependent, this linear

dependency is useful for good reconstruction of f , if some samples are missing or not exact

due to round off error or noise. Hence, inexact frames are preferable to exact frames and or-

thogonal bases. However, frame approach can lead to fast and stable numerical methods only

when the finite dimensional model is carefully designed. In practice, the reconstruction as in-

dicated above cannot be implemented since it requires the solution of an infinite-dimensional

equation.

To compute a finite-dimensional approximation to {cj}j∈Z the sum in equation (3.7) is

truncated to a finite support −M ≤ k ≤ M . Although this resolves the dimensionality

problem, numerically the reconstruction problem becomes ill-posed [2]. If the sinc is a non

exact frame, we have the following situation: Considering a bandlimited signal and letting

the sampling points be tk = k
m

indicating the uniform oversampling, where k ∈ Z and m < 1.

In this case, the signal is oversampled m times the Nyquist rate and the reconstruction is
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trivial since the sinc constitutes a tight frame where m is the frame bounds. According to

Shannon’s theorem, the numerical approximation is obtained by truncating the summation

in (3.7) as:

x(t) =
M∑

k=−M

ck S(t− tk). (3.9)

where ck = x(tk)
m

. The truncated frame approach makes R a Toeplitz matrix which can be

represented by RM with entries

Rk,n =
sin π

m
(k − n)

π
m

(k − n)
, k, n ∈ Z. (3.10)

It is known that this matrix has the singular values clustered around 0 and 1, with logM

singular values in the transition region [7, 35] and since the singular values of RM decay

exponentially to 0, the finite dimensional problem becomes ill posed [94].

In the case of nonuniform sampling the situation is not any better. It can be concluded

that for infinite dimensional approach the singular values of R are bounded away from zero,

however the smallest singular values of RM will approach to zero as M → ∞ [35]. This

is a well known problem in regularization theory [94]. A standard technique to compute a

stable solution is to use truncated singular value decomposition which requires to compute a

regularized pseudo inverse. However, the optimal truncation level depends on the dimension

M , the sampling geometry and the noise level. The truncation level is not known a priori

hence must be calculated for each M independently [2]. Conjugate gradient method is

another approach to solve (3.9) which can be at the same time used as a regularization

method [24] but for large scale reconstruction problems this method is not appropriate [2].

In the next section, we will propose a method for finite dimensional reconstruction which

keeps the original simplicity and structural properties of the Shannon’s sampling theory.

3.3 PSWF PROJECTION APPROACH

We are interested in the representation of time-limited signals, which by the conventional

uncertainty principle are non-bandlimited. Our assumption is that the signals are essentially
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bandlimited, i.e., most of the signal energy is concentrated in a bandwidth B, with a fre-

quency W (rad/sec) corresponding to a high percentage of the signal energy. Assuming that

the signal x(t) is sampled using Nyquist sampling rate Fs and its time support is τ = NnTs,

then its time-frequency dimension [7, 62]

DTF{x(t)} = [τ ][W/π] (3.11)

which for the case of bandlimited signals, replacing τ and W we get that it is less than

or equal to Nn, thus hinting to the possibility of representing these signal with less than

Nn samples. The question is how can we obtain such a representation and how can we

reconstruct the signal from it? We will show next that it is possible by using the PSWF.

The problems with the sinc interpolation are in part due to the nature of the sinc function.

The sinc function is not concentrated in time, although well concentrated in frequency, thus

not well suited to represent time-limited signals. As such it is not the appropriate basis. A

more appropriate basis should have high energy concentration both in time and in frequency.

The PSWF have such a characteristic. Now we can review the properties of the PSWF

{ϕn(t)} that are of interest in our method:

• {ϕn(t)} is a sequence of real-valued functions with finite time support resulting from

maximizing their energy in a given bandwidth.

• {ϕn(t)} are eigenfunctions of the integral operator

ϕn(t) =
1

λn

∫ T

−T
ϕn(x)S(t− x)dx

=

∫ ∞
−∞

ϕn(x)S(t− x)dx (3.12)

leading to a dual orthogonality in finite and infinite domains∫ T

−T
ϕn(t)ϕm(t)dt = λnδnm∫ ∞

−∞
ϕn(t)ϕm(t)dt = δnm

and as such they constitute an orthogonal basis of finite energy signal of finite support

L2(−T, T ) and an orthonormal basis for the space of bandlimited functions [47].
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Of special significance, the sinc function S(t), which belongs to the space of bandlimited

signals, can be expanded in terms of the basis {ϕn(t)} [47] such that

S(t− kTs) =
∞∑
m=0

ϕm(kTs)ϕm(t) (3.13)

which allows us to write the sinc interpolation in Eq.(3.7) (for Ωmax = π) as

x(t) =
∞∑

k=−∞

x(kTs)
∞∑
m=0

ϕm(kTs)ϕm(t)

=
∞∑
m=0

[
∞∑

k=−∞

x(kTs)ϕm(kTs)

]
ϕm(t)

=
∞∑
m=0

γmϕm(t) (3.14)

which is an infinite dimensional interpolation of the continuous signal in terms of PSWF.

Thus the result (Eqs. 3.7 and 3.8) is changed by using PSWF as the frames and a new

Grammian equation

Rγ = b (3.15)

where R is now a matrix with entries {Rmn = ϕm(tn)} and b is a vector with entries {x(tj)},

is obtained.

Like in the sinc case, the reconstruction of x(t) is obtained using γ = R†b, where R†

represents the pseudo-inverse of R. In practice this reconstruction is not possible because

of the infinite dimension of R, thus we would like to explore if truncations in time and in

frequency make the reconstruction possible. Figures 2 and 3 illustrate the effect of applying

finite dimensional modeling to matrices composed of sinc and DPSS, respectively. In Fig.

2 we illustrate the case of oversampling in the truncated sinc interpolation [2], while Fig.

3 shows the case of the DPSS-based matrix. In the first case some of the eigenvalues of

RM become close to zero, giving very large values in the corresponding pseudo-inverse. The

DPSS-based matrix does not show such a behavior!
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Figure 2: Left: RM matrix, Right: (a) Singular values of RM matrix, (b) Singular values of

pseudoinverse of RM matrix.
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Figure 3: Left: DPSS matrix, (a) Singular values of DPSS matrix, (b) Singular values of

pseudoinverse of DPSS matrix.
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Considering a time-limited signal x(t), 0 ≤ t ≤ (N − 1)Ts, for a sampling period Ts, that

is essentially bandlimited to a frequency band (−W,W ) i.e., the normalized signal energy

outside the given frequency band

ε =
1

2π||x||2

[∫ ∞
W

|X(Ω)|2dΩ +

∫ −W
−∞
|X(Ω)|2dΩ

]
(3.16)

is very small then an approximate of x(t) is given by

x(t) ≈ x̂(t) =
M−1∑
m=0

[
N−1∑
k=0

x(kTs)ϕm(kTs)

]
ϕm(t) (3.17)

where M depends on W . Accuracy of that approximation depends on how concentrated the

energy is within the given frequency band. If we define the projection error to be

εp =
||x− x̂||2

||x||2
(3.18)

where ||.|| is the Euclidean norm, it can be shown that the M value can be chosen as the

largest integer [62] for which

λM−1 ≥
(1− ε)− λ0(1− εp)

εp
(3.19)

where λM−1 and λ0 are eigenvalues of the DPSS. If we assume λ0 = 1, we obtain an approx-

imate relation between the projection error εp and the essential bandlimitedness error ε for

a chosen M :

ε

εp
≥ 1− λM−1 (3.20)

It is clear that if we choose an M so that λM−1 is very close to 0, the projection would have

a small error εp which would then be the upper bound for ε. In the following section we

consider how to choose an appropriate value for M and how it connects with W .
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Figure 4: Overall sampling and reconstruction procedure.

3.4 NONUNIFORM SAMPLING AND PSWF RECONSTRUCTION

We would like to modify the conventional Nyquist-Shannon sampling and reconstruction

procedure so as to

• consider time-limited and essentially bandlimited signals,

• decrease the sampling rate being characterized as nonuniform,

• reconstruct the original signal without aliasing effects.

Figure 4 displays the overall sampling and reconstruction procedure that we propose in this

chapter. Suppose x(t) has a finite support 0 ≤ t ≤ T and is essentially bandlimited to

W (rad/sec). If we used Nyquist sampling rate Fs = 2W/2π, then Nn samples (such that

NnTs = T ) are needed to reconstruct the signal. The projection for the uniform sampling

times tk = kTs would be

x̂(tk) =
M−1∑
m=0

γM,mϕm(tk) (3.21)

where the coefficients are

γM,m =
Nn−1∑
k=0

x(kTs)ϕm(kTs).

The M value is chosen by matching the Nyquist frequency with the cut-off frequency of

ϕM−1(t) or

WTs =
2π(M − 1)

Nn

≤ π
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so that M ≤ Nn
2

+ 1. Equivalently, the M value can be obtained either by

• using the time-bandwidth dimension in equation (3.11) M = DTF/2 + 1,

• finding W so that

||x||2 ≈
M−1∑
n=0

λn|γn|2

or the eigenvalues {λn} are approximately zero for n ≥M .

The matrix form of the projected signal at the uniform times {tk = kTs} is

x̂(tk) = Φ(tk)γM (3.22)

where x̂(tk) is an Nn vector containing samples {x(kTs)}, γM is the vector formed by the

coefficients resulting from the projection with respect to the DPSS. The Nn ×M matrix is

given by

Φ =



ϕ0(t0) ϕ1(t0) · · · ϕM−1(t0)

ϕ0(t1) ϕ1(t1) · · · ϕM−1(t1)
...

... · · · ...

ϕ0(tNn−2) ϕ1(tNn−2) · · · ϕM−1(tNn−2)

ϕ0(tNn−1) ϕ1(tNn−1) · · · ϕM−1(tNn−1)


where 0 ≤ k ≤ Nn − 1.

3.4.1 Nonuniform Sampling Scheme

The assumption in Nyquist-Shannon sampling theory that the samples are taken at uniform

times kTs is typically not realistic due to imperfect sensors, mismatched clocks, etc. There

are many possible forms in which these sampling times can occur [1]. In our simulations we

consider stochastic jitter sampling with uniform distribution, but it is also possible to use

a truncated Gaussian distribution or any other bounded distribution. Thus we assume the

samples are taken at times

t̂k =
Nn

M
kTs + ∆ 0 ≤ k ≤M − 1 (3.23)
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where ∆ is a random variable uniformly distributed in

[
−0.5

Nn

M
Ts, 0.5

Nn

M
Ts

]
.

From the M-dimensional projection of x(t), the nonuniform samples are measured as



x̂(t̂0)

x̂(t̂1)
...

x̂(t̂M−2)

x̂(t̂M−1)


=



ϕ0(t̂0) · · · ϕM−1(t̂0)

ϕ0(t̂1) · · · ϕM−1(t̂1)
... · · · ...

ϕ0(t̂M−2) · · · ϕM−1(t̂M−2)

ϕ0(t̂M−1) · · · ϕM−1(t̂M−1)





γ0

γ1

...

γM−2

γM−1


or in a matrix form as

x̂(t̂k) = Φ(t̂k)γM (3.24)

the matrix Φ(t̂k) of dimension M ×M is random, given the random nature of the sampling.

As such, it is not always possible to expect that it is invertible. Assuming that the sampling

times {t̂k} are known, or estimated, we can find the coefficients of the projection using the

pseudo-inverse as

γM =
[
Φ(t̂k)

]†
x̂(t̂k).

Then, according to (3.24) the reconstructed Nyquist samples are given by

xr(tk) = Φ(tk)
[
Φ(t̂k)

]†
x̂(t̂k)

= Θ x̂(t̂k). (3.25)

To obtain the analog form of the reconstructed signal these samples are then passed through

an ideal low-pass filter, just like in the Nyquist reconstruction. According to the model

described in Fig.4, we need to calculate the projection order and estimate the nonuniform

sampling times. We will describe the necessary steps in the following section:
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3.4.2 Estimation of Sampling Times

In general, the nonuniform sampling times are not known. This section is about the estima-

tion of nonuniform sampling times. Let the signal

z(t) =
M−1∑
k=0

x(t̂k)δ(t− t̂k) + η(t), 0 ≤ t ≤ T

be a stream of M delta functions with additive noise η(t) resulting from the nonuniform

sampling. We wish to estimate the sampling times {t̂k}. If we consider the periodic extension

of the stream of delta functions, the signal

z(t) =
∞∑

k=−∞

Xke
jkΩ0t + η(t) Ω0 = 2π/T,

where the Fourier coefficients are given by

Xk =
1

T

∫
T

M−1∑
m=0

x(t̂m)δ(t− t̂m)e−jkΩ0tdt Ω0 =
2π

T

=
M−1∑
m=0

x(t̂m)e−jkΩ0 t̂m (3.26)

Considering that the frequencies of the original signal are in the interval [−(M −1)Ω0, (M −

1)Ω0], z(t) can be low-pass filtered to obtain noisy Fourier coefficients given by

X̂k =
M−1∑
m=0

x̂(t̂m)ukm um = e−jΩ0 t̂m , − (M − 1) ≤ k ≤ (M − 1) (3.27)

The problem is then to find the parameters {x̂(t̂m), t̂m} that match the {X̂k} for −(M−1) ≤

k ≤ (M − 1) obtained from the noisy nonuniform sampling, in particular the time delays.

This problem is connected with Prony’s method [66, 67], and with the annihilating filter

[61]. If

A(z) =
M−1∏
m=0

(1− umz−1) =
M−1∑
m=0

αmz
−m
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is the transfer function of the annihilating filter. Filtering the two-sided sequence {X̂k} with

it we get the convolution sum

M−1∑
m=0

αmX̂k−m =
M−1∑
m=0

M−1∑
n=0

x̂(t̂n)uk−mn αm

=
M−1∑
n=0

x̂(t̂n)

[
M−1∑
m=0

αmu
−m
n

]
ukn = 0

where the last term is due to un being a root of A(z). Solving the above equations for {αm}

we obtain A(z) and finding its roots we can then find the delays. From the roots of A(z),

um = e−j2πt̂m/T , estimates of the nonuniform sampling times are given by

t̂m =
−T
2πj

log um m = 0, · · ·M − 1

which can be used in the signal reconstruction together with associated sample values.

3.4.3 Estimation of the DPSS Projection Order

As indicated in (3.11), the number of necessary sampling points needed to reconstruct the

signal depends on the time-frequency dimension of the continuous signal. The time-frequency

support of a signal x(t) is defined as[∫
(t− ηt)2 |x(t)|2dt

]1/2 [∫
(f − ηf )2|X(f)|2df

]1/2
‖x‖2

(3.28)

where
∫
|x(t)|2dt and

∫
|X(f)|2df are the energies of the signal in time and in frequency

domains, respectively. In the above definition, the mean values in time and frequency, ηt

and ηf are expressed as

ηt =

[∫
t |x(t)|2dt

]
/‖x‖2 ,

ηf =

[∫
f |X(f)|2df

]
/‖x‖2.

The time-frequency support of non-stationary signals usually become smaller when consid-

ering their actual instantaneous bandwidth [69]. This redundancy in the time-frequency

support, in the case of time-limited chirp signals sweeping a large frequency band, is shown

by the signal and its Wigner distribution [69] in Fig. 5(a) and (b), respectively. To provide
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a rotation-invariant measure of signal support on the time-frequency plane, a generalized

time-bandwidth product is introduced in [70]. Here we define the minimum time-frequency

dimension of a signal x(t) among all fractional Fourier domains interpolating between time

and frequency as

min
0≤a<4

DTF{xa(·)}

where xa(·) is the ath-order fractional Fourier transform (FrFT) of x(t), which is given by [71,

72]

xa(t) ≡ {F ax}(t)

=

∫
Ba(t, t

′)x(t′)dt′ , 0 ≤ a < 4, (3.29)

where

Ba(t, t
′) =

e−j(π sgn(a)/4+φ/2)

| sinφ|1/2
ejπ(t2 cotφ−2tt′ cscφ+t′2 cotφ) (3.30)

is the transformation kernel, φ = aπ
2

and sgn(·) is the sign function.

FrFT is a linear transformation and can be defined for all signals that have Fourier

transform. The FrFT of order a = a0 transforms a signal into the a0
th-order fractional

Fourier domain, which is oriented by φ0 = a0π/2 with respect to the time axis in the

counter-clockwise direction [73]. The fractional Fourier domains corresponding to a = 0 and

a = 1 are the time and frequency domains, respectively. The ath-order FrFT for 0 < a < 1

interpolates between the function x(t) and its Fourier transform X(f). The continuous FrFT

given by equation (3.29) can be computed from discrete samples of x(t) by using the fast

computation algorithm proposed in [74] with O(N logN) operations. The FrFT rotates the

Wigner distribution (WD) of a signal in the clockwise direction [75]. The appropriate order

of the FrFT rotates the WD in the clockwise direction so that the chirp signal in Fig. 5 (a)

is transformed into a windowed sinusoidal signal as shown in Fig. 5 (c) with a corresponding

WD in (d). As the minimum time-frequency dimension is achieved by searching on the

FrFTs, sampling at the appropriate FrFT order will reduce the required number of non-

uniform samples for nonstationary signals at the expense of transforming the signal back

into the time domain.
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3.5 SIMULATIONS

In this section, the performance of the proposed reconstruction algorithm is demonstrated

by applying it to (i) a combination of sinusoids, (ii) a chirp signal embedded in noise, and

(iii) subdural electroencephalogram (EEG) signals. First, we consider a combination of three

sinusoids as a test of our algorithm. As shown in Fig. 6, the spectrum of the M th DPSS

(red) includes the most significant frequency components of the original signal (black), and

of the DPSS projection (blue) indicating the chosen value of M is appropriate. The signal

is reconstructed using a projection of order M using half of the samples used for the sinc

interpolation reconstruction, with an error value of 2.1 × 10−3 (see Fig. 6). However, the

error in Shannon’s reconstruction, with ideal low-pass filters, is 5.3× 10−3 as shown in Fig.

8. This is an important improvement considering the non-uniformity of the sampling process

and the reduction on the sampling rate.

In the second simulation, we consider the application of our method in denoising a linear

frequency modulated signal embedded in noise. The method takes advantage of the FrFT

for determining the optimal time-frequency dimension. In the noiseless case the value found

for M is used as the a priori information in the denoising. On the left side of Fig. 7(a),

we display the normalized mean square error (NMSE) with respect to signal to noise ratio

(SNR) values between 0 to 25 (dB) as a result of Monte Carlo trials at each SNR. Fig.

7(b) displays the denoising for an SNR of 0dB. In the third part of our simulations, we

consider subdural raw EEG signals and their wavelet processed components which are called

fast, slow and primary [87]. To make the signal satisfy the time-limited and the essentially

bandlimited conditions we process the EEG signals with overlapping windows, adding up to

unity. This also guarantees that the annihilating filter works, by allowing to find the roots

of a low-order polynomial.

3.6 CONCLUSIONS

We have presented a complete model for sampling and reconstruction of time-limited analog

signals by using projection on the space of DPSS. By projecting the signal onto a finite di-
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mensional DPSS subspace, it is shown that this method can deal with non-uniform sampling

and does not seem to be affected by aliasing. The dimension of that subspace depends on

a time frequency product which is at most half the sampling rate that needed in the sinc

function based reconstruction. However, our method requires the estimation of the nonuni-

form sampling times, for which we apply an annihilating filter, and the possible optimization

of the time-frequency dimension in the case of non-stationary signals, for this we apply the

FrFT.

The computational complexity of the proposed reconstruction lies in the implementation

of the annihilating filter due to the root-finding required by it. Otherwise, the algorithm

behaves as a modification of Shannon’s sinc interpolation. For nonstationary signals, com-

putation of the minimal time-frequency dimension requires additional computation due to

the FrFT. Besides the sampling and reconstruction, we have shown that our method can be

applied in denoising and its performance can be related to that of the compressive sensing

method as we will show in the following chapter. We have shown the performance of the

method for synthetic as well as actual signals.

43



−0.4 −0.2 0 0.2 0.4
−1.5

−1

−0.5

0

0.5

1

1.5

x(t)

t (sec)

(a)

t (sec)

f (H
z)

(b)

−0.4 −0.2 0 0.2 0.4
−50

−40

−30

−20

−10

0

10

20

30

40

50

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x a(t)

t (sec)

(c)

t (sec)

f (H
z)

(d)

−0.4 −0.2 0 0.2 0.4
−50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 5: (a) Chirp signal, (b) its corresponding WD. (c) FrFT of the chirp and (d) its

corresponding WD.
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4.0 REGULARIZED RECONSTRUCTION FROM LEVEL CROSSING

SAMPLES

In this chapter, we provide a new method for reconstructing a signal from level crossing (LC)

samples and in general from random samples under the assumption that the original signal

is time-limited and essentially band-limited. Such a signal is well approximated in a low-

dimensional subspace and the reconstruction can be achieved using the PSWFs projection.

Since the LC samples are non-uniformly spaced in time and the sampling density depends on

the local properties of the signal being sampled, we formulate estimation of the projection

coefficients using the Tikhonov regularization [50]. The main objective of the regularization

is to incorporate more information in order to get the desired solution. We demonstrate the

effectiveness of the proposed method in terms of the reduction in the number of necessary

samples for reconstruction, and in the case of noisy sampling by comparing our method with

piecewise cubic interpolation and compressive sampling (CS) techniques [55]. The rest of the

chapter is organized as follows. In section 4.1 we discuss level crossing sampling, compressive

sampling and the nonuniform reconstruction problem. While in section 4.2, we consider the

Tikhonov regularization procedure. In section 4.3, the reconstruction using PSWF and the

use of the Tikhonov regularization in this problem are presented. Section 4.4 illustrates the

application of our procedure and conclusions follow.

4.1 LEVEL CROSSING SAMPLING

Two efficient sampling procedures are the level-crossing sampling and compressive sampling

[93, 8, 55, 65]. Level-crossing relates to the Lebesgue integral that approximates a signal with
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a fixed set of amplitude values and with samples taken at non-uniform times depending on

the signal. Compressive sampling uses the sparseness in the signal to decrease the number of

samples needed to represent the signal. A signal is sparse if its support in some representation

or basis is smaller than its actual support. Level crossing and compressive sensing are signal

dependent methods that take advantage of the signal structure. Level crossing (LC) is an

event-based nonuniform sampling that can be used efficiently for bursty or sparse signals

[3, 93, 8, 95] and is known to be very useful especially for the processing of non-stationary

signals [45].

In the LC sampling an analog signal x(t) is compared with a set of reference levels

located within the dynamic range of the signal, and only when the signal exceeds one of the

reference levels the sample is taken in the time domain as shown in Figure 10. Thus, the

signal determines when to take samples, and the result is a nonuniform sampling such that for

a bursty signal more samples are taken during the burst and fewer otherwise. We propose an

approach for the reconstruction of signals from their LC samples. Notice that different from
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Figure 10: Level crossing sampling of a signal.

conventional sampling and quantization, LC provides a sample that is obtained by quantizing

the signal amplitude. The resulting samples coincides exactly with the quantization levels,

no quantization error, and the sampling does not require that the signal to be bandlimited.

However, the reconstruction requires both sample levels and sampling times to be available.
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4.2 TIKHONOV REGULARIZATION

Ill-posed problems arise in the form of inverse problems in many areas of science and engineer-

ing when the internal structure of a physical system is being determined from the measured

behavior of system or in determining the unknown input that gives rise to a measured out-

put signal. Some examples are acoustics, computerized tomography, continuation problems,

electromagnetic scattering, geophysics, mathematical biology, optics, image restoration and

remote sensing. Since the problem is not well-posed, it needs to be reformulated for numeri-

cal treatment by including additional assumptions, such as the smoothness of solution. This

process is known as regularization and Tikhonov regularization is one of the most commonly

used methods for regularization of linear ill-posed problems [50].

The linear least-squares approach is the standard one for the minimization of the residual

‖Ax− b‖2

to solve an underdetermined system of linear equations Ax = b where ‖·‖ is the Euclidean

norm. In order to obtain a particular solution with desirable properties, a regularization

term is included in this minimization:

‖Ax− b‖2 + ‖Γx‖2

for some suitably chosen Tikhonov matrix, Γ. In many cases, this matrix is chosen as the

identity matrix Γ = I to give preference to solutions with smaller norms. An explicit solution,

denoted by x̂, is given by:

x̂ = (ATA + ΓTΓ)−1ATb (4.1)

The effect of regularization may be varied via a scale in the matrix Γ. For Γ = εI, when

ε = 0 this reduces to the unregularized least squares solution where (ATA)−1AT is the

pseudo-inverse provided that (ATA)−1 exists.

The optimal value for regularization parameter ε is usually unknown and often in prac-

tical problems is determined by an ad-hoc method. Other methods include the discrepancy
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principle, cross-validation, L-curve method, restricted maximum likelihood and unbiased

predictive risk estimator [51]. Given the singular value decomposition

A = UΣVT

with singular values σi, the Tikhonov regularized solution can be expressed as x̂ = VDUTb

where D has diagonal values Dii = σi/(σ
2
i + ε2) and is zero elsewhere demonstrating the

effect of the Tikhonov parameter on the condition number of the regularized problem. As

a general rule if the condition number κ(A) = 10k, then k digits of accuracy are lost in

addition to what would be lost due to loss of precision from arithmetic methods [49].

4.3 REGULARIZED PSWF RECONSTRUCTION FOR LEVEL CROSSING

SAMPLING

In the level-crossing sampling scheme, samples are captured when the continuous time input

signal crosses predefined levels as shown in Figure 10. The sampled signal can be represented

by the pairs {tk, x(tk)}, where the values {x(tk)} belong to the set of those predefined levels.

Although, the reconstruction of the non-uniformly sampled signal can be obtained by sinc-

based reconstruction [2]

x̂(tk) =
+∞∑

n=−∞

CnS(tk − tn) (4.2)

where tk is a time in nonuniform sampling and the interpolation coefficients Cn are assumed

to be chosen such that x̂(tk) = x(tk), the sinc-based reconstruction is not appropriate since

it requires an infinite number of samples.

Since as shown above, the sinc interpolation can be converted into a PSWF projection

with finite dimension, an LC sampled signal x(tk) can be represented by the M -dimensional

PSWF projection

x(tk) =
M−1∑
m=0

γmφm(tk) (4.3)
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or in a matrix form as

x(tk) = Φ(tk)γM (4.4)

such that

x(tk) = [x(t0) x(t1) · · · x(tN`c−2
) x(tN`c−1

)]T

γM = [γ0 γ1 · · · γM−2 γM−1]T

Φ(tk) =



φ0(t0) · · · φM−1(t0)

φ0(t1) · · · φM−1(t1)
... · · · ...

φ0(tN`c−2
) · · · φM−1(tN`c−2

)

φ0(tN`c−1
) · · · φM−1(tN`c−1

)


and N`c is the number of level-crossing samples.

The projection coefficients γM can be obtained by means of the pseudo-inverse. However,

an inversion of theN`c×M DPSS matrix (Φ(tk)) is highly ill conditioned for the LC sampling.

To overcome this ill-posed problem, using Tikhonov regularization the projection coefficients

are obtained. In our approach, to obtain a regularized solution for x(tk) = Φ(tk)γM in the

least squares sense, we minimize the following expression:

γMε = arg min
γM
{‖Φ(tk)γM − x(tk)‖2 + ε‖γM‖2} (4.5)

where the regularization parameter ε represents the tradeoff between losses and smoothness

of the solution. As indicated in [59], the regularization term can deal with large sampling

gaps, that is it allows these to be filled in a smooth way using the information from the

surrounding samples. The regularized solution γMε is given by

γMε = (Φ(tk)
TΦ(tk) + εI)−1Φ(tk)

Tx(tk) (4.6)

where I is the identity matrix. Note that limε→0γMε = [Φ(tk)]
†x(tk) where † represents the

pseudo inverse. The original signal x(tn) is then approximated as follows:

x(tn) ≈ x̂(tn) = Φ(tn)γMε . (4.7)

In the next section, we simulate LC sampling for a chirp and a bursty signal and compare the

regularized Slepian reconstruction to compressive sampling and piecewise cubic interpolation

methods of which M values were determined as in Figure 11.
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4.4 SIMULATIONS

In order to illustrate the efficiency of the proposed method we apply our reconstruction

method to a LC sampled chirp and a bursty signal. The LC-sampling results are shown

in Figure 12 and Figure 14. The LC-sampling results are shown in Figure 12 and Figure

14. We compare our reconstruction results with the reconstruction results obtained using

compressive sampling technique and piecewise cubic interpolation, which is known to be well

suited for the reconstruction from level-crossing samples. In Figure 12, we have N`c=179

non-uniformly spaced samples as the result of level-crossing sampling. Figure 13 illustrates

the comparison between original and reconstructed chirp signal and reconstruction error

for the regularized Slepian reconstruction method. The reconstructed signals by using the

proposed method show better performance when we compare our results with those from

piecewise cubic interpolation and compressive sampling using approximate signal to noise

ratios (SNRs) as shown in Figures 15 and 16. For our compressive sampling experiments,

we used the MATLAB function l1eq − pd.m from the `1-MAGIC toolbox [68].

In order to obtain similar results in compressive sampling, we needed to increase the

number of measurements for the compressive sampling method, which requires Ncs = 430

measurements to reach the same SNR performance which is around 12dB for the chirp signal

while our method is using N`c = 179 level crossing samples.

In the bursty signal example we have N`c = 202 non-uniformly spaced samples as the

result of level-crossing sampling. In Figures 18 and 19, the bursty signal was reconstructed

using piecewise cubic interpolation and compressive sampling approach, respectively. As

shown in Figures 13 and 17, the reconstruction from the nonuniform samples can be possible

with very small error after choosing the appropriate value of M . Figure 19 shows the

reconstruction for the compressive sampling method, which requiresNcs = 375 measurements

for the bursty signal while our method and piecewise cubic interpolation method are using

202 samples for an SNR around 17 dB. Finally, we demonstrate the reconstruction from

noisy LC samples for the chirp by adding white Gaussian noise of SNR 30dB to the LC

samples. For the chirp signal we have N`c = 186 LC samples giving an SNR of 12.9 dB for

the regularized Slepian reconstruction and 11.75 dB for the piecewise cubic interpolation.
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In the CS reconstruction, we needed Ncs = 409 measurements to obtain an SNR of 11.2

dB as shown in Figures 20, 21, 22. In a general CS framework, the number of required

samples, i.e., measurements for perfect recovery is known to depend on the sparsity of the

given signal. However, our approach using level-crossing sampling and regularized Slepian

reconstruction provides better results independent of the signal sparsity while using nearly

half of the samples used in compressive sampling. Therefore our approach provides an

alternative compression scheme based on level-crossing sampling and regularized PSWFs

reconstruction. Since the above results demonstrate the ability of reconstruction in dealing

with large sampling gaps, the proposed method is obviously also applicable to the case of

random sampling.

4.5 CONCLUSIONS

In this chapter we proposed a new reconstruction method for non-uniformly spaced samples

obtained from level-crossing sampling. By projection of signals on the space of PSWF and

obtaining a regularized solution, we have shown that the proposed method can deal with

reconstruction for level-crossing sampling. Simulation results present the effectiveness of

the proposed method in terms of SNR and number of measurements. It was shown that in

some cases the proposed reconstruction method can perform better than the piecewise cubic

interpolation and compressive sampling reconstruction. As future work, we are investigating

an estimation problem for the optimal value of M from non-uniformly spaced samples when

the actual bandwidth of the signal is not available.
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Figure 11: Determination of M using spectrum, Left: for chirp signal M=190, Right: for

bursty signal M=600.
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Figure 12: Left: level crossing sampling for chirp signal, Right: sample locations.
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Figure 13: Left: regularized PSWF reconstruction, (N`c=179, SNR=12.13dB), Right: re-

construction error.
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Figure 14: Left: level crossing sampling for bursty signal, Right: sample locations.
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Figure 15: Left: piecewise cubic interpolation, (N`c=179, SNR=11.03 dB), Right: recon-

struction error.
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Figure 16: Left: compressive sampling reconstruction, (Ncs=430, SNR=11.30 dB), Right:

reconstruction error.
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Figure 17: Left: regularized PSWF reconstruction, (N`c=202, SNR=16.79 dB), Right: re-

construction error.
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Figure 18: Left: piecewise cubic interpolation, (N`c=202, SNR=15.47 dB), Right: recon-

struction error.
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Figure 19: Left: compressive sampling reconstruction, (Ncs=375, SNR=16.67 dB), Right:

reconstruction error.
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Figure 20: Left: Reconstruction from noisy LC samples, N`c = 186 using regularized PSWF

method Right: reconstruction error, SNR=12.89 dB.
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Figure 21: Left:Reconstruction from noisy LC samples, N`c = 186 using piecewise cubic

interpolation method, Right: reconstruction error, SNR=11.75 dB.
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Figure 22: Left: Reconstruction from noisy measurements, Ncs = 409 using compressive

sampling method, Right: reconstruction error, SNR=11.2 dB.
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5.0 A TIME-FREQUENCY APPROACH AND PROJECTIONS ONTO

CONVEX SETS

As explained in the previous chapters, the problem of signal reconstruction from nonuni-

formly spaced samples is central in many practical problems in image and signal processing

[15, 86]. Nonuniform sampling is a common result of Nyquist-Shannon sampling caused by

jittering in the sampler, but it is also the case when samples are missing, either according to

some distribution or in segments. The reconstruction of finite energy signals can be viewed

as an interpolation or an estimation problem in which projection of the observed signal min-

imizes an error criteria. Constraining the solution to satisfy time and frequency conditions

iteratively, a close approximation to the signal, with the given samples, is obtained. This is

the basic idea of the projection onto convex sets (POCS) method. This method was intro-

duced by [15] and [14] as an iterative algorithm for signal restoration. Since then, the POCS

method has been successfully used in many signal and image recovery problems [76, 86].

Time-frequency signal representations using short-time [84] and fractional Fourier transform

[85, 86] have been recently used to implement this type of reconstruction.

In order to obtain the POCS iterative solution, we consider that the signals of interest

have a finite time support and an approximately finite frequency support. As such, the

PSWF or also called Slepian projection are used for this class of signals. To jointly consider

time and frequency constraints, we develop a time-frequency representation from the Slepian

projection. This can be done using the evolutionary spectral theory [12], where a signal can

be represented in terms of a kernel which in turn can be obtained from the windowed signal.

The magnitude square of the kernel is associated with the way the energy of the signal is

distributed in time and frequency. It is also possible to obtain a similar representation, the

discrete evolutionary transform (DET), for deterministic signals having components with
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time-varying frequency components [11]. Imposing time and frequency limitations in the

DET permits us to reconstruct the signal iteratively, i.e., the iterative projection generated

by the time-frequency transformation converges into a close approximation to the original

signal with the given nonuniform samples.
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Figure 23: Baseband DPSS for N = 256, W = 1
8

and K = 64 (Note that K = b2NW c).

5.1 EVOLUTIONARY SPECTRAL REPRESENTATION

The spectral representation of a stationary signal consists of a superposition of sinusoids, of

all possible frequencies, with randomly varying amplitudes and phases. To obtain a similar

representation for non-stationary signals, one can consider the Wold-Cramer representation

[12] characterizing a non-stationary signal as the output of a linear time-varying system

with a stationary white noise as input. Thus, a discrete non-stationary signal x(n) can be

expressed as

x(n) =
∑
k

X(n, ωk)e
jωkn (5.1)
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where X(n, ωk) is an evolutionary kernel. The evolutionary spectrum of x(n) is given by

|X(n, ωk)|2.

In [11], it is shown that the above representation can be extended to deterministic signals.

The discrete evolutionary transform (DET) obtained in there is a generalization of the short-

time Fourier transform as the evolutionary kernel X(n, ωk) is obtained in term of the signal

windowed, but the window in the DET varies with time and frequency. Thus the kernel is

X(n, ωk) =
N−1∑
m=0

x(m)Wk(n,m)e−jωkm (5.2)

where Wk(n,m) is the window which can be expressed using non–orthogonal functions, such

as Gabor’s, or orthogonal functions such as Malvar’s [11].

The POCS framework enables an iterative recovery algorithm incorporating time and

frequency constraints. A desired signal x(n) is assumed to lie in the region defined by the

intersection of all the convex sets, i.e.,

x(n) ∈ C0, C0 =
⋂
i

Ci

where Ci denotes the i-th closed convex set. Thus, the original signal can be restored by

using the projection operators Pi onto each convex set Ci. The general form of the POCS

reconstruction is

x(i+1)(n) = Pi[x(i)(n)] (5.3)

where x(i)(n) is the reconstructed signal after i iterations. Assuming that the signal of interest

is square summable and that the DET projects a signal into another square summable signal,

under joint time-frequency constraints we develop an iterative POCS algorithm to recover

the signal from partial information of it.
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5.2 EVOLUTIONARY SLEPIAN TRANSFORM BASED POCS

A bandpass real-valued signal x(t) can be also represented in terms of baseband signals as

x(t) = Re [(a(t) + jb(t))e−jΩ0t] (5.4)

where a(t) and b(t) are low-pass signals, and Ω0 is the center frequency of the Fourier

transform of x(t), X(Ω). Assuming the a(t) and b(t) components have finite time support

and are essentially band-limited, we can represent them using the DPSS projection presented

above. In that case, the signal x(t) can be expressed as

x(t) = Re [
∞∑
m=0

(γm + jηm)ψm(t)e−jΩ0t] (5.5)

i.e., in terms of modulated PSWF.

The bandpass DPSS [90, 91] which have the highest energy concentration in a given

passband are defined by

ξk(n) = e−j2πWcnψk(n) (5.6)

where the passband is [0 ≤ Wc−W,Wc +W ≤ 1
2
]. When the signal energy outside the given

frequency band is very small

1

2π

∫
ω/∈[Wc−W,Wc+W ]

|X(ω)|2dω ≈ 0 (5.7)

the bandpass DPSS provide an efficient representation of passband signals and accurate

channel estimation [90, 91]. The general representation for a complex signal x(t) in terms of

the PSWF is given by

x(t) =
∞∑
m=0

γmξm(t), γm =
∞∑
k=0

x(kTs)ξm(kTs). (5.8)
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where {ξm(t)} can be the band-pass or the base–band (when the center frequency is zero)

Slepian functions. If the signal x(t) is time–limited, and essentially in the frequency bands

Ωc ± Ω and −Ωc ± Ω, then we obtain

x(t) =
M−1∑
m=0

N−1∑
k=0

x(kTs)ξm(kTs)ξm(t)

=
N−1∑
k=0

x(kTs)

[
M−1∑
m=0

ξm(kTs)ξm(t)

]
(5.9)

where as indicated before M depends on the frequency–support and N on the time–support.

In [53], the reconstruction of the original signal from a given set of non-uniform samples

is considered, while the effect of the distribution of the non-uniform samples in the recon-

struction is studied in [89]. Assuming that q samples x(kiTs), i = 0, 1, · · · , q− 1 are missing,

then letting u be the q-dimensional vector of unknown samples and t = kiTs we obtain from

above u = Λu + g where Λ is a matrix with a subset of the entries of the matrix generated

by the terms in square brackets in (5.9) and

g(t) =
∑
k 6∈u

x(kTs)

[
M−1∑
m=0

ξm(kiTs)ξm(t)

]
. (5.10)

The missing samples are recovered if the above equation can be solved for u, or if I−Λ

is invertible. Given the many possible ways the missing samples could be distributed this

might not be possible. However, as indicated in [2, 89] there are cases where reconstruction

is possible with the sinc interpolation, and we will show later that it is also the case when

we are using the PSWF based POCS.

To apply joint time and frequency constraint in the POCS we develop a DET based on

the Slepian representation of the signal. Suppose a discrete signal x(n) can be represented

in terms of some orthogonal basis {φk(n)},

x(n) =
K−1∑
k=0

dkφk(n), 0 ≤ n ≤ N − 1

dk =
N−1∑
n=0

x(n)φ∗k(n), 0 ≤ k ≤ K − 1 (5.11)
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where {dk} are the expansion coefficients. Rewriting x(n) as

x(n) =
K−1∑
k=0

[dkφk(n)e−jωkn]︸ ︷︷ ︸
=X(n,ωk)

ejωkn (5.12)

where ωk = 2π k
N

. The evolutionary kernel X(n, ωk) can be expressed in terms of x(n) by

replacing the dk coefficients:

X(n, ωk) = dkφk(n)e−jωkn

=
N−1∑
m=0

x(m) [φk(n)φ∗k(m)e−jωk(n−m)]︸ ︷︷ ︸
=Wk(n,m)

e−jωkm. (5.13)

To obtain the evolutionary kernel, in particular the window Wk(n,m), we consider the band-

pass DPSS {ξk(n)} as basis for the representation of baseband and passband signals. The

window is then expressed as

Wk(n,m) = ξk(n)ξ∗k(m)e−jωk(n−m). (5.14)

It is important to understand that when the signal under consideration is modulated, i.e.

x(n) = g(n)e−jπWcn, and we use the bandpass Slepian functions, we can obtain the spectrum

of g(n) or |G(n, ωk)|2. For a signal with bandpass characteristics, the signal can be repre-

sented by a small number of bandpass DPSS coefficients and then restored by small number

of projection iteration compared to baseband DPSS based DET, which will be shown in next

section.
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Figure 24: An example of evolutionary Slepian spectrum: (a) x1(n), (b) |X(n, ωk)|2.

5.3 SIMULATIONS

5.3.1 Slepian-based DET

To illustrate the baseband and bandpass Slepian representation and their Slepian-based

DET, consider the test signals

Baseband signal: x1(t) = sinc(t− 2.1)− 0.7sinc(t+ 1.7), 0 ≤ t ≤ 30

Passband signal: x2(t) = sinc2(fBt) cos(2πfCt+ π
3
), 0 ≤ t ≤ 1

where fC = 25.6 Hz is a carrier frequency, and fB = 2 Hz. Discrete signals x1(n) and

x2(n), 0 ≤ n ≤ N − 1, N = 256, are obtained from the uniform sampling on the signal

x1(t) and x2(t), respectively using a sampling period Ts = 30/256 and Ts = 1/256 sec.

For the signal x1(n), the evolutionary Slepian spectrum |X(n, ωk)|2 using the baseband

DPSS shown in Fig. 23 is illustrated in Fig. 24. The evolutionary Slepian spectrum shows

that the energy of the test signal x1(n) is highly concentrated in n ∈ [100, 160] and ωk

is the normalized frequency i.e., ωk/π ∈ [0, 1/2] rad. As shown in Fig. 24(b), the DET

provides accurate representation for a nearly time-limited and band-limited signal in the

time-frequency domain. The 256-point bandpass test signal x2(n) in Fig. 25(a) is to be
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represented by the evolutionary Slepian spectrum. Its Fourier transform is shown in Fig.

25(a) where the signal energy is concentrated at normalized frequency 0.1. In many practical

applications, the exact frequency band of the signal is known. Therefore, if we have enough

knowledge about the spectrum characteristics of the signal, we can represent the signal

with small number of DPSS. Figure 25(b) shows the evolutionary DPSS spectrum for x2(n)

using baseband DPSS with K = 64 coefficients and normalized bandwidth of W = 1/8.

The evolutionary DPSS spectrum using bandpass DPSS is also shown in Fig. 25(c) where

K = 4, W = 1/128 and Wc = 0.1. Therefore, if we project the signal that has bandpass

characteristics on the DET domain, the signal can be restored only by a small number of

basis, i.e., bandpass DPSS with the same accuracy obtained from baseband DPSS.

5.3.2 Reconstruction of irregularly sampled signals

In this section, we perform three different simulations to illustrate the effectiveness of DET

based POCS. We use the POCS methodology for reconstruction of nonuniformly sampled

and band-limited signals.

• Nonuniform jittering sampling with known distribution: Irregularly-spaced sam-

ples {x(ni)} are obtained from the original signal x(n) by x(ni) = x(dnN
L

+ τc) where τ

is the timing jitter with normal distribution N (0, σ2) and dc denotes the nearest integer,

and L is a decimation factor.

Figure 26(a) shows the irregularly-spaced samples with 32-point(L = 8) from the test

signal x1(n). In this simulation, the parameters for the baseband DPSS are W = 1/16,

and K = 32. As shown in Fig. 26(b), (c), and (d), the original signal can be recovered

with very small error after 40 iterations. Figure 27 shows the relationship between the

degree of irregularity(τ ∼ N (0, σ2)) and the performance in terms of mean absolute error

(MAE) and the speed of convergence. It is clear that the performance depends on the

degree of irregularity. Figure 27 also suggests that, although the number of iterations

should be increased according to the degree of irregularity, a nearly perfect reconstruction

can be possible after 100 iterations. In case of nonstationary signals such as a chirp, the

restored signal using bandpass DPSS based DET is shown in Fig. 28. The results clearly
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indicate that the reconstruction of the non-uniformly sampled nonstationary signal can

be possible with very small error. For a speech signal, the restored results using baseband

and bandpass DPSS based DET are shown in Fig. 29. Its frequency components are also

shown in Fig. 29(b) showing that the energy of the signal is concentrated in a normalized

frequency band 0.02 < ω < 0.1. Note that the bandpass DPSS based DET projection

converges faster than the baseband approach for a bandpass type signal. It is clear that

the bandpass type signal can be restored only by a small number of components and the

iteration, with the same MAE performance compared to baseband DPSS based DET,

converges faster. Therefore, the DET based POCS algorithm provides a fast and accurate

technique for recovering band-limited samples from the irregularly-spaced subsamples.

• Nonuniform jittering sampling with unknown distribution: In this simulation,

we consider the extreme case of irregularly-spaced, i.e., randomly-spaced subsamples.

Figure 30 shows examples of restored signal from the randomly-spaced subsamples for

test signal x1(n) and the speech signal, given above. As shown in Fig. 30, for a time-

limited signal such as x1(n), the restored performance strongly depends on the sampling

distribution. For the speech signal, since its energy is well distributed in the time domain,

the restored signal is not sensitive to the distribution of sampling points. Note that the

MAE values of the restored speech signals under 5 different random sampling patterns

lie between 0.2 and 0.3 after convergence. This result clearly indicates that for a signal

with uniformly distributed energy in the time domain, the DET based POCS algorithm

is capable of signal recovery from randomly-spaced subsamples. As pointed out in [89], if

the gaps between missing samples due to randomly-spaced are large, iterative technique

such as POCS is more efficient than non-iterative method.

• Block or contiguous sample losses: For the recovery of uniformly sampled signals

with contiguous lost samples, the same projection methodology is applied in this simula-

tion. A general assumption is that the lost data on the sampled signals compared to the

total number of samples is small and that the available samples are representatives of

the original signal [92]. Figure 31 shows examples of restored speech signal by bandpass

DPSS (K = 16) based DET from the uniformly-spaced speech signal with continuous

missing data. For larger values of missing samples, since the assumption does not hold
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due to severe loss of information on the signal, the performance of signal recovery is

degraded. However, the proposed method shows very promising results as shown in Fig.

31.

5.4 CONCLUSIONS

In this chapter, we have introduced a new discrete evolutionary Slepian transform capable

of efficient representation of band-limited signals. For the evolutionary kernel window, base-

band and bandpass DPSS are used for the representation of baseband and bandpass signals,

respectively. The evolutionary Slepian spectrum provides an accurate representation of time

and band limited signal in the time-frequency domain. For the reconstruction, the DET

based POCS algorithm is applied in the area of signal recovery from nonuniformly spaced

subsamples. For a signal that has bandpass characteristics, the signal can be represented

by a small number of bandpass DPSS coefficients with the same accuracy obtained from

baseband DPSS, and then restored by small number of projection iteration with the same

MAE performance compared to baseband DPSS based DET.

The DET based POCS algorithm is shown to provide fast and accurate technique for

recovering the band-limited samples from the irregularly-spaced subsamples. Although there

are remaining issues that need further study, for instance the upper error bound by the

number and distribution of missing samples, the proposed method shows very promising

results, i.e., capable of signal recovery from randomly-spaced subsamples and continuous

lost samples.
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Figure 25: Comparison of evolutionary Slepian spectrum for passband test signal using

baseband and bandpass DPSS: (a) x2(n) and its spectrum |X(ω)|, (b) spectrum of baseband

DPSS (K = 64) and corresponding |X(n, ωk)|2, (c) spectrum of bandpass DPSS (K = 4)

and corresponding |G(n, ωk)|2.
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Figure 26: Restored results for the test signal x1(n): (a) irregularly-spaced subsamples

(L = 8, τ ∼ N (0, 1)), (b) restored signal, (c) error, (d) convergence behavior.
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Figure 27: Convergence speed and MAE performance according to the degree of irregularity.
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Figure 28: Restored results for the chirp signal (N = 512): (a) irregularly-spaced subsamples

(L = 4, τ ∼ N (0, 1/2)), (b) restored signal by bandpass DPSS (K = 64,Wc = 1/16) based

DET, (c) error, (d) convergence behavior.
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Figure 29: Restored results for the speech signal: (a) speech signal, (b) spectrum of speech,

baseband and bandpass DPSS, (c) irregularly-spaced subsamples (L = 4, τ ∼ N (0, 1/2)),

(d) convergence behaviours, (e) restored signal by baseband DPSS (K = 64) based DET, (f)

restored signal by bandpass DPSS (K = 16,Wc = 0.05) based DET.
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Figure 30: Restored results for randomly-spaced subsamples: (a) randomly-spaced sub-

sampled test and speech signals, (b) restored test signal by baseband DPSS based DET

(L = 8, K = 32) and restored speech signal by bandpass DPSS based DET (L = 4, K = 16),

(c) convergence behaviors of 5 different random sampling patterns (left: test signal, right:

speech signal).
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Figure 31: Restored results for continuous lost samples: (a) restored speech signal from 12

missing data after 10 iterations, (b) restored speech signal from 25 missing data after 70

iterations.

79



6.0 TIME ENCODING AND NONUNIFORM SAMPLING

In the previous chapter, we considered stochastic jitter sampling (SJS) and reconstruction.

It has recently been shown that an Asynchronous Sigma Delta Modulator (ASDM), can be

used to sample a signal in a non-uniform way [17, 16]. ASDMs can be used to convert an

analog continuous-time input signal into a continuous time binary amplitude output signal

[17]. Through this conversion, the information in the amplitude of the input signal is coded

in the pulse width of the output signal. ASDMs have the same structure as sigma delta

modulators (SDM) but without quantization. However, the description of an ASDM is more

complex than that of SDMs, as the simplification of a linear loop that is excited by an extra

uncorrelated noise source is not valid here. ASDMs are closed loop nonlinear systems. In

particular, the interest is in nonlinear elements with binary output (single-bit quantizers,

nonlinear amplifiers and binary switches) and especially quantizers with switches [17]. Due

to the hysteresis the nonlinear function performed by such a quantizer depends on both the

sign and the phase of the input signal and introduces additional degree of freedom in the

system design.

The most attractive property of an ASDM is its conversion of amplitude information

into time information without an external sampling (clock) signal such that no quantization

noise is introduced into system. In comparison, an external clock is required in an SDM and

the input of the quantizer at each clock moment has to be represented by a certain discrete

value, thus introducing quantization noise. In addition, a high frequency clock increases

electromagnetic interference on supply rails and corrupts the analog signal to be sampled

[16]. In the ASDMs the signal transition times depend on the properties of the input signal

of the quantizer such that the moment of the transition coincides exactly with the moment of

crossing the threshold. This internal timing mechanism is described by the unforced periodic
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oscillations denoted as limit cycles. Due to its fully analog nature, the ASDM has a specific

application area where pure analog processing is required.

The ASDM can be used as a simple but high-precision and low-power alternative for the

standard SDM and for those and other applications that do not functionally require digiti-

zation in time [17]. This concept of digitization in time leaded to a new idea in the signal

processing which is called continuous time digital signal processing [4]. In [16], the authors

define the reconstruction process from the output of the ASDM and derive various recon-

struction methods. They call their method of sampling in general as Time Encoding and of

signal reconstruction as Time Decoding. We derive a computationally efficient reconstruc-

tion algorithm based on an interpretation of Shannon’s sampling theory using the ASDM

time codes which we believe is a novel way of combining asynchronous operations with the

synchronous ones of the Shannon’s sampling theory by using PSWF. In the following section

we will describe the operation of an ASDM and the corresponding time encoding and de-

coding as an alternative to uniform sampling and reconstruction and give a computationally

efficient reconstruction algorithm.

6.1 ASDM FOR TIME-ENCODING

ASDMs have recently begun gaining more attention as the conventional analog to digital

converters have significant limitations which can not be compensated efficiently in many

emerging applications. ASDM are a new way of representing analog signals in terms of a

discrete form without the need of a clock [5, 17, 16] and since ASDM have a very simple

circuitry it can operate at a low current and supply voltage. The reconstruction of a ban-

dlimited signal from the output of an ASDM is similar to the reconstruction of a bandlimited

signal from nonuniform samples. In the irregular sampling both the sample values and the

time instants of the samples are required to reconstruct the signal, thus the twice the amount

of data to be transmitted. Compared to just the sample values in uniform sampling, irreg-

ular sampling is not preferable. However, when sampling with an ASDM, it is possible to

reconstruct the bandlimited signal just from the zero crossings of the ASDM output which

81



is an asynchronous binary signal. The zero crossings of that signal give enough information

to reconstruct the signal compared to the amplitude information in the conventional analog

to digital converter systems. Due to elimination of the clock and the power consumption

accompanying it, we investigate ASDMs as a way of data acquisition in neural implants. The

ASDM is a nonlinear feedback system which can be implemented as a combination of an

integrator and a non-inverting Schmitt trigger [17]. In the ASDM, amplitude information of

a signal x(t) is transformed into time information without the quantization error that exists

in the synchronous sigma delta modulators. Assuming that the input x(t) of the ASDM is

band-limited, with a maximum frequency Ωmax, and bounded, |x(t)| ≤ c, it can be seen from

+ −

1
κ

∫
dt

x(t) y(t) z(t)
b

−b

−δ

δ

−1

1

t1

t2

t3

tSchmitt Trigger
Integrator

z(t)

y(t)

Figure 32: Asynchronous sigma delta modulator.

Fig. 32 that the output of the integrator, y(t), is given by

y(t) = y(to) +
1

κ

∫ t

to

[x(u)− z(u)]du.

for all t > to, where κ, δ, and b are strictly positive numbers and x(t) is a Lebesgues

measurable function [16]. Note that y(t) is a continuously increasing (decreasing) function

whenever the value of the feedback is positive (negative). Due to the operating characteristic

of the Schmitt trigger, output y(t) increases monotonically until it reaches the value δ if the

feedback is b or decreases monotonically to −δ if the feedback is −b for any arbitrary initial

value of the integrator. After y(t) reaches the value δ from below or −δ from above, the

output of the Schmitt trigger z(t) flips from −b to b and from b to −b, respectively. Therefore,

we can assume that for some initial condition at t = to, we have (y(to), z(to)) = (−δ,−b)

and in a small neighborhood of t > to, the TEM is described by [16],

δ = −δ +
1

κ

∫ t

to

[x(u) + b]du (6.1)
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and since y(t) increases monotonically, the trigger switches to the state (b, δ) at the time

t = t1 > to the equation

−δ = δ +
1

κ

∫ t

t1

[x(u)− b]du (6.2)

is satisfied for some t = t2 > t1. Generalizing (6.1) and (6.2), for the strictly increasing

sequence tk, k ∈ Z the following equation∫ tk+1

tk

x(u)du = (−1)k[−b(tk+1 − tk) + 2κδ] (6.3)

uniquely describes the relationship between z(t) and x(t) for all t ∈ R and |y| ≤ δ [16]. For

future use we call the right-hand side term of (6.3) as v(k) such that

v(k) = (−1)k[−b(tk+1 − tk) + 2κδ]. (6.4)
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Figure 33: Examples of the processing of ASDM for different inputs x(t).
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Figure 34: (a) reconstructed vs. original EEG, (b) reconstruction error.

The perfect reconstruction of x(t) is possible provided that the nonuniform sequence {tk}

satisfies the condition [17, 16] :

max
k

(tk+1 − tk) ≤ TN (6.5)

where TN = π/Ωmax is the Nyquist sampling period. Indeed, the upper and lower bounds

for trigger times can be found by applying the mean value theorem to the term on the left

hand side of equation (6.3) such that we obtain

(−1)kx(ζk)(tk+1 − tk) = −b(tk+1 − tk) + 2κδ (6.6)

where ζk ∈ [tk, tk+1] and since x(t) is bounded, i.e., |x(t)| ≤ c, solving for tk+1− tk, we obtain

2κδ

b+ c
≤ tk+1 − tk ≤

2κδ

b− c

providing a way to choose the parameters b, δ, and κ in terms of the Nyquist sampling rate

TN ≤ 2κδ/(b− c).
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6.2 DPSS FOR ASDM RECONSTRUCTION ALGORITHM

The reconstruction of the band-limited signal x(t) from the zero-crossings of z(t) requires a

finite length approximation of the sinc function g(t), and an approximation of the integral

in equation (6.3). Basically there are two ways of sinc representation:

• Using inverse Fourier transform of the rectangular function G(Ω), bandlimited to

[−Ωo,Ωo] as

g(t) =
1

2π

∫ Ωo

−Ωo

ejΩtdΩ =
sin(Ωot)

πt
(6.7)

• Approximation of g(t) from line spectrum and by sampling G(Ω) to get Gk(Ω) = δ(Ω−

kΩo/N) as

g(t) ' 1

2π

∫ Ωo

−Ωo

N∑
k=−N

δ(Ω− kΩo/N)ejΩtdΩ =
1

2π

N∑
k=−N

∫ Ωo

−Ωo

ej
Ωo
N
ktδ(Ω− kΩo/N)dΩ

=
1

2π

N∑
k=−N

ejk
Ωo
N
t =

1

2π

2N∑
m=0

ej
Ωo
N

(m−N)t

=
e−jΩot

2π

1− ejΩo(2N+1)t/N

1− ejΩot/N

=
1

2π

sin(Ωot(2N + 1)/2N)

sin(Ωot/2N)
(6.8)

where m = k+N . Using the approximation from the line spectrum, a reconstruction formula

from nonuniform samples is

x(t) =
∑
k

ckg(t− sk)

≈
∑
k

ck
1

2π

N∑
m=−N

ej(t−sk)mΩo/N

=
N∑

m=−N

1

2π
[
∑
k

cke
j Ωo
N
skm]ejΩo/Ntm

x(t) ∼=
N∑

m=−N

d(m)e
jΩotm
N (6.9)
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here sk = tk + tk+1/2. If one can solve the above equation for d(m), the reconstruction can

be done. We can replace (6.9)in (6.3) to solve for d(m). In [16], the sinc function represented

by S(t) is approximated by complex exponentials as

S(t) ≈
L∑

m=−L

αejmΩ0t = α
sin((L+ 0.5)Ω0t)

sin(0.5Ω0t)
(6.10)

where L is an arbitrary large number not connected with the signal x(t), and Ω0 = Ωmax
L

.

Assume that the input to the ASDM is approximated by a PSWF projection

x(t) ≈ x̂(t) =
M−1∑
n=0

γM,nϕn(t)

where the value of M is chosen by making the frequency of the ϕM(t) coincide with the

frequency of x(t). If we let t = k∆t, such that ∆t < π/Ωmax the projection can be written

x̂ = Φ γM (6.11)

The integral in (6.3), for b = 1, can be approximated by means of the trapezoidal rule as∫ tk+1

tk

x(t)dt ≈ 0.5x(tk)∆t +

Nk−1∑
i=1

x(tk + i∆t)∆t

+0.5x(tk+1)∆t

where Nk = (tk+1 − tk)/∆t. Letting v(k) in Eq. (6.4) be the entries of a vector v computed

at each of the {tk} values by

v(k) ≈ qk
T Φ γM

where the entries of the row vector qk are given as

qk,j =


0.5∆t j = 0, and j = Nk

∆t Nk + 1 ≤ j ≤ Nk − 1

0 otherwise

Thus for the time sequence {tk, k = 1, · · · , K} equation (6.3) can be written as

v = Q Φ γM (6.12)
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where Q is the matrix composed of the vector qk and the vector v is composed of (6.4).

Computing

γM = [Q Φ]†v (6.13)

we can use it to find the projection x̂ in (6.11) where † represents the pseudo-inverse opera-

tion. We will demonstrate the advantages of using PSWF reconstruction over the sinc based

reconstruction method in some simulations after we propose a transmission method for the

ASDM output signal.
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Figure 35: Chirp OFDM for uniform symbol period.

6.2.1 Chirp Modulation for ASDM Signals

We consider the transmission of binary signals {zn(t)}, n = 1, · · · , N from an array of

N ASDMs which can be used for data acquisition in a brain computer interface system

(BCI). These signals need to be transmitted in the most efficient way from the BCI to

an intermediate personal digital assistant (PDA) capable of transmitting the signal to a

server where the signal analysis is performed. Each of the signals is a train of pulses with

non-uniform zero-crossings. We explore the application of orthogonal frequency division

multiplexing (OFDM) (see Fig. 35) using orthonormal chirp basis for the modulation of the

N time-encoded signals.
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6.2.2 Uniform symbol period

Chirp modulation has been applied successfully in OFDM [97]. In OFDM system the data

is divided into several parallel data streams or channels, one for each sub-carrier. Each sub-

carrier is modulated with a conventional modulation scheme at a low symbol rate, maintain-

ing total data rates similar to conventional single-carrier modulation schemes in the same

bandwidth. OFDM is robust against narrow-band co-channel interference, intersymbol inter-

ference (ISI) and fading caused by multipath propagation. Also it has high spectral efficiency

as compared to conventional modulation schemes, spread spectrum, etc. OFDM has an effi-

cient implementation using Fast Fourier Transform (FFT) and it has low sensitivity to time

synchronization errors. In the case of the transmission of source symbols +1 or −1 with a

uniform period T , if we have orthonormal chirps ck(t) for users k = 1, · · · , U the baseband

transmitted signal for user k is given by sk(t) = bk(t)ck(t) where bk(t) is either 1 or −1 for

t0 ≤ t ≤ t0 + T . Assuming perfect synchronization at the receiver and that the only channel

effect is addition of Gaussian noise η(t), the baseband received signal is

r(t) =
U∑
k=1

sk(t) + η(t) (6.14)

To recover the source symbols, multiplying the received signals by the conjugate of the chirps,

c∗k(t) we obtain a decision variable for user k

yk =

∫ t0+T

t0

r(t)c∗k(t)dt

=
U∑
n=1

bn(t)

∫ t0+T

t0

cn(t)c∗k(t)dt+

∫ t0+T

t0

η(t)c∗k(t)dt

= bk(t) +

∫ t0+T

t0

η(t)c∗k(t)dt t0 ≤ t ≤ t0 + T (6.15)

and the value of bk(t), which is either 1 or −1, is estimated by a thresholder. The orthonor-

mality of the chirps mitigates the multiple access interference caused by other users different

from the user we are interested in.

Consider a set of frequency modulated linear chirps with instantaneous frequencies

φk(t) = θt+ 2fk k = 1, · · · , U (6.16)
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where θ is a common chirp rate, and fk = αk/T is a multiple of the frequency corresponding

to the symbol period T . The chirps are given by

ck(t) = ejπφk(t)t = ejπθt
2

ej2πfkt

The orthonormality of the chirps {ck(t)} depends on the orthonormality of the {ej2πfkt}

terms. Indeed, the common chirp rate makes it so that

1

T

∫ t0+T

t0

ck(t)c
∗
n(t)dt =

1

T

∫ t0+T

t0

ej2π(fk−fn)tdt

=

 1 k = n

0 k 6= n
(6.17)

In [97] the orthonormal chirps are obtained from the properties of the kernel of the fractional

Fourier transform, but such relation is unnecessary as shown above.

6.2.3 Nonuniform symbol period

Applying the chirp-modulated OFDM for the transmission of the time-encoded signals ob-

tained from N ASDMs is complicated by the fact that the pulses corresponding to the

symbols do not have a uniform period as before. Indeed the duty-cycle modulation that is

being used to get z(t) from x(t) gives that the pulse width αk(t) and the pulse period τk(t)

of two consecutive pulses give a duty-cycle

αk(t)

τk(t)
=

1 + xk(t)

2

for xk(t) in [tk, tk+2]. Thus only when x(t) = 0 we would have uniform pulse periods. In this

case of nonuniform pulse duration, we will again consider chirps with a common chirp rate

θ, but with frequencies fn = 1/T̂ where

T̂ = min{Tn(k)}
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and Tn(k) = tn(k + 1)− tn(k) are the time intervals from the signals {zn(t), n = 1, · · · , N}.

The bandwidth allocated to the nth-ASDM, Fn = fn+1 − fn, is divided into M sub-bands

with frequencies

fn(m) = fn +
Fn
M
m m = 0, · · · ,M − 1 (6.18)

Using these frequencies and the zero crossings {tn(k)} from zn(t) we create an array of chirps

with instantaneous frequencies

φn,m(t− tn(m)) = θ(t− tn(m)) + 2fn(m) (6.19)

when t ∈ [tn(m), tn(m+1)] and −∞ otherwise (so that the chirp is zero outside [tn(k), tn(k+

1)] ). Thus the chirp

cnm(t) = ejπφnm(t)t = ejπθt
2

ej2πfn(m)t (6.20)

for tm ≤ t ≤ tm+1 and zero otherwise. Considering an analysis time segment t0 ≤ t ≤ t0 +Tf ,

where Tf = βT̂ for a small integer β, the orthonormality of the chirps cnm(t) is kept by the

common chirp rate and by the orthogonality of the complex exponentials with frequencies

{fn(m)}. Each consecutive pulse in zn(t) is multiplied by a chirp with an increasing frequency

fn(m). Assuming again that the effect of the channel is only the addition of Gaussian noise,

the received signal is now

r(t) =
N∑
n=1

M−1∑
m=0

snm(t) + η(t)

=
N∑
n=1

M−1∑
m=0

zn(t)cnm(t) + η(t) (6.21)

If we multiply this signal by e−jπθt
2

the resulting signal is

y(t) = r(t)e−jπθt
2

=
N∑
n=1

M−1∑
m=0

zn(t)ej2πfn(m)t + η(t)e−jπθt
2

(6.22)
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and when we pass this signal through a band-pass filter of bandwidth Fn gives

ỹn(t) =
M−1∑
m=0

zn(t)ej2πfn(m)t + η̃(t) (6.23)

which is a combination of sinusoids in the bandwidth assigned to channel n, and where η̃(t)

is the noise within that band-width.

If we express zn(t) for t0 ≤ t ≤ t0 +Tf as a concatenation of rectangular pulses using the

unit-step signal u(t) and let d` = ±1 for the subchannels being occupied and zero for those

that are not, we get

zn(t) =
M−1∑
`=0

d`[u(t− tn(`+ 1))− u(t− tn(`))] (6.24)

The Fourier transform of zn(t) is then

Zn(ω) =
M−1∑
`=0

d`

∫ tn(`+1)

tn(`)

e−jωtdt (6.25)

and then the Fourier transform of ỹn(t) is given by

Ỹn(ω) =
M−1∑
m=0

Zn(ω − 2πfn(m)) + η̃(ω)

If we filter Ỹn(ω) of center frequency fn(m) and determine the value of this function at the

frequencies fn(m), for m ∈ [0, · · · ,M − 1] we obtain

Ŷn(fn(m)) = Zn(0) + η̃(2πfn(m))

= dm [tn(m+ 1)− tn(m)]

+η̃(2πfn(m)) (6.26)

so that |Ŷn(fn(m))| ≈ tn(m + 1) − tn(m). We have obtained that for the m-subchannel in

the n-channel with high signal to noise ratio the corresponding period is Tn(m) = tn(m +

1)− tn(m) and the corresponding value dm.
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6.3 SIMULATIONS

In the first set of simulations, to illustrate the duty-cycle modulation performed by the

ASDM, we consider four different signals. When x(t) = 0, the output of the integrator is

a symmetric triangular signal and the output z(t) of the ASDM is a train of square pulses

of uniform symbol duration. In any other case we obtain rectangular pulses with a duty

cycle depending on the value of the amplitude of the input signal. Fig. 33 shows the cases

when the input is zero, a positive constant, a ramp and an arbitrary signal. A characteristic

of these cycles is that the average of the input signal x(t) equals the average of the output

signal z(t) in each of the intervals [tk, tk+2].

Later, we do a simulation to compare the sinc approximation based reconstruction to

DPSS projection. Fig. 34, we compare the two kinds of reconstruction. To illustrate the

transmission, we consider four outputs from ASDMs {zn(t), n = 1, 2, 3, 4} which are shown

in Fig. 36, for a small interval. Our algorithm provides the duration of each of the symbols

in seconds and also the value ±1 which will provide us the data necessary to reconstruct

the original signals in each of the channels. To illustrate the performance of the algorithm

when noise is added by the channel, we did a Monte Carlo simulation with 500 trials for

each signal to noise ratio (SNR) and make these vary from −10 to 10 dBs. The results show

that our procedure is quite robust to additive noise. As a more general example where we

consider a real situation which will create the following binary outputs z(t) as in Fig. 37.

In our simulations we used subdural EEG signals of an epilepsy patient. For 4-channels,

ASDM sampling was applied giving time codes for each zu(t), u = 1, . . . , 4. The parameters

of the ASDM were chosen for a sampling period of 5 msec. The Fig. 38 illustrates the

demodulation and reconstruction.

6.4 CONCLUSIONS

In this chapter we considered a reconstruction method based on PSWF for the time codes

of an ASDM sampling system. ASDM is a low-power nonlinear feedback system which has
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potential applications in biomedical implants which require low power consumption, low

electromagnetic interference and small size. We also consider an efficient modulation system

to be used together with the binary signals from ASDM output. In this case we chose or-

thogonal frequency division multiplexing (OFDM)which works efficiently. In OFDM system

the data is divided into several parallel data streams or channels, one for each sub-carrier.

Each sub-carrier is modulated with a conventional modulation scheme at a low symbol rate,

maintaining total data rates similar to conventional single-carrier modulation schemes in the

same bandwidth. OFDM is robust against narrow-band co-channel interference, intersymbol

interference (ISI) and fading caused by multipath propagation. Also it has high spectral effi-

ciency as compared to conventional modulation schemes, spread spectrum, etc. OFDM has

an efficient implementation using Fast Fourier Transform (FFT) and it has low sensitivity to

time synchronization errors. We modified an OFDM system to be used for a group of ASDM

sensors which we believe is a promising way of data communication between bioimplants and

personal digital assistants(PDA) for health monitoring applications.
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Figure 36: Transmission of four channel binary signals.
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7.0 FUTURE WORK

Our future goal is to establish a collaborative, multidisciplinary and integrative research to

provide solutions for a variety of application domains: healthcare, environmental monitoring

and communications. In order to realize this goal, we will focus on the following research

areas:

• We will extend our research interests to include data acquisition technologies for the

development of advanced sensors and actuators.

• We will carry out research on embedded systems and sensor networks since understanding

of the current technologies is very important for successful implementation of the data

acquisition algorithms. We intend to continue this research for asynchronous signal

processing for low-complexity, real-time and energy-aware signal compression.

• In the stabilization of networked control systems, where the sampling intervals are time-

varying, various form of nonuniform sampling methods can be used to increase perfor-

mance. To the best of our knowledge, there is not enough research on this important

problem, therefore we are motivated to do both theoretical and experimental work on

this subject
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