726 research outputs found

    Removal of electrocardiographic corruption from electromyographic signals using a localized wavelet based approach.

    Get PDF
    Introduction: Approximately 12,000 new cases of spinal cord injury (SCI) are reported each year in the US. Currently, the most widely used method of assessing the recovery of voluntary capability after spinal cord injury is the American Spinal Injury Association Impairment Scale (AIS). However, this test is not objective and is not sensitive enough to detect small activities. Recent studies have been using surface electromyography (EMG) to develop objective and sensitive spinal cord injury (SCI) characterization protocols. EMG recordings from the trunk muscles are contaminated with the electrical activity of the heart (ECG, electrocardiography). Depending on the level, spinal cord injury may disrupt the control of the trunk muscles, and EMG recordings from these muscles will be very weak compared to those in non-injured individuals. The elimination of ECG artifacts play critical role in precise evaluation of the trunk muscles in these individuals. While common global digital filters may generally remove some of the ECG corruption from the signal, these filters also remove or alter valuable EMG signal, which makes the physiological importance of these signals irrelevant. Methods: Local filtering approach was developed to remove this ECG noise, without significantly altering the EMG signal. The local filtering approach uses externally recorded ECG signals, in a separate lead configuration, as a mask to locate the area of ECG spikes within the noisy EMG signal. The areas of the signal containing the ECG noise are decomposed into 128 sub-wavelets using custom-scaled Morlet Wavelet Transform. Sub-wavelets pertaining to ECG within the signal at the ECG spike location are then removed, and the signal is reconstructed to create a clean EMG signal. This process is analytically tested for robustness and accuracy, using customized validation metrics, on simulated phantom signals. It is compared with a global Morlet Wavelet filter that does not localize its filtering process on the ECG spikes. Results: It was found that the localized filtering significantly reduced the Root-Mean-Squared (RMS) of the area of the signal containing ECG spikes. The Localized Filter also significantly reduced the error produced from removal of EMG signal in the areas outside of ECG spikes compared to global filter. The proposed local filter doesn’t degrade the signal, even at low ECG amplitudes (~60% improvement), compared to the global filter, which destroys the signal at this low amplitude ECG (-100% improvement). The proposed local filter is also far more efficient at removing larger amplitude ECG (more critical) than the global filter, which has a narrow range of signals that it can efficiently remove ECG. Hence, the proposed local filter is more robust and clinical-ready than the global filter. Conclusion: Proposed approach is far superior in terms of ECG removal accuracy, and introduction of artifact error from processing, compared to comparable global filter. It provides a mean to improve analysis of EMG signals as a tool to assess recovery from SCI

    Load-Independent And Regional Measures Of Cardiac Function Via Real-Time Mri

    Get PDF
    LOAD-INDEPENDENT AND REGIONAL MEASURES OF CARDIAC FUNCTION VIA REAL-TIME MRI Francisco Jose Contijoch Robert C Gorman, MD Expansion of infarcted tissue during left ventricular (LV) remodeling after a myocardial infarction is associated with poor long-term prognosis. Several interventions have been developed to limit infarct expansion by modifying the material properties of the infarcted or surrounding borderzone tissue. Measures of myocardial function and material properties can be obtained non-invasively via imaging. However, these measures are sensitive to variations in loading conditions and acquisition of load-independent measures have been limited by surgically invasive procedures and limited spatial resolution. In this dissertation, a real-time magnetic resonance imaging (MRI) technique was validated in clinical patients and instrumented animals, several technical improvements in MRI acquisition and reconstruction were presented for improved imaging resolution, load-independent measures were obtained in animal studies via non-invasive imaging, and regional variations in function were measured in both na�ve and post-infarction animals. Specifically, a golden-angle radial MRI acquisition with non-Cartesian SENSE-based reconstruction with an exposure time less than 95 ms and a frame rate above 89 fps allows for accurate estimation of LV slice volume in clinical patients and instrumented animals. Two technical developments were pursued to improve image quality and spatial resolution. First, the slice volume obtained can be used as a self-navigator signal to generate retrospectively-gated, high-resolution datasets of multiple beat morphologies. Second, cross-correlation of the ECG with previously observed values resulted in accurate interpretation of cardiac phase in patients with arrhythmias and allowed for multi-shot imaging of dynamic scenarios. Synchronizing the measured LV slice volume with an LV pressure signal allowed for pressure-volume loops and corresponding load-independent measures of function to be obtained in instrumented animals. Acquiring LV slice volume at multiple slice locations revealed regional differences in contractile function. Motion-tracking of the myocardium during real-time imaging allowed for differences in contractile function between normal, borderzone, and infarcted myocardium to be measured. Lastly, application of real-time imaging to patients with arrhythmias revealed the variable impact of ectopic beats on global hemodynamic function, depending on frequency and ectopic pattern. This work established the feasibility of obtaining load-independent measures of function via real-time MRI and illustrated regional variations in cardiac function

    Characterization and processing of novel neck photoplethysmography signals for cardiorespiratory monitoring

    Get PDF
    Epilepsy is a neurological disorder causing serious brain seizures that severely affect the patients' quality of life. Sudden unexpected death in epilepsy (SUDEP), for which no evident decease reason is found after post-mortem examination, is a common cause of mortality. The mechanisms leading to SUDEP are uncertain, but, centrally mediated apneic respiratory dysfunction, inducing dangerous hypoxemia, plays a key role. Continuous physiological monitoring appears as the only reliable solution for SUDEP prevention. However, current seizure-detection systems do not show enough sensitivity and present a high number of intolerable false alarms. A wearable system capable of measuring several physiological signals from the same body location, could efficiently overcome these limitations. In this framework, a neck wearable apnea detection device (WADD), sensing airflow through tracheal sounds, was designed. Despite the promising performance, it is still necessary to integrate an oximeter sensor into the system, to measure oxygen saturation in blood (SpO2) from neck photoplethysmography (PPG) signals, and hence, support the apnea detection decision. The neck is a novel PPG measurement site that has not yet been thoroughly explored, due to numerous challenges. This research work aims to characterize neck PPG signals, in order to fully exploit this alternative pulse oximetry location, for precise cardiorespiratory biomarkers monitoring. In this thesis, neck PPG signals were recorded, for the first time in literature, in a series of experiments under different artifacts and respiratory conditions. Morphological and spectral characteristics were analyzed in order to identify potential singularities of the signals. The most common neck PPG artifacts critically corrupting the signal quality, and other breathing states of interest, were thoroughly characterized in terms of the most discriminative features. An algorithm was further developed to differentiate artifacts from clean PPG signals. Both, the proposed characterization and classification model can be useful tools for researchers to denoise neck PPG signals and exploit them in a variety of clinical contexts. In addition to that, it was demonstrated that the neck also offered the possibility, unlike other body parts, to extract the Jugular Venous Pulse (JVP) non-invasively. Overall, the thesis showed how the neck could be an optimum location for multi-modal monitoring in the context of diseases affecting respiration, since it not only allows the sensing of airflow related signals, but also, the breathing frequency component of the PPG appeared more prominent than in the standard finger location. In this context, this property enabled the extraction of relevant features to develop a promising algorithm for apnea detection in near-real time. These findings could be of great importance for SUDEP prevention, facilitating the investigation of the mechanisms and risk factors associated to it, and ultimately reduce epilepsy mortality.Open Acces

    Flexible Time Series Matching for Clinical and Behavioral Data

    Get PDF
    Time Series data became broadly applied by the research community in the last decades after a massive explosion of its availability. Nonetheless, this rise required an improvement in the existing analysis techniques which, in the medical domain, would help specialists to evaluate their patients condition. One of the key tasks in time series analysis is pattern recognition (segmentation and classification). Traditional methods typically perform subsequence matching, making use of a pattern template and a similarity metric to search for similar sequences throughout time series. However, real-world data is noisy and variable (morphological distortions), making a template-based exact matching an elementary approach. Intending to increase flexibility and generalize the pattern searching tasks across domains, this dissertation proposes two Deep Learning-based frameworks to solve pattern segmentation and anomaly detection problems. Regarding pattern segmentation, a Convolution/Deconvolution Neural Network is proposed, learning to distinguish, point-by-point, desired sub-patterns from background content within a time series. The proposed framework was validated in two use-cases: electrocardiogram (ECG) and inertial sensor-based human activity (IMU) signals. It outperformed two conventional matching techniques, being capable of notably detecting the targeted cycles even in noise-corrupted or extremely distorted signals, without using any reference template nor hand-coded similarity scores. Concerning anomaly detection, the proposed unsupervised framework uses the reconstruction ability of Variational Autoencoders and a local similarity score to identify non-labeled abnormalities. The proposal was validated in two public ECG datasets (MITBIH Arrhythmia and ECG5000), performing cardiac arrhythmia identification. Results indicated competitiveness relative to recent techniques, achieving detection AUC scores of 98.84% (ECG5000) and 93.32% (MIT-BIH Arrhythmia).Dados de séries temporais tornaram-se largamente aplicados pela comunidade científica nas últimas decadas após um aumento massivo da sua disponibilidade. Contudo, este aumento exigiu uma melhoria das atuais técnicas de análise que, no domínio clínico, auxiliaria os especialistas na avaliação da condição dos seus pacientes. Um dos principais tipos de análise em séries temporais é o reconhecimento de padrões (segmentação e classificação). Métodos tradicionais assentam, tipicamente, em técnicas de correspondência em subsequências, fazendo uso de um padrão de referência e uma métrica de similaridade para procurar por subsequências similares ao longo de séries temporais. Todavia, dados do mundo real são ruidosos e variáveis (morfologicamente), tornando uma correspondência exata baseada num padrão de referência uma abordagem rudimentar. Pretendendo aumentar a flexibilidade da análise de séries temporais e generalizar tarefas de procura de padrões entre domínios, esta dissertação propõe duas abordagens baseadas em Deep Learning para solucionar problemas de segmentação de padrões e deteção de anomalias. Acerca da segmentação de padrões, a rede neuronal de Convolução/Deconvolução proposta aprende a distinguir, ponto a ponto, sub-padrões pretendidos de conteúdo de fundo numa série temporal. O modelo proposto foi validado em dois casos de uso: sinais eletrocardiográficos (ECG) e de sensores inerciais em atividade humana (IMU). Este superou duas técnicas convencionais, sendo capaz de detetar os ciclos-alvo notavelmente, mesmo em sinais corrompidos por ruído ou extremamente distorcidos, sem o uso de nenhum padrão de referência nem métricas de similaridade codificadas manualmente. A respeito da deteção de anomalias, a técnica não supervisionada proposta usa a capacidade de reconstrução dos Variational Autoencoders e uma métrica de similaridade local para identificar anomalias desconhecidas. A proposta foi validada na identificação de arritmias cardíacas em duas bases de dados públicas de ECG (MIT-BIH Arrhythmia e ECG5000). Os resultados revelam competitividade face a técnicas recentes, alcançando métricas AUC de deteção de 93.32% (MIT-BIH Arrhythmia) e 98.84% (ECG5000)

    Statistical Properties and Applications of Empirical Mode Decomposition

    Get PDF
    Signal analysis is key to extracting information buried in noise. The decomposition of signal is a data analysis tool for determining the underlying physical components of a processed data set. However, conventional signal decomposition approaches such as wavelet analysis, Wagner-Ville, and various short-time Fourier spectrograms are inadequate to process real world signals. Moreover, most of the given techniques require \emph{a prior} knowledge of the processed signal, to select the proper decomposition basis, which makes them improper for a wide range of practical applications. Empirical Mode Decomposition (EMD) is a non-parametric and adaptive basis driver that is capable of breaking-down non-linear, non-stationary signals into an intrinsic and finite components called Intrinsic Mode Functions (IMF). In addition, EMD approximates a dyadic filter that isolates high frequency components, e.g. noise, in higher index IMFs. Despite of being widely used in different applications, EMD is an ad hoc solution. The adaptive performance of EMD comes at the expense of formulating a theoretical base. Therefore, numerical analysis is usually adopted in literature to interpret the behavior. This dissertation involves investigating statistical properties of EMD and utilizing the outcome to enhance the performance of signal de-noising and spectrum sensing systems. The novel contributions can be broadly summarized in three categories: a statistical analysis of the probability distributions of the IMFs and a suggestion of Generalized Gaussian distribution (GGD) as a best fit distribution; a de-noising scheme based on a null-hypothesis of IMFs utilizing the unique filter behavior of EMD; and a novel noise estimation approach that is used to shift semi-blind spectrum sensing techniques into fully-blind ones based on the first IMF. These contributions are justified statistically and analytically and include comparison with other state of art techniques

    Wavelet based QRS detection in ECG using MATLAB

    Get PDF
    In recent years, ECG signal plays an important role in the primary diagnosis, prognosis and survivalanalysis of heart diseases. Electrocardiography has had a profound influence on the practice of medicine.This paper deals with the detection of QRS complexes of ECG signals using derivativebased/Pan-Tompkins/wavelet transform based algorithms. The electrocardiogram signal contains animportant amount of information that can be exploited in different manners. The ECG signal allows for theanalysis of anatomic and physiologic aspects of the whole cardiac muscle. Different ECG signals fromMIT/BIH Arrhythmia data base are used to verify the various algorithms using MATLAB software.Wavelet based algorithm presented in this paper is compared with the AF2 algorithm/Pan-Tompkinsalgorithms for signal denoising and detection of QRS complexes meanwhile better results are obtained forECG signals by the wavelet based algorithm. In the wavelet based algorithm, the ECG signal has beendenoised by removing the corresponding wavelet coefficients at higher scales. Then QRS complexes aredetected and each complex is used to find the peaks of the individual waves like P and T, and also theirdeviations.Keywords: Electrocardiogram (ECG), AF2 Algorithm, MATLAB, Pan-Tompkins algorithm, WaveletTransform, Denoisin

    Development and Validation of an Algorithm for the Digitization of ECG Paper Images

    Get PDF
    The electrocardiogram (ECG) signal describes the heart’s electrical activity, allowing it to detect several health conditions, including cardiac system abnormalities and dysfunctions. Nowadays, most patient medical records are still paper-based, especially those made in past decades. The importance of collecting digitized ECGs is twofold: firstly, all medical applications can be easily implemented with an engineering approach if the ECGs are treated as signals; secondly, paper ECGs can deteriorate over time, therefore a correct evaluation of the patient’s clinical evolution is not always guaranteed. The goal of this paper is the realization of an automatic conversion algorithm from paper-based ECGs (images) to digital ECG signals. The algorithm involves a digitization process tested on an image set of 16 subjects, also with pathologies. The quantitative analysis of the digitization method is carried out by evaluating the repeatability and reproducibility of the algorithm. The digitization accuracy is evaluated both on the entire signal and on six ECG time parameters (R-R peak distance, QRS complex duration, QT interval, PQ interval, P-wave duration, and heart rate). Results demonstrate the algorithm efficiency has an average Pearson correlation coefficient of 0.94 and measurement errors of the ECG time parameters are always less than 1 mm. Due to the promising experimental results, the algorithm could be embedded into a graphical interface, becoming a measurement and collection tool for cardiologists
    • …
    corecore