43 research outputs found

    Magnetoencephalography

    Get PDF
    This is a practical book on MEG that covers a wide range of topics. The book begins with a series of reviews on the use of MEG for clinical applications, the study of cognitive functions in various diseases, and one chapter focusing specifically on studies of memory with MEG. There are sections with chapters that describe source localization issues, the use of beamformers and dipole source methods, as well as phase-based analyses, and a step-by-step guide to using dipoles for epilepsy spike analyses. The book ends with a section describing new innovations in MEG systems, namely an on-line real-time MEG data acquisition system, novel applications for MEG research, and a proposal for a helium re-circulation system. With such breadth of topics, there will be a chapter that is of interest to every MEG researcher or clinician

    Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods

    Get PDF
    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5mm) spatial resolution and excellent (~1ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including i) projection of MEG data into source space, ii) removing confounds introduced by the MEG inverse problem and iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease

    Localization accuracy of a common beamformer for the comparison of two conditions

    Get PDF
    Available online 23 January 2021.The linearly constrained minimum variance beamformer is frequently used to reconstruct sources underpinning neuromagnetic recordings. When reconstructions must be compared across conditions, it is considered good prac- tice to use a single, “common ”beamformer estimated from all the data at once. This is to ensure that differences between conditions are not ascribable to differences in beamformer weights. Here, we investigate the localiza- tion accuracy of such a common beamformer. Based on theoretical derivations, we first show that the common beamformer leads to localization errors in source reconstruction. We then turn to simulations in which we at- tempt to reconstruct a (genuine) source in a first condition, while considering a second condition in which there is an (interfering) source elsewhere in the brain. We estimate maps of mislocalization and assess statistically the difference between “standard ”and “common ”beamformers. We complement our findings with an application to experimental MEG data. The results show that the common beamformer may yield significant mislocalization. Specifically, the common beamformer may force the genuine source to be reconstructed closer to the interfering source than it really is. As the same applies to the reconstruction of the interfering source, both sources are pulled closer together than they are. This observation was further illustrated in experimental data. Thus, although the common beamformer allows for the comparison of conditions, in some circumstances it introduces localization inaccuracies. We recommend alternative approaches to the general problem of comparing conditions.G.L.G. was supported by postdoctoral grant from FNRS-FWO Excel- lence Of Science project Memodyn (ID EOS 30446199). M.B. has been supported by the program Attract of Innoviris (grant 2015-BB2B-10), by the Spanish Ministry of Economy and Competitiveness (grant PSI2016- 77175-P), and by the Marie Sklodowska-Curie Action of the European Commission (grant 743562). This study and the MEG project at CUB Hôpital Erasme were financially supported by the Fonds Erasme (Re- search Convention: “Les Voies du Savoir ”, Fonds Erasme, Brussels, Bel- gium)

    A Comprehensive Review of Magnetoencephalography (MEG) Studies for Brain Functionality in Healthy Aging and Alzheimer's Disease (AD)

    Get PDF
    Neural oscillations were established with their association with neurophysiological activities and the altered rhythmic patterns are believed to be linked directly to the progression of cognitive decline. Magnetoencephalography (MEG) is a non-invasive technique to record such neuronal activity due to excellent temporal and fair amount of spatial resolution. Single channel, connectivity as well as brain network analysis using MEG data in resting state and task-based experiments were analyzed from existing literature. Single channel analysis studies reported a less complex, more regular and predictable oscillations in Alzheimer's disease (AD) primarily in the left parietal, temporal and occipital regions. Investigations on both functional connectivity (FC) and effective (EC) connectivity analysis demonstrated a loss of connectivity in AD compared to healthy control (HC) subjects found in higher frequency bands. It has been reported from multiplex network of MEG study in AD in the affected regions of hippocampus, posterior default mode network (DMN) and occipital areas, however, conclusions cannot be drawn due to limited availability of clinical literature. Potential utilization of high spatial resolution in MEG likely to provide information related to in-depth brain functioning and underlying factors responsible for changes in neuronal waves in AD. This review is a comprehensive report to investigate diagnostic biomarkers for AD may be identified by from MEG data. It is also important to note that MEG data can also be utilized for the same pursuit in combination with other imaging modalities

    Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    Get PDF
    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing

    The relationship between MEG and fMRI

    Get PDF
    In recent years functional neuroimaging techniques such as fMRI, MEG, EEG and PET have provided researchers with a wealth of information on human brain function. However none of these modalities can measure directly either the neuro-electrical or neuro-chemical processes that mediate brain function. This means that metrics directly reflecting brain ‘activity’ must be inferred from other metrics (e.g. magnetic fields (MEG) or haemodynamics (fMRI)). To overcome this limitation, many studies seek to combine multiple complementary modalities and an excellent example of this is the combination of MEG (which has high temporal resolution) with fMRI (which has high spatial resolution). However, the full potential of multi-modal approaches can only be truly realised in cases where the relationship between metrics is known. In this paper, we explore the relationship between measurements made using fMRI and MEG. We describe the origins of the two signals as well as their relationship to electrophysiology. We review multiple studies that have attempted to characterise the spatial relationship between fMRI and MEG, and we also describe studies that exploit the rich information content of MEG to explore differing relationships between MEG and fMRI across neural oscillatory frequency bands. Monitoring the brain at “rest” has become of significant recent interest to the neuroimaging community and we review recent evidence comparing MEG and fMRI metrics of functional connectivity. A brief discussion of the use of magnetic resonance spectroscopy (MRS) to probe the relationship between MEG/fMRI and neurochemistry is also given. Finally, we highlight future areas of interest and offer some recommendations for the parallel use of fMRI and MEG

    Simulated electroencephalography (EEG) source localization using integrated meromorphic approximation

    Get PDF
    Epilepsy is a chronic brain dysfunction in which neurons and neuronal network malfunction cause symptoms of a seizure. A seizure is an abnormal electrical discharge from the brain appearing at a small area of the brain. The seizure affected zone loses its normal task abilities and might react uncontrollably. Electroencephalography (EEG) is one of the useful instruments in diagnosing many brain disorders like epilepsy. This non-invasive modality is used to localize brain regions involved during the generation of epileptic discharges. At present, many quantitative methods for identifying and localizing the epileptogenic focus from EEG have been invented by scientists around the world. Under quasi-static assumptions, Maxwell’s equations governing the spatial behaviour of the electromagnetic fields lead to Partial Differential Equations (PDE) of elliptic type in domains of R3. This thesis presents a new method based on integrated new EEG source detection, Cortical Brain Scanning (CBS) with meromorphic approximation to identify the sources on the brain scalp, which have highly abnormal activities when a patient is having a seizure attack. Boundary measurements for meromorphic approximation method are considered as isotropic and homogeneous in each layer (brain, skull, and scalp). The proposed method is applied on simulated and published EEG data obtained from epileptic patients. The method can enhance the localizations of sources in comparison to other methods, such as Low Resolution Brain Electromagnetic Tomography (LORETA), Minimum Norm Estimation (MNE), and Weight Minimum Norm Estimate (WMNE), coupled with meromorphic approximation. Standard validation metrics including Root Sum Square (RSS), Mean Square Error (MSE), and Receiver Operating Characteristic Curve (ROC) are used to verify the result. The proposed method produces promising results in enhancing the source of localization accuracy of epileptic foci

    Sequential Monte Carlo samplers for semilinear inverse problems and application to magnetoencephalography

    Get PDF
    We discuss the use of a recent class of sequential Monte Carlo methods for solving inverse problems characterized by a semi-linear structure, i.e. where the data depend linearly on a subset of variables and nonlinearly on the remaining ones. In this type of problems, under proper Gaussian assumptions one can marginalize the linear variables. This means that the Monte Carlo procedure needs only to be applied to the nonlinear variables, while the linear ones can be treated analytically; as a result, the Monte Carlo variance and/or the computational cost decrease. We use this approach to solve the inverse problem of magnetoencephalography, with a multi-dipole model for the sources. Here, data depend nonlinearly on the number of sources and their locations, and depend linearly on their current vectors. The semi-analytic approach enables us to estimate the number of dipoles and their location from a whole time-series, rather than a single time point, while keeping a low computational cost.Comment: 26 pages, 6 figure

    Spatial Filtering of Magnetoencephalographic Data in Spherical Harmonics Domain

    Get PDF
    We introduce new spatial filtering methods in the spherical harmonics domain for constraining magnetoencephalographic (MEG) multichannel measurements to user-specified sphericalregions of interests (ROI) inside the head. The main idea of the spatial filtering is to emphasize those signals arising from an ROI, while suppressing the signals coming from outsidethe ROI. We exploit a well-known method called the signal space separation (SSS), whichcan decompose MEG data into a signal component generated by neurobiological sourcesand a noise component generated by external sources outside the head. The novel methodspresented in this work, expanded SSS (exSSS) and generalized expanded SSS (genexSSS)utilize a beamspace optimization criterion in order to linearly transform the inner signal SSScoefficients to represent the sources belonging to the ROI. The filters mainly depend on theradius and the center of the ROI. The simplicity of the derived formulations of our methodsstems from the natural appropriateness to spherical domain and orthogonality properties ofthe SSS basis functions that are intimately related to the vector spherical harmonics. Thus,unlike the traditional MEG spatial filtering techniques, exSSS and genexSSS do not needany numerical computation procedures on discretized headspace. The validation and performance of the algorithms are demonstrated by experiments utilizing both simulated and realMEG data
    corecore