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SPATIAL FILTERING OF MAGNETOENCEPHALOGRAPHIC DATA IN

SPHERICAL HARMONICS DOMAIN

Tolga Esat Özkurt, PhD

University of Pittsburgh, 2009

We introduce new spatial filtering methods in the spherical harmonics domain for constrain-

ing magnetoencephalographic (MEG) multichannel measurements to user-specified spherical

regions of interests (ROI) inside the head. The main idea of the spatial filtering is to em-

phasize those signals arising from an ROI, while suppressing the signals coming from outside

the ROI. We exploit a well-known method called the signal space separation (SSS), which

can decompose MEG data into a signal component generated by neurobiological sources

and a noise component generated by external sources outside the head. The novel methods

presented in this work, expanded SSS (exSSS) and generalized expanded SSS (genexSSS)

utilize a beamspace optimization criterion in order to linearly transform the inner signal SSS

coefficients to represent the sources belonging to the ROI. The filters mainly depend on the

radius and the center of the ROI. The simplicity of the derived formulations of our methods

stems from the natural appropriateness to spherical domain and orthogonality properties of

the SSS basis functions that are intimately related to the vector spherical harmonics. Thus,

unlike the traditional MEG spatial filtering techniques, exSSS and genexSSS do not need

any numerical computation procedures on discretized headspace. The validation and perfor-

mance of the algorithms are demonstrated by experiments utilizing both simulated and real

MEG data.
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1.0 INTRODUCTION

Magnetoencephalography (MEG) and Electroencephalography (EEG) are noninvasive mea-

surement tools that provide high temporal resolution on the units of milliseconds to investi-

gate neuronal activity in the brain [1], [2]. MEG measures the magnetic fields produced by

the current sources in the brain utilizing gradiometers and/or magnetometers connected to

the superconducting quantum interference devices (SQUIDs) as sensors. The sensor array

of modern MEG devices contains between 100 and 400 sensors.

The current sources contributing to the magnetic fields outside the head can be classified

into the primary currents which are related to the ionic movements reflecting the neuronal

activity and the secondary currents (it has also been called volume, ohmic or return currents

in MEG literature) that are extracellular and produced as the effect of the primary currents

to complete the circuit as necessitated by the conservation principle of the electric charges

[2]. The synchronous activities of tens of thousands of the neurons give rise to the primary

currents in the orders of 10 nAm that might cause measurable magnetic fields about 50-500

fT. Since the MEG signals are considered as extremely weak (on the order of ten billionth

of the earth’s geomagnetic field [1]), elimination of the external interferences such as earth’s

geomagnetic noise, instrumental noise coming from elevators, microwaves, power-line fields,

etc.; and the biological noise arising from heart beats, eye and muscle movements becomes

of an important concern. Apart from the necessity of superior sensitivity of the SQUIDs for

proper measurement of the magnetic fields induced by the neurons, hardware solutions exist

for the avoidance of noise include shielded rooms, reference channels or special sensing units

such as the gradiometers, which correspond to the spatial derivatives of the magnetic fields

measured outside the head.
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The most known way to approximate the primary currents is achieved by dipole mod-

eling. The dipole basically represents the current concentrated to a single point; hence the

source space can always be divided into grids, each of which stands for a current dipole.

The MEG forward problem assumes that we have the knowledge of the current dipole pa-

rameters (namely the strength, location and the orientation), and this problem corresponds

to computing the magnetic field measurements from these parameters for a particular head

model. Since the mapping between currents and the magnetic fields is well known from the

classical physics by the aid of Maxwell’s equations, the forward problem is unique and con-

sistent. However, in practice, contrary to the formulation of the forward problem, we know

only the sensor measurements from which we aim to investigate the source characteristics

for imaging the brain with the fine temporal resolution capability of MEG. Accordingly, the

challenge to estimate the source parameters from the measurements is defined as inverse

problem. Unlike the forward problem, it is non-unique and hence ill-posed since there are

theoretically infinite amounts of combinations of different sources that may give rise to the

same MEG measurements. As a result, the inverse problem requires some constraints or a

priori knowledge of the current sources for accurate solutions to the source localization and

source waveform reconstruction.

MEG and EEG are unique noninvasive techniques that can provide us information about

neural activities with a temporal resolution below 100 ms. The neural activities are implicitly

given as the weighted integration of current source densities. These weights, which are called

as leadfields, are basically mappings from the current sources to the magnetic fields outside

the head for MEG and to the electrical potentials on the scalp for EEG. The similarity of

these formulations enables the use of the some similar inverse methods and spatial filtering

techniques for both modalities. These common methods typically assume the knowledge

of the properties of the current sources and then compute the leadfields according to the

physics behind EEG and MEG. However, unlike these methods, which exploit the linear

relation between a priori known leadfields and the measurements, the proposed novel spatial

techniques in this thesis take advantage of some properties that are only specific to MEG

and hence they can only be utilized for MEG.
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Because of the sophisticated hardware of MEG to be able to sense the tiny magnetic

fields, MEG is much more expensive than EEG. However, the cost of it also comes with an

advantage to MEG, which has a better brain source localization accuracy than that of EEG.

This advantage stems from the fact that MEG is much less vulnerable to the distortions

caused by various layers of cerebrum such as skull, scalp, muscle and cerebrospinal [1], [2].

Hence, the leadfields for MEG are much less susceptible to conductivity profiles and thickness

properties of the head. For instance, for spherical head models, the leadfield computations do

not require the head parameters for MEG, while they have to be known for determining the

leadfields of EEG. This leads to a requirement of a realistic head model for EEG for accurate

forward modeling, which increases the computational complexity significantly. Moreover,

it is not straightforward to obtain an accurate estimation of conductivities without high-

resolution images of the brain [3]. In an experimental study [3] using a realistically designed

phantom having 32 dipoles, localization errors were detected to be around 3 mm for MEG

and 7-8 mm for EEE in average. Nevertheless, MEG is known to be blind to totally radially

oriented dipoles, hence EEG is still considered complementary to MEG for the investigation

of the neural activities within the brain [4], [5].

1.1 AIM OF RESEARCH

Most information contained in MEG measurements reflects signals originating from the cor-

tex because of the relatively short distances between the cortex and the sensors in the MEG

system. While there have been some attempts to detect the sources arising from deep areas

of the brain, such as brainstem [6], thalamus [7], hippocampus [8] and cerebellum [9], the

nature of these studies was experimental and their success was highly dependent on the

signal quality and the utilization of a realistic head model such as boundary element method

(BEM) for the forward calculations. In this dissertation, in the first place, we suggest an

MEG spatial filtering method in spherical harmonics domain that can capture the activity

arising from deep sources as well as superficial ones. Our approach decomposes the MEG

signal localized to inside the head by a recent method called ”signal space separation” to

3



an intraparenchymal signal using a beamspace technique. Signal space separation (SSS),

provided first by Taulu and Kajola [10], is a technique designed principally for removing

external interferences from MEG measurements. Utilizing a fundamental law of physics, the

SSS method decomposes the recorded magnetic field into two parts using vector spherical

harmonic basis functions: one for the signals coming from the inside the sensor array volume

and the other coming from the outside it. We show that the signal component obtained by

the SSS method can be further decomposed by a simple operation into signals originating

from deep and superficial sources within the brain. The beamspace method yields a linear

transformation matrix in order to maximize the power of the source space of interest and

hence guarantees to obtain the optimality in mean-square sense for the modification of the

SSS coefficients.

The deep and superficial sources are meant to be with respect to the SSS expansion

origin, which is obtained by fitting a hypothetical spherical shell to the sensor array volume.

It is not straightforward to apply the aforementioned method to spatially filter the signal

for arbitrarily located spherical regions of interests in the head space. Hence, in the second

place, we demonstrate a generalization of our method for any selected origin inside the head

space eliminating the restriction of it to the SSS expansion origin.

While there have been attempts for the separation of the signals according to specified

regions, our proposed methods are unique by realizing the filters in the spherical harmonics

domain, which results simple manipulations of the so-called multipole coefficients. Unlike

the traditional spatial filtering methods, our approach does not need to divide the source

space into thousands of grids and obtain the filtering effect by a discrete numerical compu-

tation. This simplicity and the efficiency of the derived formulations stem from their natural

appropriateness to the spherical domain and the orthogonality properties of the SSS basis

functions that are directly related to the vector spherical harmonics.
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1.2 THESIS OUTLINE

This thesis is organized as follows. Chapter 2 provides the background for the development

of the proposed methods by briefly describing the forward and inverse problems of MEG.

Chapter 3 presents the novel spatial filtering techniques in the spherical harmonics domain

called as exSSS and genexSSS with the brief introductions of the SSS and the beamspace

methods. In Chapter 4, we demonstrate some results of the experiments using simulated

and real data in order to show the validity of the proposed spatial filtering methods. Finally,

Chapter 5 summarizes the properties of the methods by comparing them to the other spatial

filtering methods in the literature and discusses some potential situations encountered while

using the developed methods.
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2.0 THEORETICAL BACKGROUND

When a physical system is considered, we can conceive it in three steps as pointed out in [11].

First, the system should be parameterized such that these parameters give rise to physical

measurements. In the case of MEG, the parameters are mainly current source magnitudes,

locations and orientations. The second step consists of forward modeling, which corresponds

to making predictions on the measurements for a given value of these parameters. These first

two steps can be considered generally as inductive [11]. The third step, which is deductive,

is called inverse modeling. It relies on estimating the values of the parameters from the

actual measurements. Since in practice we have only the measurements as the output of the

physical system, the third step is the one that is addressed in real life, while the former two

steps are used as supplements to solve the inverse problems. In the following sections, we

present the mainstream forward modeling methods and inverse methods, in particular for

MEG.

2.1 FORWARD PROBLEM

2.1.1 Mapping from source space to MEG space

Mapping from current sources to the magnetic fields in a noiseless environment can be

described as

bk(t) =

∫

Ω

hk(r
′).j(r′)dΩ (2.1)

where Ω is the whole source space, r′ stands for the source locations and hk is the lead-

field mapping of the current sources j to the magnetic field measurements at the kth (k =

6



1, 2, . . . ,M) sensor, denoted as bk(t). The leadfields correspond to the forward solution,

which is realized using locations and orientations of the current sources and locations and

orientations of the sensors according to Biot-Savart law, which is explained in detail in

Section 2.1.2. Then, the MEG data vector can also be expressed as

b = [b1, b2, . . . , bM ]T =

∫

Ω

H(r′)j(r′)dΩ (2.2)

where H(r′) = [h1(r
′),h2(r

′), . . . ,hM(r′)]T denotes the (M ×3) matrix of leadfields for all M

sensors. The forward problem can be defined briefly as computing the magnetic field outside

the head from a given primary source distribution within the brain. It consists of different

formulations depending on the selected head model, such as homogenous medium, piecewise

homogenous conductor or spherically symmetric conductor model [1], [2]. Note that once

the conductivity of the medium is specified, the forward problem yields a unique output for

a given source distribution.

2.1.2 Use of Quasistatic Approximation of Maxwell’s Equations

Electrical activity in the neurons is typically below 1 KHz, which makes the use of the

quasistatic approximation of Maxwell’s equations

∇× E = 0 (2.3)

∇×B = µ0j (2.4)

∇ · E = ρ/ε0 (2.5)

∇ ·B = 0 (2.6)

legitimate for the forward computations. This means that one does not have to take into

account the terms that contain the derivatives with respect to the time parameter. Here, E is

the electrical field, B is the magnetic field, j is the current density and ρ is the charge density.

The permeability and permittivity of the head tissue denoted by µ and ε, respectively, are

taken as fixed by assigning them values equivalent to those of free space, that is µ = µ0 and

ε = ε0.

7



Since the magnetic field is divergence-free, it can always be defined as the curl of a vector

field

B = ∇×A (2.7)

where A is called the magnetic vector potential in electromagnetics. Notice that this defi-

nition of A is not unique since one can add arbitrary curl-free components ∇χ to A [12]:

A → A +∇χ. (2.8)

This arbitrariness for the choice of A is called gauge freedom or gauge invariance [13]. If

Equation (2.7) is substituted in (2.4) with the use of a vector identity, we obtain:

∇× (∇×A) = ∇(∇ ·A)−∇2A = µ0j. (2.9)

We use the usual gauge, called Coulomb gauge (or transverse gauge), where the divergence

of A is accepted to be null [13], [12]. Then equation (2.9) reduces to a three dimensional

Poisson’s equation, i.e., Poisson’s equation in all three dimensions of A:

∇2A = −µ0j (2.10)

Poisson’s equation can be solved using Green’s function method [14]. The Green’s function

G(x,y) is defined as a function satisfying the following two conditions:

G(x,y) = G(y,x) (2.11)

∇2G(x,y) = δ(x− y) (2.12)

where δ(.) is the Dirac delta function. These two properties allow the solution of a Poisson’s

equation ∇2u(x) = ϑ(x) to be

u(x) =

∫

V

G(x,y)ϑ(y)dy. (2.13)

which can be easily verified by substituting (2.12) into the general Poisson’s equation. Here,

V denotes the whole source space. One can also show [14] that the two conditions (2.11)

and (2.12) are satisfied if one chooses the Green function as

G(x,y) = − 1

4π‖x− y‖ . (2.14)
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Then the solution to the general Poisson’s equation finally is

u(x) =

∫

V

− 1

4π
‖x− y‖ϑ(y)dy. (2.15)

By applying this general result to equations (2.10) and (2.7), we reach the well-known Biot-

Savart law

B(r) = ∇×A =
µ0

4π

∫

V

∇′ × j(r′)
‖r− r′‖ dv′ (2.16)

which provides the mapping relation of the current sources j(r′) to the magnetic field B(r)

measured at the location r. The leadfields given in (2.1) can be obtained using this funda-

mental law. Equation (2.16) can be rewritten in another form using vector calculus identities:

B(r) =
µ0

4π

∫

V

j(r′)× (r− r′)
‖r− r′‖3

dv′. (2.17)

The current source j(r′) is considered to consist of two parts: the primary current jp(r′)

reflecting the neuronal activity and the secondary current js(r′) resulting from the electrical

fields on charge carriers in the source volume:

j(r′) = jp(r′) + js(r′) (2.18)

js(r′) = σ(r′)E(r′) = −σ(r′)∇V (r′) (2.19)

where σ(r′) is the conductivity of the head tissue. It is typically accepted as constant

and isotropic within specified regions of the brain like scalp, skull, cerebrospinal fluid, gray

matter and white matter. Taking σ(r′) = 0 everywhere in the source space corresponds to

the unbounded homogenous conductor model and in this case, it is easy to see from equations

(2.17) and (2.19) that only the primary current jp(r′) contributes to the magnetic field. Then

the solution to the forward problem becomes easy and straightforward. However, it is obvious

that taking σ(r′) as constant everywhere is too unrealistic for an accurate computation of

the magnetic fields.

The spherically symmetric conductor is frequently used and generally accepted as a

physically appropriate head model for MEG. This model assumes that the source volume is

bounded and it is comprised of concentric spherical volumes that have different conductivity

profiles. It was analytically shown that [15] this model proves not to be susceptible to the
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secondary currents and hence one does not need the explicit knowledge of the conductivity

profiles in the head in order to solve the forward problem. It is worth noting that this is not

the case for EEG, i.e., for spherically symmetric head models, unlike MEG, one needs to take

the conductivities into account for the EEG forward solutions. This is one of the most impor-

tant properties that makes MEG a superior tool to identify the primary currents. Moreover,

Sarvas’s formula [15] reveals that MEG is fundamentally produced by the tangential currents

and it is almost blind to the radial currents, which is another main difference from EEG. It

was shown that a spherically symmetric model is significantly adequate for accurate results

in the MEG forward computations [3]. Nevertheless, one may desire to utilize realistic head

models which are dependent upon anatomical information obtained from brain images using

magnetic resonance (MR) or computer tomography (CT) imaging. In this case, apart from

surface extraction, one also needs to determine the conductivity profiles of the specified re-

gions from these images in order to solve the forward problem numerically by the boundary

element method (BEM) [16] or the finite element method (FEM) [17]. Accordingly, utilizing

a realistic head model demands a considerable amount of time and care for finding solutions

to the forward problem, and this can especially cause difficulty for the inverse methods, for

which one has to compute the magnetic fields iteratively [2].

10



2.2 INVERSE PROBLEM

2.2.1 Linear algebraic formulation

For M sensors and N discrete sources in the brain space, one can also express the relation

between magnetic field measurements and the leadfields in (2.2) in discrete algebraic form:

b =




b1(t)

.

.

.

bM(t)




=




L(r1, rq1, µ1) . . . L(r1, rqN , µN)

. . . . .

. . . . .

. . . . .

L(rM , rq1, µ1) . . . L(rM , rqN , µN)







q1(t)

.

.

.

qN(t)




b = LQ (2.20)

where b is an (M × 1) dimensional magnetic signal vector, Q is the vector of source

magnitudes,µj is the orientation vector, rqj is the location of the jth source (j = 1, 2, . . . , N),rk

is the location of the kth sensor and L is the so-called leadfield matrix, an (M ×N) dimen-

sional matrix, whose (k, j)th component is L(rk, rqj, µj) = hk(rqj) · µj.

2.2.2 Ill-posedness

According to a definition proposed by Hadamard in 1902, a problem is accepted to be well-

posed if it satisfies the following three conditions [18]:

1. Existence: For every input to the problem, there should be an output.

2. Uniqueness : The solution of the problem should be unique.

3. Continuity : The mapping between the solution and the data should be continuous.

If any of these conditions is not fulfilled, the problem is defined to be ill-posed.

The number of sources in the brain N is naturally much larger than the number of MEG

sensors M. Hence it can be inferred from (2.20) that the currents in the null space of the

leadfield matrix L do not contribute to the magnetic field measurements. In other words,

11



the source vector Q can have any arbitrary part Q2, which is orthogonal to the lead field

matrix L as:

Q = Q1 + Q2, b = LQ = LQ1 + LQ2

LQ1 = b, LQ2 = 0 (2.21)

and this leads to the evidence that even in a noiseless environment, the MEG inverse problem

to estimate the source parameters (such as locations, magnitudes) is non-unique [19], [1] that

is, it does not satisfy the second condition and hence it is ill-posed. Besides, it has been

shown that [15] the radial parts of the currents do not contribute to the measured MEG

data for spherically symmetric conductors, which implies the ill-posedness of the problem

also stemming from the physics of MEG. Hence, a priori knowledge of the sources is definitely

required for accurate source estimation by the inverse methods.

2.2.3 Common Methods for MEG

The inverse methods for MEG are considered to be in three classes [1], [2]: parametric

modeling, which is also referred as dipole fitting, distributed source modeling and scanning

based methods.

2.2.3.1 Dipole fitting Dipole fitting is the most preferred technique for clinical pur-

poses. It assumes a number of sources as p and utilizes a nonlinear optimization algorithm

in order to minimize the squared error between the MEG signal and the field data computed

from the forward modeling for the sources. This method has some pitfalls such as selecting

the true number of sources p. It is also noteworthy that the optimization gets more complex

for large p and this may result in undesired solutions trapped to local minima of the cost

function [2].
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2.2.3.2 Distributed source modeling Unlike dipole fitting, the distributed source

modeling techniques assume a large number of fixed sources that are located on discrete

grids. The leadfield matrix L becomes fixed depending on the determined grids and hence

the problem becomes linear and computationally simpler. Since the number of grids is much

larger than the number of sensors M, the problem is underdetermined by nature in these

techniques and the solution directly depends on the imposed a priori knowledge on the source

vector Q. These techniques can be mainly classified under minimum-norm (MN) approaches

and probabilistic approaches.

The source space consists all the vectors Q that satisfy (2.20). The MN approaches

basically select the source estimate Q̂ that has the minimum norm in the solution space. In

general, this can be expressed by

min(Q̂−Q0)
TCQ(Q̂−Q0) subject to LQ̂ = b (2.22)

where Q0 denotes an a priori approximate of the solution and CQ is a positive definite

weighting matrix that represents the approximate correlations between sources. In this case,

the general MN solution can be easily shown to be

Q̂genMN = Q0 + CQ
−1LT(LCQ

−1LT)−1(b− LQ0) (2.23)

by the Lagrange multipliers method [19].

If one does not impose any a priori knowledge on the solution, i.e., Q0 = 0 and CQ = I,

the solution is basically the multiplication of the Moore-Penrose inverse of the leadfield

matrix by the measurement vector b:

Q̂MN = L+b = LT(LLT)−1b (2.24)

as can be seen from the given general equation in (2.23). One can easily show that [19] the

MN estimate Q̂MN does not contain any part belonging to the null space of L.

Methods based on MN approaches are distinguished by some variations on the minimiza-

tion of the norm of the source currents. These variations should be considered in two ways:

i) selection of the weighting matrix CQ, ii) using a different norm degree.
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A standard way to determine the weighting matrix is to assign the norm of the leadfields

at a particular source location to its diagonal elements:

CQ = diag{‖L1‖, . . . , ‖LN‖} (2.25)

where Lj denotes a column of L and j = 1, . . . , N . This weighting matrix can be used in

order to remove the bias towards grids on superficial layers [1], [20]. Another very popular

MN based inverse method called low-resolution electromagnetic tomography (LORETA) [21]

suggests utilizing the discrete spatial Laplacian operator for the weighting matrix as a way

of source depth compensation. One can also change the weighting matrix iteratively by

taking into account the estimated source vector in the previous iteration [22]. Another

well-known method called ”focal underdetermined system solver” (FOCUSS) [23] aims at

obtaining sparse (and hence focal) solutions by changing the weighting matrix iteratively.

The change of the weighting matrix is based on the generalized affine scale transform [23].

The FOCUSS method needs a ”good” initial source estimate for a convergence to a focal

estimate. Hence there have been successful hybrid uses of it by taking the LORETA estimate

as an initial point to the iterations in EEG/MEG literature [24], [25]. The hybridity in these

methods enables the estimation of both focal high-resolution required sources and distributed

low-resolution required sources.

One of the typical weak points of general MN is that its estimates are too smooth, because

of the implicit assumption of Gaussian probability distribution of the sources. Other norm

degrees less than 2 are used to obtain more focal and robust source estimates. Minimum

current estimate (MCE) [20] is such a method that minimizes the L1 norm of the source

vector Q instead of the L2 (Euclidean) norm. This corresponds to minimizing the sum of the

absolute values of source magnitudes. Unfortunately, the solution of L1 norm minimization

is not as straightforward as in the case of L2 MN. Thus, the MCE method typically uses a

linear programming (LP) scheme which makes it much more computationally demanding.

Besides, the MCE optimization requires the dipole orientations at each grid, which can

be estimated using MR images or one can use the orientations of the classical MN source

estimates [20]. The side effect of MCE is unrealistic focality, i.e., the estimated source

activity changes abruptly from one grid to another. In [26], the authors suggest a method
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called vector-based spatial temporal analysis (VESTAL), which adds temporal information

of data to L1 norm minimization in order to prevent the poor smoothing effect of MCE. This

is handled simply by projecting the MCE result to the signal subspace using singular value

decomposition (SVD) of the measurements. In [27], a probabilistic approach is siggested

to determine an optimal norm degree P taking a value between 1 and 2 for more accurate

source identification. Thus, this might help to escape from overly smooth source estimates

by P = 2 (L2 MN) and too focal estimates by MCE (L1 MN). The optimal degree value P

depends on the grid discretization size and the data itself.

One can employ probabilistic approaches to interpret and solve inverse problems. Bayesian

methodology relies on maximizing the so-called posteriori probability

p(Q|b, ξ) =
p(b|Q, ξ)p(Q|ξ)

p(b, ξ)
(2.26)

that corresponds to the probability of the model accuracy given the data and any prior

information ξ [2], [19], [28]. Here p(Q|ξ) is called the prior probability, which represents the

statistical knowledge about the sources and p(b|Q, ξ) is called the likelihood, which reflects

the probability of the data as a consequence of a given source (forward problem). In practice,

the maximization is realized on the logarithm of the posteriori probability to simplify the

computations:

Q̂ = arg maxQ log p(b|Q, ξ) + log p(Q|ξ) (2.27)

where p(b, ξ) is taken out, since it acts as a normalization constant.

The Bayesian methodology is useful especially for incorporating a priori knowledge of

data and model explicitly and understanding the applicability and characteristics of the

particular inverse problem under consideration [11], [28]. For instance, in [29], they derive

both least-squares EEG/MEG dipole fitting and independent component analysis (ICA)

using a Bayesian formulation. This reveals the implicit assumptions under these source

identification methods and allows developing other methods by modifying these assumptions

appropriately. If the prior probability p(Q|ξ) and the likelihood p(b|Q, ξ) are taken as

Gaussian distributions, the maximization of the posterior probability corresponds to L2

MN source estimation [2], [19], [20]. If the prior probability is accepted to be exponential

distribution instead of Gaussian, the Bayesian estimation becomes equivalent to MCE [20].
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Thus, one can interpret or produce various MN methods based on Bayesian methodology.

In [30], they incorporate some temporal and spatial constraints to the prior probability.

The spatial constraints are managed through the gradients of some nonlinear functions of

the Lorentzian form, in order to allow the preservation of necessary local discontinuities of

sources. The level of the discontinuity is achieved through a parameter, which is computed

adaptively through iterations. The temporal constraints are imposed by the assumption

of slow change of dipoles with respect to the sampling frequency. This is implemented

by weighting the source dipoles with the orthogonal projection of the previous temporal

samples of the estimated source. It was shown that addition of these constraints to the prior

probability and maximizing the obtained posterior probability using an iterative procedure

may lead to improved reconstructed source waveforms and spatial resolutions when compared

with LORETA. Not only do the Bayesian methods allow the solution of inverse problems,

but they also help to extract useful information such as in [31], where they use the Bayesian

approach in order to estimate EEG source localization error bounds and total information

of EEG data in terms of entropy.

2.2.3.3 Scanning methods These methods rely on estimating one source at a grid and

scanning the whole source region afterwards. We briefly mention the two most popular

scanning methods called beamformers and multiple signal classification (MUSIC).

Known as Capon’s method [32] in traditional spectrum estimation, beamformers have

also been popular for tackling EEG/MEG inverse problems [33], [34]. Linearly constrained

minimum variance (LCMV) beamforming is based on the principle of passing the signals at

a source location and attenuating the signals coming from elsewhere. This is realized by

Capon’s own methodology in [32], which minimizes the source power PWd
= WdRbWd

T

under the unity constraint LT
d Wd = 1, where Wd is the LCMV beamforming filter, Ld is the

leadfield at a desired location rd, and Rb is the autocorrelation matrix of data. When this op-

timization problem is solved by the Lagrange multipliers technique, the LCMV beamforming

filter for the location rd can be obtained through

Wd =
Rb

−1Ld

Ld
TRb

−1Ld

(2.28)
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and then the source signal is estimated at that particular location Q̂LCMV = WT
d b. LCMV

is classified as an adaptive method, since it depends upon estimating the autocorrelation

matrix from the measurements.

One can show that while the constraint makes the LCMV beamforming filter pass the

signals from rd, the minimization blocks the signals from all other sources rk where k 6= d

and k = 1, . . . , d − 1, d + 1, . . . , N [35]. The major disadvantage of LCMV beamforming is

its weakness in estimating correlated sources. The blocking capability of the filter depends

on the correlation between sources and hence any correlation causes a leakage coming from

the other sources, which distorts the filter output or source estimate Q̂LCMV [35].

MUSIC is a well-known array signal processing technique being used for the MEG source

identification problem for the first time in [36]. It separates the total signal space into noise

and signal subspaces by eigendecomposition of the autocorrelation of the measured signal

Rb = ϕΛϕ = [ϕsϕn]


 Λs

Λn


 [ϕsϕn]T (2.29)

where Λs is the diagonal matrix of the largest eigenvalues, ϕs is the corresponding eigenvector

matrix, Λn is the diagonal matrix of the remaining smallest eigenvalues and ϕn is the

corresponding eigenvector matrix. Here ϕs is said to span the signal subspace while ϕn spans

the noise subspace, which is orthogonal to the signal subspace.The sources are considered

to be located where the leadfield Ld is orthogonal to the noise subspace. Thus, by a grid

search, the source locations are identified according to a cost function

C(rd) =
‖ϕnϕn

TLd‖2

‖Ld‖2
(2.30)

where d = 1, . . . , N . Unlike LCMV beamformer, MUSIC does not require uncorrelation but

linear independency between sources. However, it is reported to fail when there is correlation

between sources for noisy data [2].

There have been attempts to show that all these linear inverse problem approaches

converge to similar results without any specific a priori information about the source and

the signal spaces [19], [37].
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3.0 SPATIAL FILTERING TECHNIQUES

When an MEG system receives signals arising from various locations, classical temporal

filtering may not be an appropriate tool to obtain the desired signal belonging to the region

of interest (ROI). For instance, the interferences to be filtered out may have similar temporal

characteristics or they may have common temporal frequency bands with the desired part

[38]. Spatial filtering of MEG can be defined as an attempt to preserve or enhance the part

of the signal that corresponds to a defined desired spatial property, while suppressing the

parts being produced by the unwanted activity.

3.1 INTRODUCTION

3.1.1 Noise removal

Since the magnetic fields of brain are extremely weak, noise removal is great interest of

various spatial filtering methods. In this case, the unwanted activity can be described under

terms such as environmental noise (electrical power lines, elevators, etc.), biological noise

(eye blink, heart beat, muscle movement, brain background activity, etc.) and sensor noise.

Among these methods, the signal space projection (SSP) [39],[40] is a popular one that aims

at removing the contributions of the undesired sources or artifacts by exploiting their spatial

structure. The removal of the artifacts is handled through composing projection operators

by the aid of SVD of some estimated artifact and/or source component vectors. In general,

the desired part of the signal is not orthogonal to the artifact component, thus applying

the principle of orthogonality in this approach introduces a distortion in the signal space.
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This possible distortion should be taken into account for the source modeling after the SSP

is applied to the data. Additionally, the accurate estimate of the spatial templates of the

artifacts or the interesting sources is crucial for the accuracy of the SSP transformed data.

The effect of SSP to the source localization based on the spatial template pattern is examined

in detail in [41]. In [42], they also proposed a similar approach to SSP, by the addition of

taking into account the possible delays and nonlinear transforms of the artifact component

vectors. These vectors were defined to represent only the environmental noise and estimated

by the reference channels used also in other works [43]. It is obvious that using reference

channels is legitimate if these channels are solely sensitive to the noise but not to the brain

sources.

Popular and efficient signal processing methods such as independent component analysis

(ICA) [44],[45],[46],[47], adaptive filtering [48] and nonlinear Wiener filtering [49] have also

been employed for the rejection of various artifacts. The main drawback of these techniques is

that they often suffer from unrealistic assumptions about spatiotemporal data characteristics

like independence and uncorrelatedness.

3.1.2 Constraining signal to a region of interest

As in the case of beamspace methods [50], one could also define a specific region of interest

(ROI) inside the head space in order to enhance the signals arising from there while sup-

pressing the ones arising from out of the ROI. Then the external noise elimination mentioned

in the previous subsection corresponds to selecting the ROI as the whole head source space.

As it is pointed out in [51], the spatial filtering and the inverse problem can be studied

from the signal processing point of view, if they are considered in analogy with the well-

known spectrum estimation problem:

xt =

∫ 1/2

−1/2

e2πftX(f)df (3.1)

If bk(t) is considered analogous with the time samples xt, then the leadfield matrix would

correspond to complex sinusoidals and the current sources would be analogous to Fourier

coefficients, which give rise to spectrum estimates. With the same analogy, while the inverse
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problem corresponds to the spectrum estimation; the spatial filtering would be designing a

filter that passes the specified band [a, b], where 0 < a < b < π and attenuates the frequency

outside it. Accordingly, it is the complexity of the kernel and the three dimensionality of

the location parameter that makes the MEG inverse problem more difficult and challenging

than the spectrum estimation.

3.1.2.1 Obtaining deep structures Deep sources in the brain are of great impor-

tance to studies related to memory, emotions, motor controls and disorders like Parkinson,

Alzheimer, Huntington and epilepsy [52]. However, a great amount of contribution to the

MEG measurements arises from the superficial cortical areas because of their closeness to

the sensors and their anatomical structures composed of pyramidal cells producing strong

excitatory postsynaptic potentials [1], [2]. In [52], they presented an anatomical model of

deep brain structures with the support of an experimental study that gives evidence to the

possible detection of these structures from MEG. There have also been some other various

attempts to detect the sources arising from deep areas of the brain, such as brainstem, thala-

mus, hippocampus and cerebellum [6], [7], [39], [9]. However, the nature of these studies was

experimental and their success was highly dependent on the signal quality and the utilization

of a realistic head model such as boundary element method for the forward calculations. By

selecting an ROI inside the head, spatial filtering may be a useful way to reveal the deep

source activities in the brain. We demonstrate a novel spatial filtering method [53], [54] that

we call exSSS developed in particular for deep and superficial regions in Section 3.4.1 and

3.4.2.

3.1.2.2 Dimension reduction One another fundamental motive behind filtering the

signal to an ROI is that its dimension is reduced. Then the source localization problem is

expected to be less ill-posed and less computationally demanding since the solution space

is shrunk [50], [55], [56]. For instance, as one of the widely known inverse methods, the

linearly constrained minimum variance beamformers may yield severe source localization

errors for correlated sources [35]. Spatial filtering the signal into regions that do not have
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strong correlated source activity may prevent this flow of the method. Other benefits of the

spatial filtering include monitoring the activity for a specified region, which is a common

practice for tomographic neurofeedback or brain computer interfaces [57], [58].

3.1.2.3 Data independency Many classical spatial filtering techniques such as SSP,

ICA, vector beamformers [59] utilize the data characteristics for the design of the filters.

Even if one has the accurate knowledge of some spatiotemporal template or spectral struc-

ture of the interference, any possible spatiotemporal similarity between the desired signal

and unwanted signal is expected to cause a signal loss or improper separation and loss of

statistical variability for the source localization techniques [55]. In these cases, exploiting the

physical knowledge of the system that maps the unknown sources to the observed data might

be a more realistic and safe way. We are calling such designs as ”data-independent spatial

filters”. For instance, in [57], data-independent filters are designed based on standardized

low-resolution electromagnetic tomography (sLORETA) coupled with beamspace methodol-

ogy. The signal space separation (SSS) method [10],[60] is such a data-independent filtering

technique. It separates the magnetic field measurements into two parts corresponding to

the sources inside the sensor array and to those outside it. Utilizing Maxwell equations,

and representing these parts with vector spherical harmonics, the SSS accomplishes remov-

ing the external interferences from the MEG measurements without imposing unrealistic

assumptions. The details of the SSS method are given in the next section. In Sections 3.3

and 3.4, we demonstrate an extension of the SSS method to spatially filter the signal into

ROI’s inside the head. While all aforementioned methods (except SSS) utilize the classical

leadfields, our approach differs as taking advantage of the vector spherical harmonics and its

orthogonality properties by a simple manipulation of the SSS coefficients using a beamspace

method. Moreover, the representation in the spherical harmonics domain avoids the need of

discretizing the source space into grids for the computation of the leadfields and gives rise

to a filtering that can be achieved inside the sensor array.
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3.2 SIGNAL SPACE SEPARATION (SSS) METHOD

The SSS is a recent method that separates the magnetic field measurements into two parts

corresponding to the sources inside the sensor array and to those outside it. The method only

takes the sensor geometry and an expansion origin into account without requiring any data

dependency in general. We explain the details of the derivation of the SSS in the following.

In the modern MEG devices, the magnetic fields are measured non-invasively by the

SQUID sensors, which are located 2-4 cm from the skull. Hence, these sensors may be

assumed to be on a source-free region, i.e., they contain neither the internal brain sources

nor the external interferences. This causes one of the fundamental quasistatic Maxwell’s

equations ∇×B = µ0j = 0. Then, the magnetic scalar potential U can be used to describe

the magnetic field that is produced by current sources inside and outside the head as B =

−µ0∇U ,which is valid only if and only if the measurement space is source-free by Ampere’s

law [12]. Since the magnetic field is divergence free (∇ · B = 0 ), then U must satisfy the

Laplace’s equation:

∇ ·B = −µ0∇ · (∇U) = ∇2U = 0 (3.2)

The solutions of (3.2) are called harmonic functions. It is well-known that the Laplace’s

equation in the spherical coordinates

∇2U =
1

r2

∂U

∂r

(
r2∂U

∂r

)
+

1

r2 sin θ

∂2U

∂φ2
+

1

r2 sin θ

∂U

∂φ

(
sin θ

∂U

∂φ

)
= 0 (3.3)

can be solved using the separation of variables by expressing the solution U as the multipli-

cation of three independent functions each of which depends on only one separate spherical

coordinate:

U(r, θ, φ) = R(r)Θ(θ)Φ(φ) (3.4)

where r is the radial distance, θ is the polar angle ranging from 0 ≤ θ ≤ π and φ is the

azimuthal angle ranging from 0 ≤ φ < 2π. By substituting (3.4) into (3.3) and solving the

second-order differential equations, the general solution at a location r = (r, θ, φ) can be

obtained as:

U(r) =
∞∑

l=0

l∑

m=−l

αlm
Ylm(θ, φ)

rl+1
+

∞∑

l=0

l∑

m=−l

βlmrlYlm(θ, φ). (3.5)
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As it is observed from (3.5), the solution is mainly based on the superpositions of the

function Ylm(θ, φ) so-called as normalized spherical harmonic function (”spherical” implies

the coordinate system and ”harmonic” implies that it is a solution of Laplace’s equation)

with differing degrees l and orders m:

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l + m)!
Plm(cos θ)eimφ (3.6)

where Plm(. ) denotes the associated Legendre function. The associated Legendre function

is a special function, which is a solution of a second-order differential equation, named as

general Legendre equation:

(1− x2)y′′ − 2xy′ +
[
l(l + 1)− m2

1− x2

]
y = 0. (3.7)

This equation has nonsingular solutions for x = (−1, 1) only if l and m are integers such that

−l ≤ m ≤ l. The Laplace’s equation is known to be unique [13] for a volume V bounded by

a surface S. In other words, there is only one solution U that satisfies ∇2U with the given

values of U on S. The uniqueness theorem can be easily proved by assuming two solutions

U1 and U2 and then showing that U1 = U2. If we define a third function U3 := U1 − U2 ,

according to the aforementioned assumptions

∇2U1 = 0, ∇2U2 = 0

∇2U3 = ∇2U1 −∇2U2 = 0

by the linearity of Laplace operator and it gives zero on the boundary surface:

U3(S) = U1(S)− U2(S) = 0.

Hence, U3 is also harmonic, i.e., it satisfies the Laplace’s equation and it is zero on the

boundary S as well. Since both minima and maxima of an harmonic function have to lie

on the boundary[13], U3 = 0 should also be satisfied everywhere inside the volume V. As a

result, U1 = U2 is valid everywhere inside V, which finally concludes the uniqueness of the

solution U in V.
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By utilizing the uniqueness theorem, we can show that the first part of (3.5) Uin(r) =
∑∞

l=0

∑l
m=−l αlm

Ylm(θ,φ)
rl+1 corresponds to the magnetic scalar potential stemming from the

inner sources with ‖r′‖ < R, while the second part Uout(r) =
∑∞

l=0

∑l
m=−l βlmrlYlm(θ, φ)

corresponds to that of stemming from the outer sources with ‖r′‖ > R, where R is the

radius of the sensor array surface. This is verified as follows: We select a point r∞ → ∞
outside V ; then it is easy to see that Uout blows up and hence the solution can only be

expressed by Uin. As a result, all the sources outside V have to be zero for the validation

of the Laplace’s equation by the uniqueness theorem and hence Uin is produced only by the

sources inside V. Similarly, when we select a point r0 → 0 inside V, this time Uin blows up

and according to the uniqueness theorem, the solution inside is only represented by Uout.

Since the same solution requires the nullity of the sources inside, only the outer sources

contribute to Uout.

Accordingly, any magnetic field B measured at r can be represented and divided into

two components Bin and Bout by vector spherical harmonic functions xlm and ylm that are

obtained by taking the gradient of (3.5):

B(r) = ∇U(r) =
∞∑

l=0

l∑

m=−l

αlm∇
(

Ylm(θ, φ)

rl+1

)
+

∞∑

l=0

l∑

m=−l

βlm∇
(
rlYlm(θ, φ)

)

=
∞∑

l=0

l∑

m=−l

αlmxlm +
∞∑

l=0

l∑

m=−l

βlmylm

= ∇Uin +∇Uout := Bin + Bout (3.8)

where the inner component Bin corresponds to the source locations ‖r′‖ < R and the outer

component Bout corresponds to ‖r′‖ > R (see Figure 1). These functions also called as SSS

basis functions have the explicit form as:

xlm = ∇
(

Ylm(θ, φ)

rl+1

)
=

1

rl+2

[
−(l + 1)Ylm(θ, φ)ur +

Ylm(θ, φ)

∂θ
uθ +

imYlm(θ, φ)

sin θ
uφ

]

ylm = ∇ (
rlYlm(θ, φ)

)
= rl−1

[
lYlm(θ, φ)ur +

Ylm(θ, φ)

∂θ
uθ +

imYlm(θ, φ)

sin θ
uφ

]
(3.9)
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Spherical harmonic functions Ylm(θ, φ) are orthonormal eigenfunctions of the Laplacian op-

erator on the spherical surface [12], [61]:

∫ 2π

φ=0

∫ π

θ=0

Yl1m1(θ, φ)Y ∗
l2m2(θ, φ) sin θdθdφ = δl1l2δm1m2 (3.10)

∇2Ylm(θ, φ) = − l(l + 1)

r2
Ylm(θ, φ). (3.11)

They constitute a complete set and hence any harmonic function can be represented as a

series expansion of them, i.e., they form Fourier-like representations for any function being

evaluated on the spherical surface k(θ, φ), which has sufficient continuity properties [61]:

k(θ, φ) =
∞∑

l=0

l∑

m=−l

γlmYlm(θ, φ). (3.12)

Similar desirable properties such as orthonormality and completeness are also valid for vector

spherical harmonics as well as the scalar ones [12], [61], [62]. This makes them naturally

useful tools for MEG signal processing. For instance, Popov [63] proposed a continuation of

MEG data around the surface of the sensor array using a spherical harmonics expansion. In

[64], they exploited the orthogonality properties of the vector spherical harmonics in order

to compute the total information from MEG signals using Shannon’s theory. In [51], the

spherical harmonic functions were used to explore the resolution limits of the MEG inverse

problems. They were also commonly utilized for the computation and approximation of the

MEG forward problem [65], [66]. We apply (3.8) given for a 3 dimensional magnetic field to

an M channel MEG signal as

b = [b1, b2, . . . , bM ]T =

Lin∑

l=0

l∑

m=−l

αlmXlm +
Lout∑

l=0

l∑

m=−l

βlmYlm = bin + bout (3.13)

where the SSS basis vectors Xlm and Ylm are obtained by taking into account the locations

and orientations of the sensors. An arbitrary number of coefficients can be included in the

expansion up to an upper limit l = Lin and l = Lout for the sufficient representations of bin

and bout, respectively. Then, the equation (3.13) may be rewritten for the sake of algebraic

clarity as

b = Sω (3.14)
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where the (M × p) dimensional basis functions matrix S = [SinSout] comprises inner and

outer basis functions

Sin = [X1,−1,X1,0,X1,1,X2,−2, . . . ,XLin,Lin
]

Sout = [Y1,−1,Y1,0,Y1,1,Y2,−2, . . . ,YLout,Lout ] (3.15)

and the (p × 1) coefficient vector ω = [αTβT]T contains the SSS coefficients for inner and

outer parts:

α = [α1,−1, α1,0, α1,1, . . . , αLin,Lin
]T

β = [β1,−1, β1,0, β1,1, . . . , βLout,Lout ]
T . (3.16)

Here the total number of the coefficients is denoted by p = pin + pout , where the number

of the inner coefficients is pin = L2
in + 2Lin and the number of the outer coefficients is

pout = L2
out+2Lout. It should be noted that the coefficient with l = 0,m = 0 is dismissed in the

expansion since that represents a magnetic monopole [66]. The SSS coefficients vectors α for

the inner part and β for the outer part may be estimated through a pseudo-inverse operation

as ω̂ = S+b = [α̂Tβ̂
T
]T[10]. Then, the reconstruction of the signal that corresponds to

inner sources, that is free of the external interferences, is obtained easily by b̂in = Sinα̂.

In practice, pin should be chosen to be less than M in order to have well-posed system of

equations, since the number of measurement sensors is limited with respect to the number

of degrees of freedom in the field.

The SSS method relies solely on the sensor geometry and the quasistatic Maxwell equa-

tions. This distinguishes it from the other commonly used MEG signal separation techniques

such as ICA and SSP that depend on spatiotemporal assumptions such as independence or

uncorrelatedness. These assumptions may be unrealistic and cause severe signal loss and

improper separation. Thus, the SSS offers a much more realistic way to decompose the

MEG signal by the token of exploiting the physical knowledge of the system that maps the

unknown sources to the observed data.

While the SSS enables the separation of the MEG data into components corresponding

to inner and outer sources, it cannot separate the data inside the head to that coming from

an arbitrary spherical region of the head. This is due to the fact that, in the first place,
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the measurement sensors are located outside the head. More importantly, in the second

place, the SSS decomposition can only be achieved for a boundary that does not contain

current sources. Only by satisfying this source-free assumption for the MEG sensor array, the

Laplace’s equation for the magnetic scalar potential in (3.2) can be solved and the magnetic

measurements can be written in the form of equation (3.8). In the following sections, we

present the development of spatial filters in order to extend the separation capability of the

SSS to the regions inside the head.

One should also note that the so-called ”magnetic multipole expansion in spherical co-

ordinates” in MEG literature [67],[66] is a specific version of the SSS expansion. It includes

only the first part in (3.8) (inner expansion) to represent the MEG measurements. Hence it

is identical with the SSS when one takes Lout = 0. We shortly call it ”multipole expansion”

throughout this thesis.

3.3 BEAMSPACE METHODOLOGY

Various beamspace design algorithms in the name of ”beamforming” were overviewed in

detail in [38]. The name ”beamforming” comes from the desire to form pencil beams in

antenna systems to capture signals arising from specific locations while attenuating the

signals coming from the other locations [38].

In particular for MEG signal processing, the beamspace methodology has typically been

used as a preprocessing for the purpose of spatial filtering, dimension reduction and noise

elimination of data [50],[55]. Then the beamspaced data is typically taken as an input to an

inverse method in order to estimate the source magnitudes, orientations and locations. In

[38], the beamforming algorithms were classified as data-independent, statistically optimum,

adaptive and partially adaptive. In MEG literature, generally the beamspace method is

conceived as ”data-independent” beamforming, i.e., the weights of the filter are designed
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such that its response is dependent neither on data nor on its statistics and hence we accept

the same terminology in this thesis. Note that data-independency in the preprocessing may

prevent any extra degree of variability stemming from the data when it is given input to the

inverse techniques [55].

We can express the energy of the MEG data b by

P (b) = tr(Rb) = tr
(
E{bbH}) (3.17)

where the superscript H denotes the Hermitian transpose. By substituting (2.2) into (3.17),

the autocorrelation function becomes

Rb = E{bbH} =

∫∫

Ω

H(r′)E{j(r′)j(r′′)H}H(r′′)HdΩ′dΩ′′ (3.18)

The rationale of the beamspace method relies on looking for a linear transformation matrix

T that maximizes the energy of the data in a region of interest ΩROI , which is the trace of

the autocorrelation matrix

RbROI =

∫∫

ΩROI

H(r′)E{j(r′)j(r′′)H}H(r′′)HdΩ′dΩ′′ (3.19)

in ΩROI . In general, we do not have any knowledge on the sources, then the term in the

expectation operator can be taken as identity matrix, i.e.,E{j(r′)j(r′′)H} = I. In this case,

the cost function is the trace of a matrix

G =

∫

ΩROI

H(r′)H(r′)HdΩ′ (3.20)

so-called as the Gram matrix [50], which describes the deterministic second-order relations

among the leadfields. Hence, maximizing the energy of the beamspaced data b̃ = TTb is

equivalent to

max P (b̃) = max tr(TTRbROIT) = max tr(TTGT) if E{j(r′)j(r′′)H} = I. (3.21)

By imposing a constraint TTT = I, the beamspace optimization can be written as:

max
T

tr(TTGT) subject to TTT = I (3.22)
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Solution of (3.22) can be found out simply by the method of Lagrange multipliers, which

results a (M × n) dimensional matrix T, whose columns are composed by the eigenvectors

of the Gram matrix G, corresponding to the greatest n eigenvalues (n ≤ M). In [55], the

detail of this criterion that allows for an optimal linear transformation of the magnetic field

data in mean-square sense is provided. The solution T can be shown to correspond to a

linear transformation which minimizes the mean-squared representation error (MSRE)[55]:

MSRE = |bTb− b̃Tb̃| =
∫

Ω

‖(I−TTTH(r′)j(r′))‖2dΩ (3.23)

Therefore the beamspace method yields the optimal representation of the data in the sense

of mean-squares for any determined source space ΩROI .

When the beamspace methodology is applied ”directly” to EEG/MEG data, the inte-

gration in (3.20) is approximated by dividing the source volume into grids and computing

it discretely at all those grids. The choice of the number of integration elements (number of

voxels) determines the accuracy of the Gram matrix computation.

3.4 SPATIAL FILTERING IN SPHERICAL HARMONICS

In this section, novel algorithms for spatial filtering are demonstrated. These algorithms

were developed assuming that the SSS was applied to the data beforehand. In other words,

after the inner SSS coefficients (α) are extracted from the MEG data, our goal is to optimally

manipulate them such that the reconstruction of the manipulated coefficients gives rise to

the desired components. The SSS expansion origin should be selected as symmetrically as

possible with respect to the sensors for an accurate representation of the separated compo-

nents [68]. Accordingly, the SSS expansion origin is determined by fitting a hypothetical

spherical shell to the sensor array.

In Section 3.4.1, we derive a beamspace formulation in the spherical harmonics domain

in order to separate the MEG data into deep and superficial components.

In Section 3.4.2, we present our main algorithm to decompose the MEG data into parts

corresponding to concentric spherical source regions, in particular to those that are originated
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from deep and superficial sources. We call this method the expanded SSS method (exSSS).

The components for this method are named as deep and superficial. Here, the depth is

meant to be defined according to the SSS expansion origin.

In Section 3.4.3, we discuss and show a generalized method for exSSS in order to spatially

filter the signal to any spherical region with a user-specified arbitrary origin in the head space,

i.e., without necessarily being dependent on the SSS expansion origin. We call this method

generalized expanded SSS (genexSSS). This extends the capability and the flexibility of the

exSSS to spherical source volumes that are not dependent on any fixed origin. The schematic

representation given in Figure 2 illustrates the main parts in the algorithms.

3.4.1 Beamspace in the SSS domain for deep and superficial sources

In this section, we concentrate on extending the SSS by by manipulating α to further separate

the signal inside the head into two parts that correspond to ||r′|| < r̂ and ||r′|| > r̂, where

r̂ is any arbitrary radius which is less than R and greater than zero. Hence the SSS-filtered

signal bin will be decomposed into two parts: signals originating from deep sources (bdeep)

and superficial sources (bsup). Figure 1 exhibits the geometrical schema of this separation.

Our method aims to find a transformation in the SSS domain that maximizes the energy

for the deep (or superficial) component while minimizing it for the superficial (or deep)

component. This may be formulated as

max
T

tr(TTGdT)/vd

tr(TTGsT)/vs

(3.24)

where Gd and Gs are Gram matrices, and vd and vs are spherical volumes for deep and

superficial components, respectively.

This criterion is one of the beamspace formulations known as MaxSNR in the literature

[38], [50]: Hence we consider the deep part as ”signal” and the remaining superficial part as

”noise” and would like to maximize the SNR by a linear transformation. The solution for

Equation (3.24) can be handled by assigning a change of variable as T′ = G
−1/2
s T. Then

the maximization term can be written as:

max
tr(T′TGdT

′)/vd

tr(T′TGsT′)/vs

= max
tr(TT(Gs

−1/2)TGdGs
−1/2T)/vd

tr(TT(Gs
−1/2)GsGs

−1/2T)/vs

(3.25)
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Since the Gram matrix is always Toeplitz, (3.25) becomes

max
tr(TTGs

−1/2GdGs
−1/2T)/vd

tr(TTGs
−1/2GsGs

−1/2T)/vs

= max
tr(TTGs

−1/2GdGs
−1/2T)/vd

tr(TTT)/vs

. (3.26)

This formulation indicates that (3.24) is equivalent to

max
vs

vd

tr(TTGs
−1/2GdGs

−1/2T). (3.27)

By imposing a constraint TTT = I on the transformation matrix, we can finally express the

beamspace optimization as

max
T

vs

vd

tr(TTGs
−1/2GdGs

−1/2T) subject to TTT = I . (3.28)

Thus the optimization reduces to a simple beamspace formulation as in (3.22) and the

solution becomes a matrix whose columns are the eigenvectors of

Gf =
vs

vd

Gs
−1/2GdGs

−1/2 (3.29)

that correspond to its largest eigenvalues [50].

We consider the leadfield-like representations of the inner SSS coefficients given by

[67],[10]

αlm =

∫

Ωin

λlm(r′) · jin(r′)dΩin (3.30)

where αlm’s are the SSS inner component coefficients, Ωin denotes the inner head space,

jin(r′) is the inner source density at any source location r′ and λlm is the leadfield-like vector

directly related to the vector spherical harmonic functions xlm(θ, φ) defined as

λlm(r′) =
i

2l + 1

√
l

l + 1
rlx∗lm(θ, φ) (3.31)

xlm(θ, φ) =
−1√

l(l + 1)

[
mYlm(θ, φ)

sin θ
uθ + i

∂Ylm(θ, φ)

∂θ
uφ

]
. (3.32)

xlm(θ, φ) is one of the three vector spherical harmonic functions whose concepts and ba-

sic properties were introduced by Hill in [62]. Note that MEG senses only the tangential

components of the source currents in a spherically symmetric conductor and hence xlm(θ, φ)

does not have a radial component. Additionally, the vector spherical harmonics yield an or-

31



thogonal representation for the primary current in the case of spherically symmetric volume

conductor unlike the non-orthogonal representation by leadfield vectors of forward modeling

computations.

Let us denote the (l, m) index of the SSS coefficient (where l and m are integers and

1 ≤ l ≤ Lin,−l ≤ m ≤ l) as a = 1, . . . , pin and the (L,M) index of the SSS coefficient (where

L and M are integers and 1 ≤ L ≤ Lin,−L ≤ M ≤ L) as b = 1, . . . , pin for simplicity. In

this case, the Gram matrix Gs for the spherical harmonics domain can be defined as

(Gs)ab =

∫

Ω

λlm(r′) · λLM(r′)dΩ =

∫

Ω

λa(r
′) · λb(r

′)dΩ

Gs =

∫

Ω

Λ(r′)Λ(r′)HdΩ (3.33)

where Λ(r′) = [λ1,−1(r
′),λ1,0(r

′), . . . , λLin,Lin
(r′)]T is the (pin × 2) dimensional matrix of

spherical leadfield-like vectors that are built by spherical harmonics functions. Notice that

unlike the classical Gram matrix defined in (3.20), the sensor configuration (orientations,

gradiometer and magnetometer specifications, etc.) is not explicitly present in (3.33). How-

ever, this does not lose generality since the α coefficients already contain this information

after the SSS is applied. Accordingly, the ath row and bth column of Gram matrix Gd for

the deep component can be computed as

(Gd)ab =

∫

φ

∫

θ

∫ r̂

r=0

(
i

2l + 1

√
l

l + 1
rlx∗lm(θ, φ)

)
·
(

−i

2L + 1

√
L

L + 1
rLxLM(θ, φ)

)
r2 sin θdrdθdφ.

(3.34)

Utilizing the orthonormality property of vector spherical harmonics [62], [61]

∫

φ

∫

θ

x∗lm(θ, φ) · xLM(θ, φ) sin θdθdφ = δlLδmM (3.35)

equation (3.34) can be reduced to the diagonal matrix

(Gd)ab = δlLδmM
1

(2l + 1)2

l

l + 1

∫

φ

∫

θ

|xlm(θ, φ)|2 sin θdθdφ

∫ r̂

r=0

r2l+2dr

= δlLδmM
1

(2l + 1)2

l

l + 1

r̂2l+3

2l + 3
= δaby(l) (3.36)

with δab = δlLδmM and y(l) = 1
(2l+1)2

l
l+1

r̂2l+3

2l+3
.
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Equation (3.36) implies that the diagonal matrix Gd can be explicitly interpreted as

below:

Gd =




y(1)

y(1)

y(1)

y(1)

y(2)

y(2)

.

.

.

y(Lin)




(3.37)

We can find the Gram matrix for the superficial component Gs by only changing the lower

limit to r̂ and the upper limit to R for the radial parts:

(Gs)ab =

∫

φ

∫

θ

∫ R

r̂

(
i

2l + 1

√
l

l + 1
rlx∗lm(θ, φ)

)
·
(

−i

2L + 1

√
L

L + 1
rLxLM(θ, φ)

)
r2 sin θdrdθdφ.

(3.38)

Conducting similar computations to the ones in (3.36), the Gram matrix for the superficial

component is found:

(Gs)ab =
1

(2l + 1)2

l

l + 1

R2l+3 − r̂2l+3

2l + 3
δab. (3.39)

Then by substituting (3.36) and (3.39) to (3.29), the final Gram matrix can be obtained:

(Gf )ab =
vs

vd

r̂2l+3

R2l+3 − r̂2l+3
δab. (3.40)

Since Gf is a diagonal matrix, all of its eigenvectors constitute an identity matrix and

its eigenvalues are in the form of (3.40). This result suggests a transformation matrix T that

selects the α coefficients where vs

vd

r̂2l+3

R2l+3−r̂2l+3 is sufficiently large, while the other coefficients

are eliminated. This corresponds to the first α coefficients αdeep = [α1,−1, α1,0, . . . , αss]
T

whose indices include only the degrees l = 1, 2, . . . , s. Reconstructing the signal with the

selected SSS coefficients leads to an estimate of deep sources in the optimal sense with
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respect to the beamspace technique. As pointed out in [55] in detail, the MSRE given in

(3.23) is the sum of the eigenvalues that correspond to the eliminated coefficients, hence the

coefficients that are close to zero have negligible effect on the accuracy of the beamspace

representation. The metric for the accuracy of the beamspace representation can be obtained

through dividing the sum of the selected eigenvalues by the sum of the all eigenvalues. This

metric is a reasonable measure when one determines a threshold to select the α coefficients.

Likewise, in order to estimate the superficial component, one has to optimize the re-

ciprocal of the term in (3.24) in the same way, which results in obtaining the reciprocal of

(3.40) for the final Gram matrix Gf . Therefore, on the exact contrary to the case of deep

components, the beamspace transformation for superficial components simply yields the last

α coefficients αsup = [αLin−s+1,−(Lin−s+1), αLin−s+1,−(Lin−s), . . . , αLin,Lin
]T whose indices are

l = Lin − s + 1, . . . , Lin. Hence eliminating the initial and the final α coefficients results

in optimal solutions in the mean-square sense in the SSS domain for the specified deep

and superficial source regions, respectively. As (3.40) indicates, the number of coefficients

to be selected directly depends on the determination of the boundary parameters, i.e., the

separating radius r̂ and the sensor array radius R.

3.4.2 Expanded SSS (exSSS)

As stated in Section 3.1.2, the estimation of deep and superficial components from the input

data using beamspace criterion can be considered analogous to spatial filtering in the SSS

domain. In this case, l denotes the spatial frequency with the lower frequencies correspond-

ing to deeper sources, whereas higher frequencies correspond to the more superficial ones.

This result agrees with the equations (3.30) and (3.31), which show that the greater the l

degree of the SSS coefficients are, the greater the contribution from the superficial sources

is. Our result is also consistent with the study in [69], which states that the highest spatial

frequencies are most related to the sources closest to the measurement plane, i.e., superficial

sources. The contribution from the sources increases exponentially with l. As shown in the

previous section, the beamspace solution corresponds to selecting the SSS coefficients from

the beginning and the end (Fig. 3a). This may be interpreted as a ”sharp” low-pass filter-
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ing for the estimation of deep sources and a ”sharp” high-pass filtering for the superficial

sources. However, the extent of the contribution from the sources changes depending on

the l -degree and the depth r̂ and hence selecting the coefficients uniformly as formulated

in Section 3.4.1, may not give a reliable estimation. To overcome this problem, we suggest

an eigenvalue-weighted filtering of the selected SSS coefficients (Figure 3b). Eigenvalues of

the Gram matrix Gf represent the contributed energy to the magnetic measurement for a

particular l -degree. Hence, we modify the beamspace transformation matrix T as T̃ = TD,

where D denotes the diagonal matrix whose diagonal elements are the selected largest eigen-

values of Gf . This modification leads to a simple manipulation of the SSS coefficients as

(α̂lm)deep = αlm
vs

vd

r̂2l+3

R2l+3 − r̂2l+3
= αlm

(R3 − r̂3) r̂2l

R2l+3 − r̂2l+3
= αlmf(r̂, R) (3.41)

where f(r̂, R) =
(R3−r̂3)r̂2l

R2l+3−r̂2l+3 . In practice, the selection of the eigenvectors corresponding to

the largest eigenvalues (mentioned in the previous section) is unnecessary for the modified

beamspace method, since the contribution of the eigenvectors to the Gram matrix are deter-

mined by the eigenvalue-weighting, i.e., the ones corresponding to small eigenvalues diminish

with the weighting.

The filter’s output should ideally be zero for all frequencies when r̂ = 0 (non-signal), i.e.,

f(0, R) = 0 and its output should be unity for all frequencies when r̂ = R (all-signal) , i.e.,

f(R, R) = 1 . Hence, we look for the limits in order to normalize the filter for non-signal

and all-signal cases. As r̂ → 0, it is easy to see that f(0, R) → 0. For the all-signal case, the

limit is taken using L’Hopitals rule:

lim
r̂→R

f(r̂, R) = lim
r̂→R

(R3 − r̂3) r̂2l

R2l+3 − r̂2l+3
= lim

r̂→R

2lr̂2l−1R3 − (2l + 3)r̂2l+2

−(2l + 3)r̂2l+2
=

3

2l + 3
(3.42)

Equation (3.42) indicates that the limit for the all-signal case depends on l value, therefore we

need to normalize the filter by multiplying every coefficient with 2l+3
3

. This will guarantee

the necessary boundary conditions we stated above. Hence the normalized filter can be

expressed as

(α̃lm)deep = αlm
2l + 3

3
f(r̂, R)

α̃deep = Fα (3.43)
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where F is the diagonal matrix whose elements are composed of 2l+3
3

f(r̂, R). Figure 4a

depicts how the SSS coefficients are modified by the normalized filter when r̂ varies between

0 and R. The estimated deep component is obtained by reconstructing the signal with the

filtered coefficients:

b̂deep = Sinα̃deep. (3.44)

Estimation of the superficial part is similarly realized by the modification given below:

(α̃lm)sup = αlm
3

2l + 3

1

f(r̂, R)
= αlm

3

2l + 3

1

R3 − r̂3

R3 − r̂3

r̂2l

b̂sup = Sinα̃sup. (3.45)

While the filter in (3.45) gives unity for all coefficients, when r̂ → R (non-signal case,

since there is no signal for r̂ > R); the filter coefficients tend to infinity for r̂ → 0 (all-signal

case). Hence, the superficial region spatial filter does not give stable solutions when the

separating radius is close to zero (Figure 4b). In these cases, we advise using deep region

spatial filter for r̂ → R, since it yields more stable and accurate estimates.

The exSSS method permits the assignment of weights to the SSS coefficients based on

their contribution to deep or superficial sources instead of a uniform selection process. Ac-

cordingly, the modified beamspace solution ”rolls-off” the spatial frequencies yielding the

alternative filtering depicted in Figures 3b and 4.

3.4.3 Generalized expanded SSS (genexSSS)

The SSS expansion origin must be determined such that any part of the brain is closer to it

than any of the MEG sensors for successful elimination of the undesired external noise. It was

reported that, in general the best performances of the SSS are obtained when the expansion

origin is selected symmetrical to the sensors [68]. However, it is highly possible that the

ROI’s are not concentric with the SSS expansion origin. In these cases, the exSSS method

is not applicable for spatial filtering. In Figure 5, we depict a schematic representation of

the hypothetical sphere V1 that is obtained with a fitting to the sensors. The center of this

sphere is O, which is also accepted as the SSS expansion origin. Let’s suppose that our aim

is to spatially filter the signal to the spherical region V2 with a center O′ and a radius r̂ .In
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this case, we consider another spherical volume V3 that is centered at O′ and encapsulates

the whole brain source space. Then it is clear that the minimum radius of V3 should be

(R + ||O-O′||) in order to cover V2, i.e., V2 and V3 are tangent to each other. Since we can

assume that the external sources are eliminated by the SSS, there are not any sources in

the complement of V1 relative to V3, which we denote as V3\V1 in Figure 5. This gives the

legitimacy to implement the beamspace filtering for the targeted region V2, since V2 and

V3 are concentric at O′.

We give the details of this filtering method as follows: After the SSS is applied to the

data b, we obtain the signal bin that is expected only to arise from the regions in the head

space. The genexSSS method [70] consists of realizing a multipole expansion at O′. Let’s

assume that the basis matrix of this expansion is S̃ ,which is computed similarly to Sin but

only taking the origin as O′ instead of O. The expansion and the estimation of the multipole

coefficients can be described as:

bin = S̃α′′

α̂′′ = S̃+bin (3.46)

It should be noted that the multipole coefficients are intrinsic only to the source and the

expansion origin [71]. If the external sources are eliminated by the SSS, we can consider a

new hypothetical source space V3 with the center O′ and the radius (R + ||O-O′||) in order

to realize a new MaxSNR beamspace as in (3.24), since this sphere becomes concentric with

the targeted spherical region as can be observed from Figure 5. In this case the filtering is

realized by

(α̂lm)f = (αlm)′′f(r̂, R + ||O −O′||)2l + 3

3
(3.47)

and hence the filtered signal b̂f is finally obtained by transforming the coefficients back to

the measurements space:

b̂f = S̃α̂f (3.48)

These steps lead to a spatial filter that can be formulated as:

b̂f = S̃F̃α̂′′ = S̃F̃(S̃)+bin = S̃F̃(S̃)+Sinα (3.49)
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where F̃ is a diagonal matrix consisting of f(r̂, R + |O − O′|)2l+3
3

. As can be seen by a

comparison of (3.43) and (3.49), when one shifts the origin of the targeted region from O to

O′, in order to estimate b̂f , the only additional term to compute is S̃.

The multipole coefficients of the filtered signal b̂f helps us to observe how the original

inner SSS coefficients α are modified by the proposed spatial filter:

α̂f := (Sin)+b̂f = (Sin)+S̃F̃(S̃)+(Sin)α := F′′α (3.50)

where F′′ = (Sin)+S̃F̃(S̃)+(Sin) explicitly shows the necessary manipulation of α for an

estimation of the signal corresponding to the target region. This also yields evidence how

this filtering is the generalized form of (3.43), since when one selects O=O′, it is easy to see

that

S̃ = Sin

(Sin)+S̃ ≈ (S̃)Sin ≈ I

F′′ ≈ F̃ = F (3.51)

which makes the filtering in (3.49) equivalent to (3.43), i.e., F′′ ≈ F and α̂f ≈ α̃deep = Fα.

For the general case of O 6=O′, notice that the filtering matrix F′′ is not diagonal. In other

words, the SSS coefficients αlm are not modified by weighting them separately as in (3.43), but

in general they are transformed also by the linear contributions from the other coefficients.

3.4.4 Adding data dependency

Additionally, for a compensation of errors in the SSS [10] or the filtering at O’ in genexSSS,

one may attach a simple data dependency to our filters described in Section 3.4.2 and Section

3.4.3, which corresponds to principal component analysis (PCA), as described in [57]. This is

realized by constituting the (M×D) dimensional matrix D = [u1,u2, . . . ,uD], where ui is the

eigenvector corresponding to the largest ith eigenvalue (i = 1, . . . , D) of the autocorrelation

matrix Rin of the data with Rin = E{binb
T
in}. The data dependent filtering is hence

managed by projecting the filtered data into signal subspace as:

(
b̂f

)
data dependent

= DDTb̂f . (3.52)
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Figure 1: The SSS method decomposes the MEG data b into components bin and bout, which

correspond to inside the sensor array volume and outside it. The proposed approach decom-

poses inner SSS component bin into bdeep and bsup by determining a spherical boundary

inside the head.
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Figure 2: The main steps of the proposed spatial filtering methods
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Figure 3: For the separating radius r̂ = 6 cm and sensor array radius R=11 cm a) ”Sharp”

spatial filtering of the SSS coefficients according to the classical beamspace criterion for

deep (top panel) and superficial (bottom panel) components. b) Spatial filtering of the SSS

coefficients according to the modified beamspace criterion (eigenvalue weighting) for deep

(top panel) and superficial (bottom panel) components. The filter weights are normalized.
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Figure 4: Filter weights for modified beamspace approach as the separating radius r̂ varies

between 0 and R, a) for the deep component estimation, b) for the superficial component

estimation. The weights are depicted for l=1(solid), l=2(dotted), l=3 (dashed) and l=4

(dot-dashed).
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Figure 5: The head space is represented by the hypothetical sphere V1 with the center O

and the radius R, the ROI is represented by the sphere V2 with the center O′ and the radius

r̂. The spherical region V3 is centered on O′ and it covers the whole head space with the

radius (R+ |O-O′|). Under the assumption of the non-existence of the external interferences

(bout = 0) by the SSS expanded at O, the beamspace filtering is applied to the multipole

coefficients expanded at O′ in order to constrain the signal to V2.
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4.0 EXPERIMENTS

4.1 MEG MEASUREMENT SYSTEM

In order to verify the validity of the proposed method and evaluate its performance under

various conditions, we used simulated MEG data with sensor characteristics compatible with

those of Elekta Neuromag R© Vector view 306 channel system. The phantom and real data

experiments were also conducted using the same system by the support of the Center for

Advanced Brain Magnetic Source Imaging (CABMSI) and University of Pittsburgh Medical

Center (UPMC).

This system measures the magnetic signal using totally 306 sensors: 204 planar gra-

diometers and 102 magnetometers. The sensors are arranged in a plane as 102 tripled sensor

elements, each of which includes a magnetometer that measures the z component of the mag-

netic field Bz perpendicular to the surface of that plane and two orthogonal gradiometers

that measure the partial derivatives of Bz:
∂Bz

∂x
and ∂Bz

∂y
[72]. The gradiometers enable the

reduction of the existent undesirable uniform sources. All of the sensors are held in liquid

helium to maintain the temperature at 4.2 K so that they have the superconductivity in

order to sense the weak magnetic fields produced by the brain sources [72].
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4.2 FILTERING DEEP AND SUPERFICIAL PARTS

In all of the experiments, the dipole sources were produced using the spherically symmetric

conductor model given in [15]. Sarvas’ formula, SSS, exSSS and genexSSS methods were all

implemented in Matlab R© 7.0 environment with the aid of Fieldtrip toolbox. Matlab source

codes for the genexSSS procedure are freely available at http://sites.google.com/site/neuronetsite.

4.2.1 Simulated data

A spherically symmetric head model [15] of radius R = 9 cm was utilized for the forward

computations. The origin was accepted to be the center of the sphere that was found by a

fitting to the sensor array volume. Two source dipoles were created at coordinates rdeep =

(2, 3,−1) cm for the deep source and rsup = (4, 5, 3) cm for the superficial source (Figure

6a). Notice that the radial distances of the dipoles from the origin are ||rdeep|| = 3.7417 cm

and ||rsup|| = 7.0711 cm. The sampling frequency was chosen as 1 KHz in the simulation.

Duration of the field data is 400 ms, which corresponds to a data length of 400 samples. The

deep dipole has no activity for 0-199 ms and it has sinusoidal waveform of 5 Hz for 200-399

ms (Figure 6b). Conversely, the superficial dipole has the sinusoidal activity for the interval

0-199 ms and it does not show any activity for the other half. Random Gaussian noise

was added to simulated sources to give an SNR of 30 dB. Hence, the waveforms for both

dipoles are exactly the same with the same amplitude but their activities are in different time

intervals. This makes it easier to evaluate the performance of the suggested spatial filters.

Superimposed responses from all sensors for the simulated MEG waveform are plotted in

Figure 7. Notice that although the energies of the deep and superficial source waveforms are

exactly the same, the resultant MEG data has much greater contribution from the superficial

source than from the deep source. Since there are no external interferences for the synthesized

data, it is unnecessary to implement the SSS expansion outside the head, i.e., we determined

Lout = 0. In [60], it is experimentally shown (for the case of Elekta Neuromag R© 306 channel

system) that the upper limit for the inner expansion Lin = 8 is enough in order to sufficiently

represent the dipolar sources that are not further than 8 cm from the origin. Note also that
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Figure 6: a) The locations of the simulated dipoles. b) Simulated waveforms of deep (top

panel) and superficial (bottom panel) source dipoles. They are sinusoids of 5 Hz for different

time intervals. The superficial source activity is for 0-199 ms and the deep source activity is

for 200-399 ms.

choosing higher than this limit may cause unstable SSS basis matrices which are manifested

as having high condition numbers. This makes the pseudo-inversion operation of the SSS

basis matrices problematic for the extraction of the coefficients. Accordingly, the upper limit

for the inner expansion was chosen as Lin = 8. Therefore, the dimension of the 306 channel

magnetic measurement is reduced to pin = 80. The estimated deep and superficial parts

were computed using the exSSS method explained in Section 3.4.2. We define the energy

of the MEG data as the sum of energies of all channels. In order to evaluate our algorithm

quantitatively, we utilized various signal-to-noise ratios SNRdeep =
∑M

k=1

∑400
n=201 |bk(n)|2∑M

k=1

∑200
n=1 |bk(n)|2 and

SNRsup = 1
SNRdeep

for the simulated data b. Here k denotes the channel number, M=306 is

the number of channels and n is the time index for the simulated MEG signal b. Since the

source activities for the dipoles arise for different time intervals, SNRdeep is computed by

simply dividing the energy of the second half to the first one for all channels and similarly,

SNRsup is computed by obtaining the ratio of energy of the first half to the second for all

channels. These signal-to-noise ratios of the estimated deep part b̂deep and the superficial

part b̂sup are computed for different separating radii varying between r̂ = 0.1 and r̂ = 8.9 cm

with increments of 0.1 cm. The SNRdeep of the simulated signal b is 0.1197. Figure 8a shows

that the SNRdeep of the estimated deep part b̂deep decreases while the separating radius r̂

increases. It takes the value around 0.3331 for r̂ = 0.1 cm and decreases until reaching to
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Figure 7: Overlapped channel waveforms for the simulated MEG signal from a superficial

source dipole and a deeper source dipole that have exactly the same waveform. The energy

of the response for the superficial part is much greater than the energy of the response for

the deeper part.

0.1215 for r̂ = 8.9 cm, which is very close to SNRdeep of the original signal b as expected.

The energy resulting from the superficial source is much more than the energy resulting from

the deep source, so one cannot avoid some contamination from the superficial source as the

separating radius increases. Consequently, the SNRdeep of b̂deep is greater than that of b

regardless of the separating radius. The SNRsup of the original simulated signal is 8.3518.

The algorithm reaches the maximum SNRsup = 30.9761 for b̂sup when r̂ = 6.4 cm, which is

a boundary between the locations of the deep source and the superficial source (Figure 8b).

Note that the SNRsup of the estimated superficial signal is greater than that of the original

signal b, when the separating radius r̂ is greater than 1.8 cm. The gain of the filter for the

superficial part is much greater than the gain for the deep part as expected.

In Figure 9, we provide the algorithm outputs for one of the channels to exhibit its

affect on the original magnetic field data. Note that the figures demonstrate the estimated

signals b̂deep and b̂sup for r̂ = 4 cm and r̂ = 7 cm, respectively. In Figure 9a, it is observed

that the deep part estimation causes the reduction of the strength of the superficial source

contribution (0 ms-199 ms), while it enhances the deep source contribution (200 ms-399

ms). Figure 9b demonstrates the attenuation of the deep sinusoidal part for the estimated
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superficial signal b̂sup. Apart from the signal to noise ratios SNRdeep, SNRsup and the

waveforms, the spatial structure of the estimated deep and superficial signals is also one

of the factors for the evaluation of the suggested algorithm. We used Elekta Neuromag R©

software in order to apply dipole fitting on b̂deep obtained with r̂ = 4 cm and on b̂sup obtained

with r̂ = 7 cm. Note that the spherical volume conductor model was set for the forward

computations utilized in the dipole fitting software. The locations of the fitted dipoles were

found at (2.5034, 4.0897, 0.0226) cm for b̂deep and (4.8034, 6.1697, 3.2026) cm for b̂sup, which

yield root mean square localization errors as 1.5769 cm and 1.4334 cm, respectively.

We also applied the sharp spatial filtering given in Section 3.4.1 to the simulated data and

provided the SNRdeep results for the estimated deep components in Figure 10 to compare

with the exSSS results. It exhibits its step-wise dependency on r̂ and gives evidence that its

filtering performance cannot become better than that of the exSSS.

4.2.2 Phantom data

The simulations show that, the method extracts the superficial and deep waveforms reason-

ably well. However, a bias on the localization accuracy is also apparent from the dipole-fitting

results described above. For a better understanding and evaluation of the algorithm on the

basis of spatial bias and localization accuracy, we realized a phantom head experiment. This

experiment reflects the more realistic conditions for the creation of the MEG data except

that it does not contain the brain noise. The phantom consists of 32 artificial dipoles with

known positions. The dipoles are activated by an internal signal generator. Since the system

allows only one dipole activation at a time, we activated two separate dipoles sequentially,

which are located at (5.97 0 2.29) cm and (3.58 0 2.55) cm and then regarded the addition

of them to be the phantom signal as an input to the modified beamspace method. Note that

these locations correspond to 6.4 cm and 4.4 cm distances from the center of the phantom,

respectively and the radius of the cover is 8.75 cm. The deep dipole has a sinusoidal wave-

form of 20 Hz and is active for 50-150 ms while the superficial dipole has the same activity

for 100-200 ms. Hence, between 100-150 ms, both of them are active. The amplitude of the

deep dipole was chosen to be twice that of the superficial one.
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An SSS expansion with Lin = 8 and Lout = 1 was applied to the data. We did not assign

Lout = 0, because of the apparent small interference with the original data. A separating

radius of r̂ = 5 cm was selected to apply the modified beamspace algorithm to the SSS

inner component. Figure 11 demonstrates a sample channel of the original, the SSS filtered,

the superficial dipole, the exSSS estimated superficial, the deep dipole and the exSSS esti-

mated deep component signals. Figures 11c and 11d exhibit the waveforms for the original

dipole and the estimated superficial component. As can be observed from them, the deep

contribution was masked powerfully such that it cannot even be discerned from Figure 11d.

Comparison of Figure 11e and Figure 11f implies that the deep component estimation cannot

mask the part coming from the superficial dipole completely. Nevertheless, one may get an

idea about how the SNRdeep is increased for the estimated deep component by comparing

Figure 11a and Figure 11f, despite a more limited performance. This is not unexpected

since the SNRsup for the original signal b is 1.75, i.e., the contribution of the superficial

component is much more than that of the deep one. Thus, deep source spatial filtering of

the data cannot avoid some significant contamination arising from the superficial part.

We utilized the Elekta Neuromag R© software with the spherically symmetric conductor

volume to fit a dipole for the duration of the overlapped activity (100-150 ms). The locations

of the fitted dipoles for the inner SSS component, the estimated deep component and the

estimated superficial component are obtained from the software as (3.89 0.65 2.44) cm, (3.06

0.83 2.09) cm and (7.2 -0.95 3.51) cm, respectively. Note that these locations correspond to

the radial distances 4.6377 cm, 3.7974 cm and 8.0661 cm with respect to the origin.

Consequently, the fitting results both for the simulated and the phantom head signal

indicate a spatial bias toward deeper (further from the expansion origin) regions for the

estimated deep component and more superficial (closer to the surface) regions for the es-

timated superficial component. The leadfields were not subjected to any kind of filtering

for the dipole fitting experiments realized in this work. This imbalance between data and

the leadfields may be one of the reasons that causes the localization bias. Hence, it would

be a good idea to weight the computed leadfields depending on their location and depth

parameters, for dipole fitting optimizations or imaging based inverse solutions.
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4.2.3 Auditory evoked field data

We used auditory evoked field data acquired from a 32-year-old female. Pure sinusoidal

tones per 1 second were utilized for the stimulation. The sampling frequency was 1 KHz and

l20 epochs of 600 ms duration were averaged. As observed in Figure 12, the total average

data exhibit two peaks: one at around 100 ms (the M100 peak) and the other one at around

200 ms (the M200 peak) [73]. For the sources located in the auditory cortical area, the

M100 peak is usually utilized. When a current dipole is fitted using spherical conductor

model with Elekta Neuromag R© software for the M100 peak, the location of this dipole

corresponds to (6.67, 1.54, 5.19) cm with respect to the SSS expansion origin and hence

the radial distance for M100 is found to be 8.59 cm. The SSS coefficients were obtained

with parameters Lin = 8 and Lout = 3. These parameters are accepted to be sufficient to

capture the MEG data activity [60]. We used our algorithm exSSS to separate the cortical

activity for a separating radius r̂ = 8 cm and R = 11 cm. After the coefficients were

modified according to the beamspace formulation, the estimated deep and superficial parts

were reconstructed by multiplying them with the inner SSS basis vectors. The estimated

superficial part is plotted in Figure 13. It is observed that the estimated superficial part

retains the auditory evoked potential. We provide the plotting of the deep part in Figure

14. As can be seen from it, the deep component captures some alpha wave activity in the

occipital part and does not have significant auditory potential peak M100 as the estimated

superficial component. We also used Elekta Neuromag R© software in order to fit a dipole

for the instant that M100 occurs for the deep and superficial components. The fitted dipole

locations on the MR image are provided in Figure 13c and Figure 14c, for the superficial

component and the deep component, respectively. These figures point out the effect of the

decomposition for the auditory activity. The dipole for the estimated deep part deviates from

the auditory cortical area as expected. On the other hand, the fitted dipole for the estimated

superficial part is found to be at (6.46, 1.79, 5.44) cm with respect to the expansion origin,

which means a radial distance of 8.63 cm between the fitted dipole and the origin. This is

quite close to the dipole fitting results for the original signal at around 100 ms.
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4.2.4 Imaging learning and reward system

An experiment was conducted in order to investigate the interactions related to human

learning and reward system [74], which is known to consist of various cortical and subcortical

regions such as prefrontal cortex, striatum and amygdala. The experiment was based on the

paradigm described in [75], where the subjects are exposed to die rolls and requested to wager

on them beforehand. Considerable activity changes in the neural regions accountable for the

reward system had already been reported in [75] utilizing fMRI. However, the low temporal

resolution of fMRI imaging does not allow to determine the interactions in millisecond level.

Hence, we repeated the same type of experiment using MEG.

The averaged MEG data were spatially filtered by the exSSS to mask the effect of strong

superficial sources. Then the source waveforms were reconstructed by sLORETA. Discernible

activities were apparent from these waveforms as can be observed from Figure 15. It should

be noted that the same activities could not be revealed without applying the exSSS as a

preprocessing step. Hence, the preliminary results of this experiment yield the promise of

our spatial filtering methods for the high temporal resolution investigations of deep brain

activities.

4.3 FILTERING NON-CONCENTRIC PARTS INSIDE THE HEAD

4.3.1 Simulated data

The sampling frequency was chosen as 1 KHz in the simulations. A hypothetical sphere was

fitted to the sensor array volume and the origin of the coordinate system was set at the

center of this sphere. This origin is also accepted as the SSS expansion origin. Figure 16a

schematizes the positions of the simulated dipoles. Three dipolar point sources were produced

using Sarvas’s formula [15] for spherically symmetric conductors: two dipoles d1,d2 located

inside the head space at the same distance with respect to the origin and an external source

dipole d3. The locations of the dipoles d1,d2,d3 are r1=(2,4,3) cm, r2=(-3,2,4) cm and r3

= (-400,-120,150) cm, respectively. It is worth noting that the radial distances of the first
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two dipoles is ||r1|| = ||r2|| = 5.3851 cm and the external dipole is ||r3|| = 4.43 meters.

We obviously choose the radial distances same for the inner sources in order to observe the

resolving capability of the proposed method.

The simulated signal bb was generated by activating d1 for 0-199 ms, d2 for 200-399 ms

and d3 for 0-399 ms. Hence, the inner sources were activated for non-overlapped latency

ranges and the external source was made active for the entire range. The waveforms of the

inner sources are sinusoidal of 5 Hz, while the waveform of the external source was chosen

as a sinusoidal of 2.5 Hz (Figure 16b). Some Gaussian noise of SNR=30 dB was added to

the simulated signal for the sensor noise. The signal-to-interference ratio (SIR) is defined

as the ratio of the energy arising from the inner sources to that arising from the external

interferences. The SIR of the simulated MEG signal was 7.65 dB. It should be noted that

the suppression capability of the SSS increases as the interference sources are located further

from the sensor array and the SIR is smaller [60], [76]. In order to evaluate the performance

of the filtering, we define two other signal-to-noise ratios particularly for the simulations:

SNRb1 =

∑M
k=1

∑400
n=201 |bbk(n)|2∑M

k=1

∑200
n=1 |bbk(n)|2

SNRb2 =
1

SNRb1

.

Note that the magnetometers are amplified by 100 in all SNR and SIR computations

to make their amplitudes comparable to those of the gradiometers. We denote the filtered

signal corresponding to d1 as b1 and that corresponding to d2 as b2. The energies of d1

and d2 were chosen as equivalent, hence SNRb1(bb) ≈ SNRb2(bb) ≈ 1 for the simulated

MEG signal. The aim of the genexSSS filtering is to increase SNRb1 for b1 and similarly to

increase SNRb2 for b2 as much as possible.

For all of the experiments in the simulations, the genexSSS ”expansion” parameters for

are chosen as follows: We determine the inner expansion upper limit Lin = 8 (for Sin and

S̃ ) and the outer expansion upper limit Lout = 3 (for Sout). These are suitable choices

based on the other works about the application of the SSS algorithm [60],[76]. While for the

ROI parameters (r̂ and O′), in the first place in Section 4.3.1.1, we choose them arbitrarily

52



such that the ROI captures the targeted dipole while it excludes the other. In the second

place in Section 4.3.1.2, we present a more optimal way of determining an ROI, in order to

investigate the behavior of the genexSSS with respect to the ROI selection.

4.3.1.1 Filtering for arbitrary ROI’s In order to filter the part corresponding to d1,

we set the origin of the ROI as O′
1 at (1,3,2) cm 1 cm further from all three directions of

its location r1. Notice that ||r1 − O′
1|| = 1.73 cm and ||r2 − O′

1|| = 4.58 cm, and hence the

radius of the ROI would be some value between them for an appropriate use of the method.

Accordingly, the radius of the ROI was selected as r̂ = 2.5 cm. The sensor radius was

R = 13.57 cm. These parameters were used in (3.49) and the filtered signal b1 was obtained

with the addition of data dependency in (3.52). In order to filter b2 corresponding to d2, we

replicated the same procedure assigning the same values to the parameters except changing

the origin as O′
2 at (-4,1,3) cm, i.e., it was set 1 cm further from all three directions of r2.

Hence in this case, the distance between O′
2 and the dipoles are ||r1 − O′

2|| = 6.71 cm and

||r2 −O′
2|| = 1.73 cm.

The SNR’s for these particular parameter values are given in Table 1, which shows that

the simulated signal has almost same amount of contribution from d1 as d2. Utilizing the

genexSSS filter with the selected ROI’s enabled the energy of the targeted contribution to

be twice more.

We provide three typical separate channels in Figures 17, 18 and 19. The amplitudes of

the channels in all these figures are normalized for a better visual comparison and clearer

understanding of the effect of the genexSSS filtering. In Figure 17a, it is observed that the

simulated signal is severely affected by the external interference (the source d3 in Figure

16a), especially in the second half (200-399 ms). Figure 17b depicts the same channel of bin

exhibiting that the SSS eliminates this interference contained in bb. Figures 17c and 17d

clearly show that the filtered signals b1 and b2 are not only free of the interference but the

contribution of d2 is also suppressed in the former and it is increased in the latter.

In Figure 18a, a channel that has a greater contribution from d1 is exhibited. While

it is observed from Figure 18b that the genexSSS filtering successfully decreases activity

arising from d2 for b1, Figure 18c shows that the strength of the same activity is relatively
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increased for b2. Contrary to the channel presented in Figure 18a, an example channel that

has a greater contribution from d2 is provided in Figure 19a for a comparison. We see from

Figure 19b that the activity arising from d1 is increased to such a degree that its strength

becomes more than the one arising from d2. The same channel of the filtered signal b2 given

in Figure 19c indicates that the contribution of the first half of the signal coming from d1 is

decreased.
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Figure 8: a) The change of SNRdeep for the estimated deep component when the separating

radius r̂ varies between 0.1 cm and 8.9 cm with the increments of 0.1 cm and with the sensor

array radius R= 9 cm., b) The change of SNRsup for the estimated superficial component

when the separating radius r̂ varies between 0.1 cm and 8.9 cm with the increments of 0.1

cm and with the sensor array radius R =9 cm.
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Figure 9: a) Original simulated MEG signal (solid) and the estimated deep component signal

(dashed) for the 151th channel, b) Original simulated MEG signal (solid) and the estimated

superficial component signal (dashed) for the 151th channel

Figure 10: The change of SNRdeep for the estimated deep component both by the sharp

filtering (beamspaceSSS) and exSSS. The separating radius r̂ varies between 0.1 cm and 8.9

cm with the increments of 0.1 cm.
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Figure 11: The waveform of the 163th channel for a) Original phantom MEG data, b) SSS

filtered phantom data for Lin = 8 and Lout = 1, c) The original superficial dipole of the

phantom data in a), d) The estimated superficial component signal for r̂ = 5 cm, e) The

original deep dipole of the phantom data in a), f) The estimated deep component signal for

r̂ = 5 cm.

Figure 12: The overlapped measurements of the auditory evoked MEG channels for the

sampling frequency of 1 KHz.
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Figure 13: a) Channel layout for the estimated superficial component from the auditory

evoked MEG data by the exSSS for a separating radius r̂ = 8 cm. b) The MEG waveforms

for the sensors marked in a), which show auditory activity. c) Estimated location of the

evoked potential on the MR image for the superficial component. The estimation is realized

using Elekta Neuromag R© dipole fitting software.
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Figure 14: a) Channel layout for the estimated deep component from the auditory evoked

MEG data by exSSS for a separating radius r̂ = 8 cm. The auditory evoked response

is suppressed for the deep component. b) The MEG waveforms for the sensors marked

in a). They show stronger alpha wave activity than the same sensors in the superficial

component. c) Estimated location of the dipole (at around 95 ms) on the MR image for

the deep component. The estimation is realized using Elekta Neuromag R© dipole fitting

software.
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Figure 15: a)Some MEG channel waveforms related to the gambling experiment b) The

same channel waveforms in a) except that they were filtered by the exSSS. Notice that the

presence of significant activity between 200 ms and 350 ms was uncovered by the exSSS

method.
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Figure 16: a) Two inner dipoles and one external dipole are simulated. The affect of the

external source d3 to the simulated signal is diminished by the SSS. Since d1 and d2 are

located with the same radial distance with respect to O, in order to filter d1, a spherical

ROI is constructed with a radius and a center O′. b) Waveforms of the simulated dipoles

d1 (top), d2 (middle), d3 (bottom). The inner sources d1 and d2 have the same sinusoidal

waveform of 5 Hz but activated for different latencies. The waveform of the outer source is

a sinusoidal of 2.5 Hz activated for the whole range.
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Table 1: THE SIGNAL-TO-NOISE RATIOS OF THE FILTERED SIMULATED SIGNALS

FOR THE RADIUS OF THE ROI r̂ = 2.5 cm

SNRb1 SNRb2

bin 1.0080 0.9921

b1 1.8562 0.5387

b2 0.4840 2.0659
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Figure 17: The normalized waveform of the 155th channel of a) the original simulated data

bb, b) the SSS filtered data bin, c) the filtered data b1 corresponding to the ROI with the

origin O′
1 set at (1,3,2) cm and radius r̂ = 2.5 cm, d) the filtered data b2 corresponding to

the ROI with the origin O′
2 set at (-4,1,3) cm and the radius r̂ = 2.5 cm.
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Figure 18: The normalized waveform of the 64th channel for a) the original simulated data

bb. It has a greater contribution from d1. b) the filtered data b1 corresponding to the

ROI with the origin O′
1 set at (1,3,2) cm and radius r̂ = 2.5 cm. The energy of the first

half stemming from d1 is increased. c) the filtered data b2 corresponding to the ROI with

the origin O′
2 set at (-4,1,3) cm and radius r̂ = 2.5 cm. The energy of the second half is

increased.
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Figure 19: The normalized waveform of the 85th channel for a) the original simulated data

bb. It has a greater contribution from d2. b) the filtered data b1 corresponding to the ROI

with the origin O′
1 set at (1,3,2) cm and radius r̂ = 2.5 cm. The energy of the first half

stemming from d1 is increased. c) the filtered data b2 corresponding to the ROI with the

origin O′
2 set at (-4,1,3) cm and radius r̂ = 2.5 cm. The first half that is coming from d1 is

suppressed.
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4.3.1.2 Sensitivity to the ROI parameters For a proper genexSSS filtering of the

signal corresponding to one of the dipoles, the ROI is expected to encapsulate that particular

dipole while excluding the other dipole to be masked. In other words, r̂ should be chosen

as greater than the distance of O′ from the location of the targeted source and less than the

distance of O′ from the location of the undesired source, i.e., for instance, if one would like to

filter the signal b1 corresponding to d1, then ||r1−O′|| < r̂ < ||r2−O′|| should be satisfied.

Hence, there exist theoretically infinite possible choices on the ROI parameters O′ and r̂ for

a filtering by genexSSS. In simulations, we restrict the location of the ROI by considering

O′ to be on the line that passes through both r1 and r2. This line is illustrated in Figure

20. The coordinates of O′ in the direction of dir1 can be found out by the equation:

O′
1(x, y, z) =

(p + q)r1 − pr2

q
(4.1)

where p = ||r1 − O′|| and q = ||r1 − r2|| = 5.47 cm . Note that the equation (4.1) can be

simply modified in order to determine the centers of the ROI in the direction of dir2 for

filtering the signal corresponding to the dipole d2. Choosing a direction dir1 for O′ when

filtering for d1 (or dir2 for filtering d2) enables the minimum ratio of ||r1 − O′||/||r2 − O′||
(or alternatively ||r2 −O′||/||r1 −O′||), which is desirable for a better separation, since one

would like to have the ROI as distant as possible to the unwanted sources while making it

as close as possible to the targeted sources. This clearly explains why we restrict the ROI

center selections on the line depicted in Figure 20. We varied p between 0.01 cm and 5.01

cm with the increments of 0.5 cm in the direction of dir1 to determine values for O′ and for

each O′, we assigned various values of r̂ between 0.1 cm and 8.9 cm with the increments of

0.1 cm. These parameters were substituted in (3.49) and the filtered signal b1 was obtained

with the addition of data dependency in (3.52) for all determined ROI’s. In Figure 21a, we

provide the SNRb1(b1) for the selected ROI’s to exhibit the method’s sensitivity to O′ and

r̂. It is observed that as the center of the ROI gets farther from d2, the filtering performance

increases up to a limit, in this case p=2.51 cm. However, the SNRb1 degrades for p=3.01

cm and for p ≥= 3.51 cm, it is seen that the SNRb1 starts decreasing even below 1 and

hence the filter loses its suppression capability. Notice that the SNRb1 curves take their

maximum at a value r̂, where ||r1 − O′|| < r̂ < ||r2 − O′||. It is also worth noting these
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experiments indicate that an optimal selection of O′ and r̂ may give rise to a considerable

improvement on the suppression performance as up to SNRb1 = 7.413 in our example. This

is a much greater performance when compared with the result for arbitrarily selected ROI’s

in Section 4.3.1.1, where the filtering could only lead to SNRb1 ≈ 2.

The degradation of the method for p values bigger than 3.01 cm is caused by the insta-

bility of the matrix S̃ occurring as ||O−O′|| gets larger. The condition number of a matrix

yields an estimate of accuracy for the pseudo-inversion of it. For the case of S̃, the condition

number depends on both Lin and ||O − O′||. Since Lin = 8 is fixed, the only parameter

that changes it is O′. Figure 21b shows the condition numbers of S̃ with respect to p, which

determines the position of O′. It is observed that the condition number starts increasing

enormously for p ≥ 3.01 cm.

In Figure 22, we yield the overlapped channel waveforms of the simulated signal bb,

SSS-filtered signal bin and genexSSS-filtered signal b1 with r̂ = 5.3 cm and p = 2.51 cm

[O′=(4.29, 4.92, 2.54) cm ] that resulted the maximum SNRb1 . Figures 22a and 22b show

that the SSS method eliminates the low-frequency sinusoidal signals that were caused by the

external dipole d3. While the comparison of Figures 22b and 22c gives evidence how the signal

between 200-399 ms is masked by the genexSSS for b1, apart from being interference free.

In Figure 23a, we give a sample channel to exhibit how the genexSSS filtering successfully

decreases activity arising from d2 for b1.

We assigned various values of O′ (this time in the direction of dir2 ) and r̂ in order to

obtain estimates b2. The obtained SNRb2 values for these ROI’s showed that the perfor-

mance of the filter for b2 had a similar tendency with the previous results for b1. That is,

when the distance ||O − O′|| is greater than around 6 cm, the filter output is likely to have

degeneracy because of a high singularity of the matrix S̃. This singularity is caused by the

imbalance in the components of S̃, since the origin O′ gets too close to some of the sensors

while it becomes too distant from some other sensors. Thus, the genexSSS (similarly to the

SSS for the case of Sin) should be used with special caution to the condition number of S̃

while the ROI is being determined.
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Figure 23b depicts a sample channel for an estimated b2 with ||r2 −O′|| = 2.01 cm and

r̂ = 6.3cm, which shows that the strength of the activity corresponding to d1 is decreased

while the second half arising from d2 is preserved.

While we evaluated the genexSSS based on its ”noise” suppression capability, the main-

tenance of the spatial structure of the inputs is also a highly desired property of a spatial

filter. Figure 24 exhibits the imaged amplitudes of bin and the genexSSS outputs b1 and b2

for all channels. It is observed that not only the components corresponding to the non-ROI

regions (200-399 ms for b1 and 0-199 ms for b2) were suppressed from the data, but the

spatial structure of the desired components was also successfully preserved.

4.3.2 Real data

Bilateral auditory evoked fields have been in interest of many MEG studies [77]. In this

study, the auditory evoked field data was acquired from a 50 year-old male subject with

pure tones as stimuli. The observed data were obtained with a sampling frequency of 1

KHz. The duration of each trial was 600 ms and 150 trials were averaged. The whole-

channel averaged data is provided in Figure 25. Difficulty arises for the estimation of the

bilateral auditory cortical sources when the well-known inverse techniques such as dipole

fitting and linearly constrained minimum variance beamformers are applied directly without

any special care [77], [78]. The failures of these methods are mainly due to the temporal

overlapped activities in distinct locations and the strong correlations between the sources

causing a significant leakage in particular for the beamformers. In order to overcome these

limitations, one simple way is to determine some important sensors for each hemisphere of

the brain and realizing the techniques only for these selected sensors. However, this leads to

limited accuracies of source location estimations and source waveform reconstructions since

the selected sensors have always some contributions from the other regions. Apart from this,

the use of null constraints for the excluded regions was also suggested particularly for the

beamformers [78].

In this section, we demonstrate the realization of the genexSSS filter for the separation

of the signal corresponding to two specified ROI’s in each hemisphere. The origins of these
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ROI’s were selected as the dipole locations obtained by Elekta Neuromag R© software using a

spherical conductor head model. The sensors were divided into two parts for each hemisphere

and the dipole fitting was realized only for these subsets of the sensors at around the M100

peak occurring at 100 ms. The estimated locations obtained from these subsets were (-5.19,-

1.93, 2.10) cm for the left hemisphere and (4.80,-0.61 ,2.20) cm for the right hemisphere.

Notice that as mentioned above, these results may not be accurate due to the selection

of the sensors which have contributions from the contralateral activities. However, taking

these crude approximate results as the origins of ROI’s is sufficient to roughly determine the

necessary spherical ROI’s for the spatial filtering.

The radii for both ROI’s were selected to be r̂ = 6 cm and the sensor array radius was

R = 13.5 cm. The schematic representations of the ROI’s named as ROIleft and ROIright

are given in Figure 26. The spherical basis expansion parameters were chosen as Lin = 8,

Lout = 3. These parameters were incorporated into the genexSSS filter with the inclusion

of the data-dependent signal space projection and the filtered signals bleft and bright were

obtained for the ROIleft and ROIright, respectively.

Figure 27 shows all the gradiometers for bleft, while Figures 28(a) and 28(b) exhibit the

channels that were marked by the rectangles in Figure 27. It is observed that the auditory

peaks in the channels close to the left hemisphere were retained, while the same activities

for the channels in the proximity of the right hemisphere were successfully reduced. One of

the sample channels is provided in Figure 29 to show the typical effect of the genexSSS on

the signal.

Similarly, Figures 30, 31 and 32 exhibit the gradiometers of bright in various levels. They

indicate that the amplitudes of auditory activities coming from the left hemisphere were

decreased, while those arising from the right hemisphere were preserved for the filter output

bright.

We also applied dipole fitting on the filtered MEG signals, this time covering all of the

sensors. The estimated locations of the fitted dipole for bleft and bright were found at (-

5.11,-0.32,3.03) cm and (4.67,0.90,1.61) cm, respectively. These resulted locations indicate

that one can reach similar localization estimates for the each bilateral auditory evoked source

without having to fit the dipoles for user-selected sensors from the original data.
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Figure 20: The ROI’s whose centers O’ were selected to be on the line connecting d1 and

d2. This minimizes the ratio of the distance ||r1 − O′||/||r2 − O′|| for spatially filtering the

signal corresponding to d1 and the distance ||r2 − O′||/||r1 − O′|| for spatially filtering the

signal corresponding to d2.
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Figure 21: a) The change of SNRb1 for different ROI’s whose centers were chosen on the line

passing through d1 and d2, while their radii were varied between r̂ = 0.1 cm and r̂ = 8.9 cm

with the increments of 0.1 cm. b) The condition number of S̃ with respect to the parameter

p, which determines the center of ROI placed on the line given in Figure 20. The genexSSS

filtering performance given in (a) starts declining for p > 2.51 cm because of the increase of

the condition number for that range.
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Figure 22: Overlapped channel waveforms a) for the simulated data bb which was created by

three dipoles d1, d2, d3: two inner dipoles d1 and d2 that have exactly the same energy and

located at the same distance with respect to the SSS expansion origin, and another dipole d3

outside the head space, b) SSS filtered data bin obtained by selecting the expansion upper

limits as Lin = 8 and Lout = 3. It is free of the external noisy part arising from d3, c)

genexSSS filtered b1 with a selected ROI that has the origin O′ at (4.29, 4.92, 2.54) cm and

with the radius r̂ = 5.3 cm. The energy of the second part arising from d2 is masked.
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Figure 23: a) The waveform of the 251th channel for the original simulated data bb (dotted)

and the genexSSS filtered data b1 (solid) corresponding to the ROI with the origin O′ set

at (4.29, 4.92, 2.54) cm and the radius r̂ = 5.3 cm. The energy of the second half stemming

from d2 is suppressed while the first half corresponding to d1 is preserved. (b) The waveform

of the 158th channel for the original simulated data bb (dotted) and the genexSSS filtered

data b2 (solid) corresponding to the ROI with the origin O′ set at (-4.83, 1.27, 4.37) cm and

the radius r̂ = 6.3 cm. This time the energy of the first half is suppressed and the second

half corresponding to d2 is preserved.
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Figure 24: The images for normalized bin,b1 and b2. The energy of the unwanted part

coming from d2 (d1) is reduced while the spatial complexity coming from d1(d2) is preserved

for b1 (b2).
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Figure 25: Overlapped bilateral auditory evoked magnetic field measurements with the sam-

pling frequency of 1 KHz.
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(a)

(b)

Figure 26: The fitted dipoles for the sensors covering a) only the left hemisphere and b)

only the right hemisphere. The estimated locations of the dipoles are utilized for setting the

origins of ROIleft and ROIright in order to accentuate the data arising from that hemisphere

and suppressing the part arising from the contralateral part.
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Figure 27: Channel layout of gradiometers for the filtered signal bleft corresponding to

ROIleft.
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(a) The filtered signals (solid) and the original signals (dashed)
from the channels that were marked by the box on the left handside
in Figure 27. The filtering on the ROIleft retains the signals from
the left hemisphere.

(b) The filtered signals (solid) and the original signals (dashed)
from the channels that were marked by the box on the right hand-
side in Figure 27. The auditory evoked fields arising from the right
hemisphere are suppressed by the filtering.

Figure 28: Zoomed in waveforms for bleft
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Figure 29: One of the channels in Figure 28(b). The filtered signals are solid and the original

signals are dashed.
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Figure 30: Channel layout of gradiometers for the filtered signal bright corresponding to

ROIright.
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(a) The filtered signals (solid) and the original signals (dashed)
from the channels that were marked by the box on the left handside
in Figure 30. The filtering enables suppressing the auditory evoked
peaks for these channels.

(b) The filtered signals (solid) and the original signals (dashed)
from the channels that were marked by the box on the right hand-
side in Figure 30. The original signals of the right channels are
preserved.

Figure 31: Zoomed in waveforms for bright
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Figure 32: One of the channels in Figure 31(a). The filtered signals are solid and the original

signals are dashed.
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5.0 CONCLUSION

5.1 CLASSIFICATION AND SUMMARY OF THE FILTERS

Our filters, both exSSS and genexSSS, can be considered under the title of ”optimum linear

filters”. These types of estimators share some common steps as described in [79]:

1. Computational structure with well-defined parameters: We choose the spherical harmon-

ics domain for the computational structure. Hence, the inputs of the filters are the inner

SSS coefficients α and we aim to find a linear estimator that transforms α to the output

parameters α̂f corresponding to a user-specified ROI. The block diagram of the structure

of the filters is depicted in Figure 33.

2. Selection of a performance criterion: The criterion is based on the maxSNR beamspace

methodology, which aims at maximizing the energy for the signals arising from the ROI,

while minimizing it for the remaining source regions. The beamspace criterion allows

the minimization of the mean-squared-error[55]. There is not any specific assumption on

either source distribution or data statistics.

3. Optimization of the performance criterion: The solution of the optimization is obtained

using a Lagrange multipliers technique, which leads to the eigendecomposition of the

Gram matrix. The Gram matrix represents the second-order relations between the vector

spherical harmonic functions and it is found by an integration throughout the targeted

source regions. The analytical solution gives rise to explicit spatial filter designs due

to the orthogonality of the vector spherical harmonics. Moreover, the obtained optimal

coefficients are weighted by the eigenvalues of the Gram matrix for a filter expressing

better performance.
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4. Evaluation based on the performance criterion: We defined some SNR’s that are directly

related to the maxSNR beamspace criterion and evaluated the performances of the filters

in the simulations accordingly. The methods have been validated by showing that the

energy of the signals coming from the ROI is increased. We also investigated the filter

sensitivity to the selection of the ROI parameters, i.e., r̂ for the exSSS and r̂ and O′ for

the genexSSS estimator.

5.2 ADVANTAGES AND THE NOVELTY OF THE METHODS

Decomposing the MEG data corresponding to regions of interest may provide valuable in-

sights into the properties of the data and has practical importance for various applications

such as brain-computer interfaces [57]. The SSS algorithm attempts to realize this by ob-

taining the coefficients for the sources of interest inside the sensor array and the external

interferences. Thus, SSS decomposes the data into two different components arising from

inner head sources and undesired external interferences.

In this dissertation, we propose two novel methods, namely exSSS and genexSSS, in

order to extend the capability of the SSS algorithm for a further decomposition of the data

to desired locations inside the head. Fourier like representations of MEG data in terms

of vector spherical harmonic basis functions yield a very convenient domain for various

applications such as total information extraction [64], data continuation around the surface

of the sensor array [63] and the exploration of the resolution limits of the inverse problems

[51]. In a recent work [80], Taulu and Simola report the relation between the SSS coefficients

and the current sources and they showed some relevant interpretations of inverse and forward

problems in the SSS domain, where the estimation of the source distributions can efficiently

be achieved without any numerical calculations or inversions of the leadfield matrices. They

also suggested a weighting scheme derived through a minimization of the mean-square error

between the desired coefficients α and the noisy estimate α̂, in order to eliminate the sensor

noise contributions from the estimated coefficients.
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Figure 33: Block diagram for the computational structure of the spatial filtering in the

spherical harmonics domain. fkl represents the filter coefficients.
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Our algorithms named as exSSS and genexSSS were developed by assuming that the

SSS method was already applied to the MEG data and accordingly, it addresses the issue

of manipulating the SSS coefficients such that the data can be constrained to any arbitrary

spherical source region inside the head volume. The modification of the SSS coefficients was

handled through a beamspace optimization criterion known as maxSNR. This methodology

assumes the part corresponding to the ROI as ”signal” and the remaining parts as ”noise”.

It was used to modify the SSS coefficients such that the energy coming from the ROI is

maximized while the energy arising from the remaining source regions is minimized. The

simplicity of the derived formulations of exSSS comes from the natural appropriateness

to the spherical domain and orthogonality properties of the SSS basis functions that are

directly related to the vector spherical harmonics. It is well-known that these functions

are orthonormal eigenfunctions of the Laplacian operator on the spherical surface [60]. The

origin of the expansion should be selected as symmetrically as possible to the sensors for

the success of the separation. Hence the aforementioned deep and superficial components

are meant to be defined with respect to the SSS origin in the exSSS method. In the second

proposed algorithm genexSSS, we further investigated the inner component to constrain it

into arbitrary spherical regions with user specified centers and radii. The formulation of

the filter mainly relies on a linear transformation of the SSS coefficients as in exSSS. We

have demonstrated that the genexSSS filter is also a generalized form of the exSSS filter and

requires only one additional parameter as the ROI center O′. Hence, by computing only one

extra parameter as the vector basis function matrix S̃ that depends on O′, the filtering can

be realized immediately after application of the SSS method. While both the exSSS and

the genexSSS methods fundamentally take into account solely the spatial information, it is

straightforward to include data dependency as we applied a simple signal space projection

for avoiding possible noisy content.

The simulations and the auditory data experiments were utilized to validate the effec-

tiveness of the filters. The experiments give evidence that the energy ratio of the targeted

part to the undesired part is increased by the filters, which shows the masking capability of

our methods. We also showed that the filters do not spoil the spatial structure of the input

data.
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There have been previous attempts for a specified waveform separation such as in [81],

which exploits the spectral information of the sources without taking account the spatial

consideration. Contrary to those, our approach does not assume or impose any prior in-

formation for the source waveforms. Our methods utilize ”explicit” spatial filters for the

estimation of components that correspond to specific regions of interest. In [57], the au-

thors suggest spatial filters for MEG data utilizing classical leadfields based on sLORETA.

It should be noted that the decomposition methodology suggested in this dissertation would

not be easy with classical lead field functions since they do not possess the orthogonality

property across source regions. Hence, one would have to first determine necessary coordi-

nates by dividing the targeted and the unwanted source volumes into thousands of grids and

then compute the Gram matrix discretely unlike the proposed method. Thus, our spatial

filtering methods are distinguished especially by their efficiency; that is, they do not require

the numerical computation of the leadfields, as do the traditional spatial filtering methods.

Moreover, with our approach, while the beamspace transformation matrix is obtained, one

does not have to deal with the sensor configurations and dimension reduction, i.e, choosing

the eigenvectors of the Gram matrix that correspond to the largest eigenvalues. All these

procedures are already previously handled by the SSS method. Hence we use the modified

beamspace methodology only for decomposition purposes.

If the desired ROI (hence the parameters O, O′, R, r̂) is known a priori, one can compute

the filters beforehand and apply them to the data via filtering matrices stored on a computer.

The pre-knowledge about the ROI’s may not have to be precise in order to mask the unwanted

sources. This could be the case for the roughly known brain source areas like epileptic seizure

regions and auditory cortical regions.

Our methods are relevant to MEG signals for all the application areas mentioned in

Section 3.1.2.3. The external noise unrelated to the brain activities is handled by the SSS

algorithm incorporated in the exSSS and genexSSS formulations. Additionally, the methods

are particularly to be used for the other purposes, namely constraining the signal to an

ROI, obtaining deep structures and dimension reduction. Note that while we developed the

methods in particular for MEG, it is straightforward to apply a similar spatial filtering ap-
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proach and manipulate the multipole coefficients of EEG signals, when there is no significant

noise outside the head. In fact, this condition suits to EEG signals since they are not that

susceptible to outer noise as in the case of MEG.

5.3 SPECIFIC REMARKS

Source estimation problems can be classified as global and local as described in [82]. The

global methods aim at finding a set of solutions that describes the measurements in their

entirety. Thus, neglecting one of the sources in a global method would affect the solution for

all the remaining sources. Conversely, the local methods aim at identifying sources at a local

point or a region but not the entire region (total source space). These kinds of methods such

as LCMV beamformers lead to independent local solutions whose summed activity is not

generally equivalent to the measured signal b [82]. exSSS and genexSSS can be considered

in the class of local estimators, i.e., they concentrate on only the targeted region (ROI) by

using maxSNR beamspace methodology and the solutions for different regions do not yield

the total data, even when the unity of these regions encapsulates the total source space.

Since exSSS is a local estimator, the optimizations of the deep and superficial parts

are taken into account separately. Hence, when one estimates the deep and the superficial

components separately, their summation would not give the total data, i.e, b̂deep + b̂sup 6= b .

This also explains why the filters in Figure 3 possess some common spatial frequencies. This,

though, does not produce difficulty in practice. In cases where the sum of the components

must equal b, one still has the option to estimate for any region of interest and subtract

it from b. For applications where this sum is unimportant, our method offers another

way of decomposition. We had attempted to develop another spatial filtering algorithm for
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arbitrary spherical ROI’s inside the brain [83], where we suggested shifting the sensors to a

virtual spherical array and realizing the beamspace filtering on these selected virtual sensors.

However, as mentioned in [83], this method has serious drawbacks in practice, such as the

loss of useful signal by the shifting operation and the selection of the optimal locations for

virtual sensors. genexSSS is an improvement upon that method, avoiding these pitfalls.

It is worth noting that in particular for genexSSS, the performance of the estimation

of b̂f is directly dependent upon the external interference suppression capability of SSS,

since the formulation of f(a, b) obtained from modified beamspace optimization takes into

account only the inner brain sources. Although SSS is expected to eliminate the external

interferences, in practice, there is always a leakage that cannot be totally suppressed, as

explained in detail in [60], [76]. The suppression capability is lessened as the external sources

are located closer to the sensor array [60]. In [84], a method called ”spatiotemporal” SSS

(tSSS) handles this limitation by an additional null projection that is obtained from the

common subspace of inner and outer components. Thus, the use of tSSS can be considered

as a more accurate way to obtain bin before the proposed estimation of b̂f and may be a

useful temporal supplement to the genexSSS filter in order to remove the external noise close

to the sensor array completely in practice.
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