423 research outputs found

    Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    Get PDF
    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive

    Enhancing Real-time Embedded Image Processing Robustness on Reconfigurable Devices for Critical Applications

    Get PDF
    Nowadays, image processing is increasingly used in several application fields, such as biomedical, aerospace, or automotive. Within these fields, image processing is used to serve both non-critical and critical tasks. As example, in automotive, cameras are becoming key sensors in increasing car safety, driving assistance and driving comfort. They have been employed for infotainment (non-critical), as well as for some driver assistance tasks (critical), such as Forward Collision Avoidance, Intelligent Speed Control, or Pedestrian Detection. The complexity of these algorithms brings a challenge in real-time image processing systems, requiring high computing capacity, usually not available in processors for embedded systems. Hardware acceleration is therefore crucial, and devices such as Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. These devices can assist embedded processors by significantly speeding-up computationally intensive software algorithms. Moreover, critical applications introduce strict requirements not only from the real-time constraints, but also from the device reliability and algorithm robustness points of view. Technology scaling is highlighting reliability problems related to aging phenomena, and to the increasing sensitivity of digital devices to external radiation events that can cause transient or even permanent faults. These faults can lead to wrong information processed or, in the worst case, to a dangerous system failure. In this context, the reconfigurable nature of FPGA devices can be exploited to increase the system reliability and robustness by leveraging Dynamic Partial Reconfiguration features. The research work presented in this thesis focuses on the development of techniques for implementing efficient and robust real-time embedded image processing hardware accelerators and systems for mission-critical applications. Three main challenges have been faced and will be discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time performances, (ii) enhancing algorithm robustness, and (iii) increasing overall system's dependability. In order to ensure real-time performances, efficient FPGA-based hardware accelerators implementing selected image processing algorithms have been developed. Functionalities offered by the target technology, and algorithm's characteristics have been constantly taken into account while designing such accelerators, in order to efficiently tailor algorithm's operations to available hardware resources. On the other hand, the key idea for increasing image processing algorithms' robustness is to introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve, the quality of results for a wide range of input conditions, that are not always fully predictable at design-time (e.g., noise level variations). This has been accomplished by measuring at run-time some characteristics of the input images, and then tuning the algorithm parameters based on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGA have been extensively exploited in order to integrate run-time adaptivity into the designed hardware accelerators. Tools and methodologies have been also developed in order to increase the overall system dependability during reconfiguration processes, thus providing safe run-time adaptation mechanisms. In addition, taking into account the target technology and the environments in which the developed hardware accelerators and systems may be employed, dependability issues have been analyzed, leading to the development of a platform for quickly assessing the reliability and characterizing the behavior of hardware accelerators implemented on reconfigurable FPGAs when they are affected by such faults

    Ada (trademark) projects at NASA. Runtime environment issues and recommendations

    Get PDF
    Ada practitioners should use this document to discuss and establish common short term requirements for Ada runtime environments. The major current Ada runtime environment issues are identified through the analysis of some of the Ada efforts at NASA and other research centers. The runtime environment characteristics of major compilers are compared while alternate runtime implementations are reviewed. Modifications and extensions to the Ada Language Reference Manual to address some of these runtime issues are proposed. Three classes of projects focusing on the most critical runtime features of Ada are recommended, including a range of immediately feasible full scale Ada development projects. Also, a list of runtime features and procurement issues is proposed for consideration by the vendors, contractors and the government

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Cross layer reliability estimation for digital systems

    Get PDF
    Forthcoming manufacturing technologies hold the promise to increase multifuctional computing systems performance and functionality thanks to a remarkable growth of the device integration density. Despite the benefits introduced by this technology improvements, reliability is becoming a key challenge for the semiconductor industry. With transistor size reaching the atomic dimensions, vulnerability to unavoidable fluctuations in the manufacturing process and environmental stress rise dramatically. Failing to meet a reliability requirement may add excessive re-design cost to recover and may have severe consequences on the success of a product. %Worst-case design with large margins to guarantee reliable operation has been employed for long time. However, it is reaching a limit that makes it economically unsustainable due to its performance, area, and power cost. One of the open challenges for future technologies is building ``dependable'' systems on top of unreliable components, which will degrade and even fail during normal lifetime of the chip. Conventional design techniques are highly inefficient. They expend significant amount of energy to tolerate the device unpredictability by adding safety margins to a circuit's operating voltage, clock frequency or charge stored per bit. Unfortunately, the additional cost introduced to compensate unreliability are rapidly becoming unacceptable in today's environment where power consumption is often the limiting factor for integrated circuit performance, and energy efficiency is a top concern. Attention should be payed to tailor techniques to improve the reliability of a system on the basis of its requirements, ending up with cost-effective solutions favoring the success of the product on the market. Cross-layer reliability is one of the most promising approaches to achieve this goal. Cross-layer reliability techniques take into account the interactions between the layers composing a complex system (i.e., technology, hardware and software layers) to implement efficient cross-layer fault mitigation mechanisms. Fault tolerance mechanism are carefully implemented at different layers starting from the technology up to the software layer to carefully optimize the system by exploiting the inner capability of each layer to mask lower level faults. For this purpose, cross-layer reliability design techniques need to be complemented with cross-layer reliability evaluation tools, able to precisely assess the reliability level of a selected design early in the design cycle. Accurate and early reliability estimates would enable the exploration of the system design space and the optimization of multiple constraints such as performance, power consumption, cost and reliability. This Ph.D. thesis is devoted to the development of new methodologies and tools to evaluate and optimize the reliability of complex digital systems during the early design stages. More specifically, techniques addressing hardware accelerators (i.e., FPGAs and GPUs), microprocessors and full systems are discussed. All developed methodologies are presented in conjunction with their application to real-world use cases belonging to different computational domains

    Spacecraft Dormancy Autonomy Analysis for a Crewed Martian Mission

    Get PDF
    Current concepts of operations for human exploration of Mars center on the staged deployment of spacecraft, logistics, and crew. Though most studies focus on the needs for human occupation of the spacecraft and habitats, these resources will spend most of their lifetime unoccupied. As such, it is important to identify the operational state of the unoccupied spacecraft or habitat, as well as to design the systems to enable the appropriate level of autonomy. Key goals for this study include providing a realistic assessment of what "dormancy" entails for human spacecraft, exploring gaps in state-of-the-art for autonomy in human spacecraft design, providing recommendations for investments in autonomous systems technology development, and developing architectural requirements for spacecraft that must be autonomous during dormant operations. The mission that was chosen is based on a crewed mission to Mars. In particular, this study focuses on the time that the spacecraft that carried humans to Mars spends dormant in Martian orbit while the crew carries out a surface mission. Communications constraints are assumed to be severe, with limited bandwidth and limited ability to send commands and receive telemetry. The assumptions made as part of this mission have close parallels with mission scenarios envisioned for dormant cis-lunar habitats that are stepping-stones to Mars missions. As such, the data in this report is expected to be broadly applicable to all dormant deep space human spacecraft

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    Get PDF
    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization

    Dependability-driven Strategies to Improve the Design and Verification of Safety-Critical HDL-based Embedded Systems

    Full text link
    [ES] La utilización de sistemas empotrados en cada vez más ámbitos de aplicación está llevando a que su diseño deba enfrentarse a mayores requisitos de rendimiento, consumo de energía y área (PPA). Asimismo, su utilización en aplicaciones críticas provoca que deban cumplir con estrictos requisitos de confiabilidad para garantizar su correcto funcionamiento durante períodos prolongados de tiempo. En particular, el uso de dispositivos lógicos programables de tipo FPGA es un gran desafío desde la perspectiva de la confiabilidad, ya que estos dispositivos son muy sensibles a la radiación. Por todo ello, la confiabilidad debe considerarse como uno de los criterios principales para la toma de decisiones a lo largo del todo flujo de diseño, que debe complementarse con diversos procesos que permitan alcanzar estrictos requisitos de confiabilidad. Primero, la evaluación de la robustez del diseño permite identificar sus puntos débiles, guiando así la definición de mecanismos de tolerancia a fallos. Segundo, la eficacia de los mecanismos definidos debe validarse experimentalmente. Tercero, la evaluación comparativa de la confiabilidad permite a los diseñadores seleccionar los componentes prediseñados (IP), las tecnologías de implementación y las herramientas de diseño (EDA) más adecuadas desde la perspectiva de la confiabilidad. Por último, la exploración del espacio de diseño (DSE) permite configurar de manera óptima los componentes y las herramientas seleccionados, mejorando así la confiabilidad y las métricas PPA de la implementación resultante. Todos los procesos anteriormente mencionados se basan en técnicas de inyección de fallos para evaluar la robustez del sistema diseñado. A pesar de que existe una amplia variedad de técnicas de inyección de fallos, varias problemas aún deben abordarse para cubrir las necesidades planteadas en el flujo de diseño. Aquellas soluciones basadas en simulación (SBFI) deben adaptarse a los modelos de nivel de implementación, teniendo en cuenta la arquitectura de los diversos componentes de la tecnología utilizada. Las técnicas de inyección de fallos basadas en FPGAs (FFI) deben abordar problemas relacionados con la granularidad del análisis para poder localizar los puntos débiles del diseño. Otro desafío es la reducción del coste temporal de los experimentos de inyección de fallos. Debido a la alta complejidad de los diseños actuales, el tiempo experimental dedicado a la evaluación de la confiabilidad puede ser excesivo incluso en aquellos escenarios más simples, mientras que puede ser inviable en aquellos procesos relacionados con la evaluación de múltiples configuraciones alternativas del diseño. Por último, estos procesos orientados a la confiabilidad carecen de un soporte instrumental que permita cubrir el flujo de diseño con toda su variedad de lenguajes de descripción de hardware, tecnologías de implementación y herramientas de diseño. Esta tesis aborda los retos anteriormente mencionados con el fin de integrar, de manera eficaz, estos procesos orientados a la confiabilidad en el flujo de diseño. Primeramente, se proponen nuevos métodos de inyección de fallos que permiten una evaluación de la confiabilidad, precisa y detallada, en diferentes niveles del flujo de diseño. Segundo, se definen nuevas técnicas para la aceleración de los experimentos de inyección que mejoran su coste temporal. Tercero, se define dos estrategias DSE que permiten configurar de manera óptima (desde la perspectiva de la confiabilidad) los componentes IP y las herramientas EDA, con un coste experimental mínimo. Cuarto, se propone un kit de herramientas que automatiza e incorpora con eficacia los procesos orientados a la confiabilidad en el flujo de diseño semicustom. Finalmente, se demuestra la utilidad y eficacia de las propuestas mediante un caso de estudio en el que se implementan tres procesadores empotrados en un FPGA de Xilinx serie 7.[CA] La utilització de sistemes encastats en cada vegada més àmbits d'aplicació està portant al fet que el seu disseny haja d'enfrontar-se a majors requisits de rendiment, consum d'energia i àrea (PPA). Així mateix, la seua utilització en aplicacions crítiques provoca que hagen de complir amb estrictes requisits de confiabilitat per a garantir el seu correcte funcionament durant períodes prolongats de temps. En particular, l'ús de dispositius lògics programables de tipus FPGA és un gran desafiament des de la perspectiva de la confiabilitat, ja que aquests dispositius són molt sensibles a la radiació. Per tot això, la confiabilitat ha de considerar-se com un dels criteris principals per a la presa de decisions al llarg del tot flux de disseny, que ha de complementar-se amb diversos processos que permeten aconseguir estrictes requisits de confiabilitat. Primer, l'avaluació de la robustesa del disseny permet identificar els seus punts febles, guiant així la definició de mecanismes de tolerància a fallades. Segon, l'eficàcia dels mecanismes definits ha de validar-se experimentalment. Tercer, l'avaluació comparativa de la confiabilitat permet als dissenyadors seleccionar els components predissenyats (IP), les tecnologies d'implementació i les eines de disseny (EDA) més adequades des de la perspectiva de la confiabilitat. Finalment, l'exploració de l'espai de disseny (DSE) permet configurar de manera òptima els components i les eines seleccionats, millorant així la confiabilitat i les mètriques PPA de la implementació resultant. Tots els processos anteriorment esmentats es basen en tècniques d'injecció de fallades per a poder avaluar la robustesa del sistema dissenyat. A pesar que existeix una àmplia varietat de tècniques d'injecció de fallades, diverses problemes encara han d'abordar-se per a cobrir les necessitats plantejades en el flux de disseny. Aquelles solucions basades en simulació (SBFI) han d'adaptar-se als models de nivell d'implementació, tenint en compte l'arquitectura dels diversos components de la tecnologia utilitzada. Les tècniques d'injecció de fallades basades en FPGAs (FFI) han d'abordar problemes relacionats amb la granularitat de l'anàlisi per a poder localitzar els punts febles del disseny. Un altre desafiament és la reducció del cost temporal dels experiments d'injecció de fallades. A causa de l'alta complexitat dels dissenys actuals, el temps experimental dedicat a l'avaluació de la confiabilitat pot ser excessiu fins i tot en aquells escenaris més simples, mentre que pot ser inviable en aquells processos relacionats amb l'avaluació de múltiples configuracions alternatives del disseny. Finalment, aquests processos orientats a la confiabilitat manquen d'un suport instrumental que permeta cobrir el flux de disseny amb tota la seua varietat de llenguatges de descripció de maquinari, tecnologies d'implementació i eines de disseny. Aquesta tesi aborda els reptes anteriorment esmentats amb la finalitat d'integrar, de manera eficaç, aquests processos orientats a la confiabilitat en el flux de disseny. Primerament, es proposen nous mètodes d'injecció de fallades que permeten una avaluació de la confiabilitat, precisa i detallada, en diferents nivells del flux de disseny. Segon, es defineixen noves tècniques per a l'acceleració dels experiments d'injecció que milloren el seu cost temporal. Tercer, es defineix dues estratègies DSE que permeten configurar de manera òptima (des de la perspectiva de la confiabilitat) els components IP i les eines EDA, amb un cost experimental mínim. Quart, es proposa un kit d'eines (DAVOS) que automatitza i incorpora amb eficàcia els processos orientats a la confiabilitat en el flux de disseny semicustom. Finalment, es demostra la utilitat i eficàcia de les propostes mitjançant un cas d'estudi en el qual s'implementen tres processadors encastats en un FPGA de Xilinx serie 7.[EN] Embedded systems are steadily extending their application areas, dealing with increasing requirements in performance, power consumption, and area (PPA). Whenever embedded systems are used in safety-critical applications, they must also meet rigorous dependability requirements to guarantee their correct operation during an extended period of time. Meeting these requirements is especially challenging for those systems that are based on Field Programmable Gate Arrays (FPGAs), since they are very susceptible to Single Event Upsets. This leads to increased dependability threats, especially in harsh environments. In such a way, dependability should be considered as one of the primary criteria for decision making throughout the whole design flow, which should be complemented by several dependability-driven processes. First, dependability assessment quantifies the robustness of hardware designs against faults and identifies their weak points. Second, dependability-driven verification ensures the correctness and efficiency of fault mitigation mechanisms. Third, dependability benchmarking allows designers to select (from a dependability perspective) the most suitable IP cores, implementation technologies, and electronic design automation (EDA) tools. Finally, dependability-aware design space exploration (DSE) allows to optimally configure the selected IP cores and EDA tools to improve as much as possible the dependability and PPA features of resulting implementations. The aforementioned processes rely on fault injection testing to quantify the robustness of the designed systems. Despite nowadays there exists a wide variety of fault injection solutions, several important problems still should be addressed to better cover the needs of a dependability-driven design flow. In particular, simulation-based fault injection (SBFI) should be adapted to implementation-level HDL models to take into account the architecture of diverse logic primitives, while keeping the injection procedures generic and low-intrusive. Likewise, the granularity of FPGA-based fault injection (FFI) should be refined to the enable accurate identification of weak points in FPGA-based designs. Another important challenge, that dependability-driven processes face in practice, is the reduction of SBFI and FFI experimental effort. The high complexity of modern designs raises the experimental effort beyond the available time budgets, even in simple dependability assessment scenarios, and it becomes prohibitive in presence of alternative design configurations. Finally, dependability-driven processes lack an instrumental support covering the semicustom design flow in all its variety of description languages, implementation technologies, and EDA tools. Existing fault injection tools only partially cover the individual stages of the design flow, being usually specific to a particular design representation level and implementation technology. This work addresses the aforementioned challenges by efficiently integrating dependability-driven processes into the design flow. First, it proposes new SBFI and FFI approaches that enable an accurate and detailed dependability assessment at different levels of the design flow. Second, it improves the performance of dependability-driven processes by defining new techniques for accelerating SBFI and FFI experiments. Third, it defines two DSE strategies that enable the optimal dependability-aware tuning of IP cores and EDA tools, while reducing as much as possible the robustness evaluation effort. Fourth, it proposes a new toolkit (DAVOS) that automates and seamlessly integrates the aforementioned dependability-driven processes into the semicustom design flow. Finally, it illustrates the usefulness and efficiency of these proposals through a case study consisting of three soft-core embedded processors implemented on a Xilinx 7-series SoC FPGA.Tuzov, I. (2020). Dependability-driven Strategies to Improve the Design and Verification of Safety-Critical HDL-based Embedded Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159883TESI

    Adaptive Distributed Architectures for Future Semiconductor Technologies.

    Full text link
    Year after year semiconductor manufacturing has been able to integrate more components in a single computer chip. These improvements have been possible through systematic shrinking in the size of its basic computational element, the transistor. This trend has allowed computers to progressively become faster, more efficient and less expensive. As this trend continues, experts foresee that current computer designs will face new challenges, in utilizing the minuscule devices made available by future semiconductor technologies. Today's microprocessor designs are not fit to overcome these challenges, since they are constrained by their inability to handle component failures by their lack of adaptability to a wide range of custom modules optimized for specific applications and by their limited design modularity. The focus of this thesis is to develop original computer architectures, that can not only survive these new challenges, but also leverage the vast number of transistors available to unlock better performance and efficiency. The work explores and evaluates new software and hardware techniques to enable the development of novel adaptive and modular computer designs. The thesis first explores an infrastructure to quantitatively assess the fallacies of current systems and their inadequacy to operate on unreliable silicon. In light of these findings, specific solutions are then proposed to strengthen digital system architectures, both through hardware and software techniques. The thesis culminates with the proposal of a radically new architecture design that can fully adapt dynamically to operate on the hardware resources available on chip, however limited or abundant those may be.PHDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102405/1/apellegr_1.pd
    • …
    corecore