91,868 research outputs found
Millimeter Wave Communications with Reconfigurable Antennas
The highly sparse nature of propagation channels and the restricted use of
radio frequency (RF) chains at transceivers limit the performance of millimeter
wave (mmWave) multiple-input multiple-output (MIMO) systems. Introducing
reconfigurable antennas to mmWave can offer an additional degree of freedom on
designing mmWave MIMO systems. This paper provides a theoretical framework for
studying the mmWave MIMO with reconfigurable antennas. We present an
architecture of reconfigurable mmWave MIMO with beamspace hybrid analog-digital
beamformers and reconfigurable antennas at both the transmitter and the
receiver. We show that employing reconfigurable antennas can provide throughput
gain for the mmWave MIMO. We derive the expression for the average throughput
gain of using reconfigurable antennas, and further simplify the expression by
considering the case of large number of reconfiguration states. In addition, we
propose a low-complexity algorithm for the reconfiguration state and beam
selection, which achieves nearly the same throughput performance as the optimal
selection of reconfiguration state and beams by exhaustive search.Comment: presented at IEEE ICC 201
Reconfigurable Mobile Multimedia Systems
This paper discusses reconfigurability issues in lowpower hand-held multimedia systems, with particular emphasis on energy conservation. We claim that a radical new approach has to be taken in order to fulfill the requirements - in terms of processing power and energy consumption - of future mobile applications. A reconfigurable systems-architecture in combination with a QoS driven operating system is introduced that can deal with the inherent dynamics of a mobile system. We present the preliminary results of studies we have done on reconfiguration in hand-held mobile computers: by having reconfigurable media streams, by using reconfigurable processing modules and by migrating functions
Application of adaptive antenna techniques to future commercial satellite communication
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further sub-divided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems
Application of adaptive antenna techniques to future commercial satellite communications. Executive summary
The purpose of this contract was to identify the application of adaptive antenna technique in future operational commercial satellite communication systems and to quantify potential benefits. The contract consisted of two major subtasks. Task 1, Assessment of Future Commercial Satellite System Requirements, was generally referred to as the Adaptive section. Task 2 dealt with Pointing Error Compensation Study for a Multiple Scanning/Fixed Spot Beam Reflector Antenna System and was referred to as the reconfigurable system. Each of these tasks was further subdivided into smaller subtasks. It should also be noted that the reconfigurable system is usually defined as an open-loop system while the adaptive system is a closed-loop system. The differences between the open- and closed-loop systems were defined. Both the adaptive and reconfigurable systems were explained and the potential applications of such systems were presented in the context of commercial communication satellite systems
A Reconfigurable Tile-Based Architecture to Compute FFT and FIR Functions in the Context of Software-Defined Radio
Software-defined radio (SDR) is the term used for flexible radio systems that can deal with multiple standards. For an efficient implementation, such systems require appropriate reconfigurable architectures. This paper targets the efficient implementation of the most computationally intensive kernels of two significantly different standards, viz. Bluetooth and HiperLAN/2, on the same reconfigurable hardware. These kernels are FIR filtering and FFT. The designed architecture is based on a two-dimensional arrangement of 17 tiles. Each tile contains a multiplier, an adder, local memory and multiplexers allowing flexible communication with the neighboring tiles. The tile-base data path is complemented with a global controller and various memories. The design has been implemented in SystemC and simulated extensively to prove equivalence with a reference all-software design. It has also been synthesized and turns out to outperform significantly other reconfigurable designs with respect to speed and area
Mapping DSP algorithms to a reconfigurable architecture Adaptive Wireless Networking (AWGN)
This report will discuss the Adaptive Wireless Networking project. The vision of the Adaptive Wireless Networking project will be given. The strategy of the project will be the implementation of multiple communication systems in dynamically reconfigurable heterogeneous hardware. An overview of a wireless LAN communication system, namely HiperLAN/2, and a Bluetooth communication system will be given. Possible implementations of these systems in a dynamically reconfigurable architecture are discussed. Suggestions for future activities in the Adaptive Wireless Networking project are also given
- …
