
Configuration Sharing Optimized Placement and Routing

Piotr Stepien
School of DEC

Bournemouth University
Poole, UK

Email: pstepien@bournemouth.ac.uk

John Cobb
School of DEC

Bournemouth University
Poole, UK

Email: jcobb@bournemouth.ac.uk

Abstract—Reconfigurable systems have been shown to achieve
very high computational performance. However, the overhead
associated with reconfiguration of hardware remains a critical
factor in overall system performance. This paper discusses the
development and evaluation of a technique to minimize the delay
associated with reconfiguration based upon optimized sharing of
configuration bit streams between design contexts. This is
achieved through modified placement and routing algorithms.

Keywords-FPGA; placement; routing; reconfiguration;

I. INTRODUCTION

Reconfigurable systems aim to achieve the execution
performance of hardware with the operational flexibility of
software. The most widely used implementation platform
enabling this goal is the Field Programmable Gate Array
(FPGA). Current FPGA design techniques tend to focus on
maximizing algorithm execution and data throughput for
single-context designs. However, reconfigurable systems
need to implement different designs at different times on the
same hardware architecture. If the overall performance of the
system is to be maintained it is clear that reconfiguration
latency must be minimized. Numerous approaches have been
proposed to reduce this latency [1] including storing each
design in separate context memories on the FPGA [2], [3];
optical reconfiguration [4]; bit stream compression [5], [6],
[7], [8]; additional high level block optimization [9] and
architectures specifically designed for reconfiguration, such
as PACT[10]. However, the added cost or limited
effectiveness of these approaches appears to have limited
their widespread uptake. In this paper a novel solution is
presented based on a modified FPGA placement and routing
algorithm. The goal of the approach is to increase
architectural commonality between the multiple hardware
designs used in a reconfigurable system. The aim of this
study was therefore to assess if the performance penalty
imposed by making designs more generic could be offset by
the advantages of minimizing reconfiguration latency.
Clearly, such an approach is unsuitable for high performance
computing where execution speed, data throughput and
minimum reconfiguration latency are essential. However, in
certain applications, such as, mobile technology a key
requirement is seamless transition between operational

contexts [11], [12]. The approach described here also offers
important advantages in terms of power consumption which
is of primary importance in mobile systems. Power
consumption during reconfiguration increases proportionate
to the size of the reconfiguration bit stream and can be an
important factor in the operational capacity of a battery
operated device.

II. BACKGROUND

A. Partial Reconfiguration

Direct access to a single configuration register on a
FPGA, requires complex configuration interface circuitry;
therefore single configuration registers are typically grouped
into clusters. A single cluster is the smallest amount of
configuration data loaded onto the FPGA. For the Xilinx
Virtex FPGA used in this study, the smallest configuration
data block is represented by a configuration frame spanning
an entire CLB column.

To configure a single FPGA programmable cell, all the
frames covering the particular cell need to be loaded into the
FPGA. Detailed registers mapping depends on the cell
configuration and requires definition of the logic/routing
resources that need to be configured. Therefore the content
of a FPGA configuration data bit stream is critically
dependent on the results of placement and routing
algorithms.

To demonstrate complexity of the single CLB column
configuration process of Xilinx Virtex FPGAs, a summary of
configuration data for Xilinx Virtex FPGA family is
presented in Table I.

TABLE I. XILINX VIRTEX FPGA CONFIGURATION DATA SUMMARY

Device
name

CLB Array
size

Frame size Column size

XCV50 16 x 24 324 15,552

XCV1000 64 x 96 1,188 57,024

XCV3200E 104 x 156 1,908 91,584

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/4896932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To configure an entire FPGA, all frames need to be
loaded. However, design reconfiguration can be performed
by either re-loading the entire bit stream or by re-loading
only those frames which contain data different from the
previous context i.e. partial reconfiguration.

B. Configuration Data Optimisation Problem

An important aim of this research was to achieve an
automated method of maximizing configuration sharing in
multi-context designs. Figure 1 presents the concept of a
reconfigurable platform supporting partial reconfiguration
with a two context design to be implemented on the
platform, one context at a time.

Figure 1. Example of multi-context design project using the same platform.
Where frames can be shared between design contexts reconfiguration
latency can be reduced.

Shared configuration represents the case where FPGA
resources controlled by the shared frames are configured in
exactly the same way in more than one context. Therefore
when switching contexts shared frames do not need to be
reloaded saving time and reducing storage requirements.

To demonstrate how placement decisions affect frame
utilization a simple FPGA placement in two variants is
presented in Fig. 2. This illustrates graphically how routing
of the same netlist by two proprietary tools can result in

frame utilization that whilst providing comparable design
solutions has a detrimental impact on reconfiguration
latency.

Figure 2. Two design implementations with different configuration data
sizes: Scenario A = 12 frames, Scenario B = 4 frames. Scenario A imposes
a significant overhead on reconfiguration performance.

III. METHODOLOGY

A. Target Architecture

To demonstrate applicability of the new placement and
routing methodology development has focused on a real-
world FPGA architecture. Xilinx Virtex technology was
selected on the basis of availability of a bit stream
manipulation - Xilinx JBits [13]. To simplify the process of
evaluating new placement and routing methods initial
development was targeted to the XCV50 – the smallest
device in the Xilinx Virtex family [14]. The XCV50 has an
16 x 24 array of CLBs controlled by 1152 configuration
frames [14], [15], [16].

Configuration of a single Xilinx Virtex CLB cell is
controlled by 864 bits. Half of these bits are used to
configure the routing switch matrix itself, whilst the other
half control LUT configuration and the CLB input and
output switch matrix.

B. Benchmarks Suite

A set of real–world FPGA benchmarks was developed
using Verilog and VHDL sources available from ITC99
benchmark suite [17] and free IP cores available at
www.opencores.com [18]. The LeonardoSpectrum compiler
(Mentor Graphics) was used to compile circuit sources to
Xilinx Virtex XCV50 netlists. Bit streams were generated for
each netlist using Xilinx ISE, executing on a dual Intel Xeon
2GHz/512k Dell PC under MS Windows 2000 SP4. In both
packages default settings were used (e.g. commercial
temperature). Test circuits were randomly paired to provide
two-context designs for evaluation of the new
reconfiguration optimized placement and routing algorithms.

C. Framework Description

1) Bitstream Comparison Tool
To determine the frames utilization characteristic of each

XCV50 bit stream, a Bit stream Comparison Tool (BCT)
was developed in C using Kdevelop [19]. BCT takes two bit
streams, scans through their content and performs frame to
frame comparison. BCT delivers a set of statistics showing

the percentage of similar frames and frame distribution
categorized by difference using a bin size of ten bits.

2) Simultaneous Multi-Context Placement and Routing
Using the Xilinx Virtex FPGA architecture together with

the JBits tools [13] a new placement and routing framework
was developed using the JBuilder compiler. This
‘Simultaneous Multi-Context Java Placement and Routing
tool’ (SMC JPR) performs simultaneous placement and
routing of two contexts, based on design information
extracted from Xilinx Virtex bit streams. SMC JPR design
flow is presented in Figure 3.

Figure 3. Simultaneous Multi-Context Placement and Routing Design
Flow.

Placement and routing algorithms have been incorporated
from our previous work presented in [8]. The placement
algorithm is based on a simulated annealing scheduling
scheme and the routing algorithm is based on the Pathfinder
maze-router. Full details including code listings can be
obtained from the principal author.

SMC JPR takes two bit streams as a design entry (one for
each context), extracts a netlist from each bit stream and
performs a series of comparisons to extract similarities
between contexts netlists. Based on the results, the placement

space is then divided into two areas: one for shared design
blocks and the other for all the remaining designs blocks.
During initial placement similar blocks are placed in exactly
the same location for both contexts. This helps to ensure that
such blocks are located within a common frame. Block
swaps and/or moves within a shared column are allowed.
The router was constrained to avoid using empty frames and
prevent routing through any area already allocated by the
placer this significantly simplifies the solution space.
Consequently placement and routing times were not
significantly increased compared to existing approaches.

IV. MULTI-CONTEXT PLACEMENT ALGORITHM
EVALUATION

The total number of shared blocks was used to determine
the minimum required placement area. Using this figure the
minimum number of configuration frames can be calculated
and is dependent on the technology. With a column-based
configuration interface as used in Xilinx Virtex, the placer
calculates the minimum number of columns required to host
the shared blocks.

A. Initial Placement

With the entire FPGA divided into shared and design
specific areas a traditional random initial placement does not
make sense. Instead a two phase process was necessary;
random placement of shared blocks within the shared area,
followed by random placement of non-shared blocks in the
non-shared area. If random placement is applied to the
shared area, it can be done only once for all contexts
otherwise this area will not be able to share configuration, as
only entire columns of the same blocks can share
configuration.

B. Next Step Criteria
Modifications proposed by the placer are constrained to

improvement in design timing and are prevented from
interfering with shared and non-shared area division.
However, since the placement area has been divided into two
separate areas, different modification rules apply to each of
them. Blocks located in the shared area can be swapped or
moved, but any placement modification has to be applicable
to all designs involved. Blocks located within the non-shared
area can be relocated within the entire non-shared area,
however by using bit stream compression placement
methods the number of frames required to implement the
non-shared part of the design were found to be minimized.

V. MULTI-CONTEXT ROUTING ALGORITHM
EVALUATION

FPGA routing identifies the resources necessary to
provide connectivity for every design net. The location of net
terminals is specified during the placement process, so the
router has to prove that all design contexts can be
successfully routed given a specific completed placement.

A. Multi-Context Routing Algorithm Criteria

From the router’s point of view, nets can be divided into
three categories depending on their terminal allocation as
demonstrated in figure 4.

Figure 4. Example of placement showing three different nets examples.

Nets belonging entirely to the non-shared area can be
routed using routers available for single design routing, such
as the frames optimized Pathfinder router described in detail
in [8].

Nets which belong entirely to the shared area and cross-
area nets can potentially improve frame sharing if routed in
such a way that they overlap each other as shown in figure 4.

B. Routing Cost Function

The Dijkstra algorithm was used to determine the best
connection between blocks. This approach requires that a
cost be associated with every routing resource to find the
shortest path. This cost is usually calculated based on the
wire length or delay caused by the single routing resource.
The cost of each path represents the sum of all routing
resources accrued along the path. To evaluate routing costs
in this study it was necessary to introduce a connection cost
function as defined by equation 1.

Where Costwire for each routing resource is calculated
using equation (2) and Costswitch connecting two routing
resources i and i + 1 is based of the current frames utilization
cost associated with this switch.

When the routability–driven routing algorithm is used,
the cost of using routing resource n when it is reached by
routing resource m has been calculated according to the
following formula:

Where b(n) is a base cost, h(n) is a measure of historic
congestion, p(n) represents present congestion and
BendCost(n, m) penalizes bends when global routing is
performed.

Congestion was calculated using the following equations:

Where oc(n) is the number of nets claiming to use
routing resource n and cp(n) represents maximum number of
nets that can legally use resource n. The values of hfac and
pfac define routing schedule and according to [20] the best
router performance has been achieved for 0.2 < hfac < 1 and
pfac = 0.5 during the first routing iteration, and then 1.5 to 2
times its previous value in each subsequent iteration.

Frame utilization cost FUCost(i) has been calculated
according to the equation 6:

Where BitsSet denotes the number of bits set within the
frame and FL denotes the total number of configuration bits
available within the frame, which for XCV50 equals 324
[14].

VI. MULTI-CONTEXT PLACEMENT AND
ROUTING RESULTS

A. Designs Similarity Analysis

To analyze similarities between different bit streams bit
streams from traditionally placed and routed benchmark
designs were cross correlated to establish similarities in their
bit streams. The results of this analysis are presented in
Table II. These results show that although there are pairs of
designs with a certain number of similar CLBs, the average
bit stream similarity is less then 1%. This is due to the fact,
that they all have been placed and routed individually.

TABLE II. MULTI-CONTEXT DESIGNS SIMILARITY SUMMARY.

Context pair Size
[%]

Shared
blocks

Shared
frames

A
b04_out.bit

tb_04_chain_x02.bit
11
22

25 239

B
b12_out.bit

tb_12_chain_x2.bit
30
60

63 4

C
tb_05_12.bit

tb_04_chain_x4.bit
45
45

58 0

D
cf_fp_mul_c_5_10_out.bit
cf_fp_mul_p_5_10_out.bit

34
43

113 0

E
cf_interleaver_6_8_out.bit

cf_interleaver_6_64_out.bit
13
86

74 0

F
tb_10_chain_x20.bit
tb_11_chain x6.bit

86
48

21 0

B. Experimental Results

To test the feasibility of the new approach Simultaneous
Multi-Context Placement and Routing (SMC P&R) was
performed on sets of design pairs. In this experiment the cost
functions used by the placement and routing algorithm were
purely frames-sharing oriented without any other constraints.
Figure 5 shows graphically the high level of design
commonality typically achieved by the new approach. Table
III summarizes the results obtained.

C. Frames Sharing Analysis
The results presented in Table III show that it is possible

to significantly increase the number of shared frames in
comparison to currently used P&R approaches. As might be
expected the achieved improvement ratio is considerable for
small circuits (51% for circuit sizes requiring 20-30% FPGA
utilization). However, these results also demonstrate that the
new technique is also beneficial for bigger circuits (by an
average of 33% for circuits utilizing up to 60% of FPGA
resources).

Figure 3. Example of SMC P\&R performed on two-context design.

Figure 5. Example of SMC P\&R performed on a two-context design
illustrating the high level of physical commonality.

TABLE III. MULTI-CONTEXT DESIGNS BENCHMARKS SUMMARY.

D. Timing Analysis

Timing analysis shows, that Critical Path (CP) uses on
average 25% more routing resources when placed and routed
with SMC P&R. This is due to the heavily packed placement
which constrains router freedom, and the fact that long wires
can be directly accessed at selected CLB locations, so the
router has to use single wires to access them in the
neighboring location, which increases the number of routing
resources used by the net on the critical path.

Design
pair

Size
[%]

SB SF
SC

SF
SMC

F
[%]

CP
SC

CP
SMC

CP
[%]

A 11
22

25 239 821 51 9
12

12
14

-25
-14

B 30
60

63 4 382 33 10
12

13
14

-23
-14

C 45
45

58 0 527 46 9
8

10
11

-10
-27

D 34
43

113 0 518 45 9
9

12
11

-25
-27

E 13
86

74 0 102 9 8
9

11
11

-25
-18

F 86
48

21 0 65 6 8
7

10
9

-20
-22

jcobb
Line

E. CLB Blocks Sharing

The results of CLB blocks sharing (SB) analysis between
two designs as presented in Table III show that there are a
number of blocks with the same content (up to 15%),
although all the benchmark designs used were compiled
separately without the intention to share any of their
resources. It is evident therefore that the number of shared
CLB blocks could be further improved by using resource-
sharing methodologies during the design automation steps
that precede placement and routing.

F. IO Pins Allocation

SMC JPR focuses on frame sharing within the CLB area.
As explained in our groups previous work [8], pins allocated
at the top and the bottom side of the Xilinx Virtex FPGA are
configured by the frames controlling the CLB area. Only IO
pins located on the left and right hand sides of the chip are
controlled by a dedicated set of frames and therefore do not
influence CLB frame content. SMC JPR uses IO pins on the
side of the chip first, and then top/bottom IO pins if
necessary.

IO pin allocation is usually defined prior to FPGA design
flow and is yet another design constraint, although the
approach of using floating IO pins shows benefits of
combining certain IO pin allocation with configuration
interface architecture to achieve a better frames sharing ratio.

G. Scalability Of The Approach

The presented SMC JPR approach has been tested for
two-context designs, but it can be extended to handle designs
with three or more contexts. Overall frames sharing ratio
with three contexts or more will depend on the netlists
similarity factor and is likely to decrease with increasing
number of contexts.

VII. CONCLUSIONS

Results from evaluation of the novel placement and
routing methodology outlined in this paper demonstrate the
feasibility of increasing the amount of shared configuration
between multiple context designs. As a consequence the
authors believe the approach offers potential for significantly
reducing FPGA reconfiguration latency. The ability to
transform netlist similarities into configuration data
similarities has been shown to work well for the difficult
case, where the configuration data frame consists of bits
controlling parts of different FPGA resources (IOB, CLB,
routing), as any modification to placement or routing applies
to a number of configuration frames at once. However, the
approach typically incurs a design performance penalty due
to an increase in critical path net delays. This would prevent
its application in high performance computation applications
however it offers an effective solution for applications where
seamless context switching and low power are the primary
performance criteria.

VIII. REFERENCES

[1] S. Hauck and A. DeHon, Eds., Reconfigurable Computing. The
Theory And Practice Of FPGA-Based Computation. Morgan
Kaufmann Publishers, 2008.

[2] J. Brown, D. Chen, I. Eslick, E. Tau, and A. DeHon, “DELTA:
Prototype for a first-generation dynamically programmable gate
array”, in Transit Note 112. MIT Artificial Intelligence Laboratory,
1994.

[3] S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A time-
multiplexed FPGA”, in IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM), 1997, pp. 22–28.

[4] M. Vasilko and D. Ait-Boudaoud, “Optically Reconfigurable
FPGAs: Is This a Future Trend?” in Field-Programmable Logic.
Smart Applications, New Paradigms and Compilers, R. W.
Hartenstein and M. Glesner, Eds. Springer, September 1996, pp. 270–
279.

[5] Z. Li and S. Hauck, “Configuration compression for Virtex FPGAs”,
in Proceedings of the IEEE Symposium for Custom Computing
Machines, April 2001.

[6] S. Hauck, Z. Li, and E. Schwabe, “Configuration compression for the
Xilinx XC6200 FPGA”, in IEEE Symposium on FPGAs for Custom
Computing Machines, April 1998, pp. 138–146.

[7] L. Sterpone, M. Violante, A. Molino, F. Vacca, and G. Masera, “A
new approach to compress the configuration information of
programmable devices”, in Proceedings of the DATE2006: IEEE
Design, Automation and Test in Europe Conference, 2006.

[8] P. Stepien and M. Vasilko, “On Feasibility of FPGA Bitstream
Compression During Placement and Routing”, in Proceedings of
2006 International Conference on Field Programmable Logic and
Applications (FPL), 2006, pp. 749–752.

[9] M. Dyer, C. Plessl, and M. Platzner, “Partially Reconfigurable Cores
for Xilinx Virtex”, in Field-Programmable Logic and Applications
(FPL), M. Glesner, P. Zipf, and M. Renovell, Eds. Springer,
September 2002, pp. 292–301.

[10] PACT XPP Technologies, “http://www.pactcorp.com”, 2003, PACT
XPP.

[11] J. Helmschmidt, E. Schuller, P. Rao, S. Rossi, S. di Matteo, and R.
Bonitz, “Reconfigurable Signal Processing in Wireless Terminals,” in
Designers’ Forum (DATE ’03), D. Sciuto and D. Verkest, Eds. IEEE
Computer Society, March 2003, pp. 244–249.

[12] N. P. Sedcole, P. Y. K. Cheung, G. A. Constantinides, and W. Luk,
“A Reconfigurable Platform for Real-Time Embedded Video Image
Processing”, in Field-Programmable Logic and Applications, P. Y. K.
Cheung, G. A. Constantinides, and J. T. de Sousa, Eds. Springer,
September 2003, pp. 606–615.

[13] Xilinx, “JBits SDK”, 2000.
http://www.xilinx.com/products/jbits/index.htm

[14] Xilinx, “Virtex 2.5V Field Programmable Gate Arrays, Product
Specification”, Data sheet DS003, 2 April 2001.

[15] Xilinx, “Virtex FPGA Series Configuration and Readback”,
Application Note XAPP138, 11 July 2002.

[16] Xilinx, “Virtex Series Configuration Architecture User Guide”,
Application Note XAPP151, 27 September 2000.

[17] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ICT’99
benchmarks and first ATPG results”, IEEE Design & Test of
Computers, vol. 17, no. 3, pp. 44–53, July-August 2000.

[18] Opencores, “http://www.opencores.org”, 2005.

[19] KDevelop, “Kdevelop3”, http://www.kdevelop.org/.

[20] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for
Deep-Submicron FPGAs”, Kluwer Academic Publishers, 1999.

