
Minimum maximum reconfiguration cost problem

 Raouf Senhadji-Navarro · Ignacio Garcia-Vargas

Abstract This paper discusses the problem of minimizing the reconfiguration cost of
some types of reconfigurable systems. A formal definition of the problem and a proof
of its NP-completeness are provided. In addition, an Integer Linear Programming
formulation is proposed. The proposed problem has been used for optimizing a design
stage of Finite Virtual State Machines.

Keywords Combinatorial optimization · Computational complexity ·
NP-completeness · Graph · Integer Linear Programming · Reconfigurable computing

1 Introduction

The concept of reconfigurable computing goes back to 1960 when Gerald Estrin pro-
posed a computer made of a standard processor and an array “reconfigurable”
hardware [3]. However, the lack of adequate reprogrammable logic chips has delayed
its devel-opment for more than three decades. Nowadays, the increasing performance
(in terms of logic density, speed and power consumption) of the current
programmable devices, like Field Programmable Gate Arrays (FPGAs), has allowed
the development of a wide range of reconfigurable applications.

The conventional computing architectures based on application specific integrated
circuits and programmable general purpose processors suffer for the lack of
flexibility of the dedicated hardware and limited performance of the software
solutions, respec-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286564915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-015-0887-2&domain=pdf

tively. Reconfigurable computing is a promising approach to overcome the traditional
trade-off between flexibility and performance [5,7].

However, there are some challenges that must be overcome to develop efficient
applications for reconfigurable computing systems. One of these challenges is the lack
of formal models and methodologies for design automation of dynamically reconfig-
urable systems [1,2]. One of the most critical problems that the designer faces is to min-
imize the reconfiguration cost with the goal to achieve an optimal performance [10].

In this paper, we have modeled the problem of minimizing the reconfiguration cost
of some types of reconfigurable systems. We prove that this problem is NP-complete.
We also propose an Integer Linear Programming (ILP) formulation for this problem.
We have used the proposed problem for optimizing a design stage of Finite Virtual
State Machines (FVSMs) [11].

The remainder of this letter is organized as follows. We provide a formal definition
of the proposed problem in Sect. 2 and its NP-Completeness is proved in Sect. 3. The
Integer Linear Programming (ILP) formulation is presented in Sect. 4. Experimental
results of the ILP formulation is shown in Sect. 5. Finally, a practical application is
shown in Sect. 6.

2 Problem statement

A reconfigurable system is composed of a set of reconfigurable elements (REs) whose
functional behavior can be changed in order to adapt the functionality of the system
to different execution contexts. Let us call functionality the functional behavior that
can be implemented in a single RE. Each execution context can be modeled as a set of
functionalities. The functionalities implemented by all REs of the system for an execu-
tion context is called an instance of the reconfigurable system. Given a reconfigurable
system with n REs, the set of instances related to the different execution contexts is
called n-implementation. The changes of execution contexts can be modeled as an
undirected graph, called execution context graph, where vertices represent execution
contexts and edges connect execution contexts adjacent in time.

We define an Homogeneous Reconfigurable System (HRS) as a reconfigurable sys-
tem composed by a set of identical REs that verify the following three properties. First,
all REs can implement the same functionalities. Second, the behavior of the HRS only
depends on the functionalities of their REs but not on the particular assignment of
functionalities to REs. Third, those REs that are not required by a particular execution
context can implement any functionality without affecting the behavior of the HRS.

In a HRS, when the execution context changes, those REs that already implement
a functionality required by the new execution context do not need to be reconfigured.
So, the reconfiguration cost is calculated as the number of REs that must be modified.
The reconfiguration cost in the worst case determines the performance of the HRS;
so, the maximum reconfiguration cost must be minimized. When an execution context
requires less REs than available, the reconfiguration cost can be reduced if the unused
REs are exploited for implementing some functionalities of the next execution context.

A classical reconfigurable computing architecture composed by a general-purpose
processor and a set of identical Coarse-Grained Reconfigurable Processing Elements

(CGRPEs) connected by a bus is a HRS. The general-purpose processor also acts as
reconfiguration controller [7]. FPGAdevices (or different areas of a sameFPGAdevice
when dynamic partial reconfiguration [8] is used) are classical examples of CGRPE.
Computer applications require the reconfiguration of CGRPEs for accelerating com-
putationally intensive tasks. For this purpose, CGRPEs implement different function-
alities such as digital filter banks, floating-point coprocessors, cryptographic coproces-
sors, etc. The functionalities required by the application in each period of time are the
different execution contexts. In each execution context, the general-purpose processor
reconfigures and uses the needed CGRPEs. The reconfiguration process requires to
transfer the reconfiguration data of themodified CGRPEs. The reconfiguration latency
(i.e., the transfer time of the reconfiguration data) directly depends on the number of
modifiedCGRPEs. In reconfigurable real-time applications, the reduction of the recon-
figuration latency is key to improve the response time of the system. In order to meet
timing constraints, the reconfiguration latency in the worst case must be minimized.

A HRS is modeled as a 3-tuple (F ,G, R) where F is a set of functionalities;
G = (V, E), an execution context graph; and R = {R1, R2, . . . , R|V |}, a collection of
execution contexts where R j ⊆ F for all R j ∈ R. Each vertex v j ∈ V represents the
execution context R j . Let S = (F ,G, R) be aHRS. Let us define an n-implementation
of S as a collection of instances I = {I1, I2, . . . , I|V |}where I j ⊆ F such that R j ⊆ I j
and |I j | = n for all I j ∈ I . Given an n-implementation I , let us define the reconfigura-
tion cost between two instances Ii , I j ∈ I as δ(Ii , I j) = n−|Ii∩I j |. Note that δ(Ii , I j)
represents the number of functionalities in which Ii differs from I j (or I j from Ii). Let
us define the maximum reconfiguration cost of I as �(I) = max{vi ,v j }∈E δ(Ii , I j).
The MinimumMaximum Reconfiguration Cost (MMRC) problem consists in finding
an n-implementation I of a HRS with a minimum �(I).

3 NP-completeness

In order to proof theNP-completeness of theMMRCproblem,we formulate the related
decision problem as follows.

Minimum Maximum Reconfiguration Cost Decision Problem (MMR-
CDP)
INSTANCE: Reconfigurable system S = (F ,G, R), positive integer n, positive
integer K ≤ n.
QUESTION: Is there an n-implementation of Swith amaximum reconfiguration
cost less or equal to K ?

It is easy to see that MMRCDP ∈ N P since a nondeterministic algorithm needs
only to guess an n-implementation and check in polynomial time if its maximum
reconfiguration cost is less or equal to K . We prove that MMRCDP ∈ NP-complete
by a reduction from 3SAT [4,9]. The 3SAT can be enunciated as follows.

3- Satisfiability (3SAT)
INSTANCE: Collection C = {c1, c2, . . . cm} of clauses on a finite set U of
boolean variables such that |ci | = 3 for 1 ≤ i ≤ m.
QUESTION: Is there a truth assignment for U that satisfies all clauses in C ?

Given an arbitrary instance of 3SAT with a collection C = {c1, c2, . . . cm} of
clauses on a finite setU of boolean variables, we shall construct a HRS S = (F ,G, R)

such that there exists a 4-implementation of S with a maximum reconfiguration cost
less or equal to K = 2 if and only if C is satisfiable. We construct the HRS by
performing the following steps:

1. Given a collection of clauses C , let us define H(C) as a maximal subset of clauses
of C which verifies that no pair of clauses of H(C) are defined over exactly the
same set of variables. Note that the clauses in H(C) can not share three variables.
Let us define h : C → Z

+ in such a way that for any ck ∈ C , ch(ck) is the clause
of H(C) defined over exactly the same variables that ck .

2. Let us define the set of functionalities F = {X, Y, Z} ∪ ⋃|U |
i=1{Ti , Fi }. The func-

tionalities Ti and Fi are called truth functionalities of the variable ui and represent
a truth-setting for ui where Ti and Fi denote the setting of true (T) and false
(F) values, respectively. The functionalities X , Y , and Z will be used to impose
restrictions on the reconfiguration cost between instances.

3. Let us construct the collection of execution contexts R as follows:
(a) An execution context RV

j is created for each c j ∈ C . Given a clause
c j = {l1, l2, l3} ∈ C where li is a literal over uwi ∈ U for i = 1, 2, 3, let
us define RV

j = {X, f1, f2, f3}, where

fi =
{
Twi if li = uwi

Fwi if li = ūwi

(1)

Note that RV
j contains the truth functionalities that represent the truth-setting

for the variables of c j that satisfies the literals of c j .

(b) Execution contexts RC1
j , RC2

j , and RC3
j are created for each c j ∈ H(C). Given

a clause c j = {l1, l2, l3} ∈ H(C), where li is a literal over uwi ∈ U for

i = 1, 2, 3, let us define RCk
j = {Tw1 , Fw1 , Tw2 , Fw2 , Tw3 , Fw3}\{Twk , Fwk }

for k = 1, 2, 3.
(c) An execution context RU

j = {X} is created for each c j ∈ H(C). In any 4-

implementation I of S with �(I) ≤ 2, the instance related to RU
j will contain

the truth functionalities that represent a truth-setting for the variables of c j that
satisfies C .

(d) Execution contexts RU
j,k and RC

j,k are created for each {c j , ck} ∈ H(C)×H(C)

with j �= k such that c j and ck share two variables. Let u p and uq be the shared
variables. Let us define RU

j,k = {Y, Z} and RC
j,k = {Tp, Fp, Tq , Fq}. In any 4-

implementation I of S with�(I) ≤ 2, the instance related to RU
j,k will contain

the truth functionalities that represent a truth-setting for the shared variables
that satisfies C .

4. Let us construct the execution context graph G = (V, E) as follows. For each
created execution context, a vertex v ∈ V is created. The vertices denoted by V V

j ,

VC1
j , VC2

j , VC3
j , VU

j , VU
j,k , and V

C
j,k represent the execution contexts R

V
j , R

C1
j , RC2

j ,

RC3
j , RU

j , R
U
j,k , and RC

j,k , respectively. The set of edges E is created as follows:

(a) Edges {VC1
j , VU

j }, {VC2
j , VU

j } and {VC3
j , VU

j } are created for each c j ∈ H(C).
In any 4-implementation I of Swith�(I) ≤ 2, these edges allow to ensure that
the instance related to RU

j will contain a truth functionality of each variable
of c j .

(b) An edge {VU
j , VU

k } is created for each {c j , ck} ∈ H(C) × H(C) with j �= k
such that c j and ck share exactly one variable. In any 4-implementation I of
S with �(I) ≤ 2, this edge allows to ensure that the instances related to RU

j

and RU
k will contain the same truth functionality of the shared variable.

(c) Edges {VU
j , VU

j,k}, {VU
j,k, V

U
k }, and {VU

j,k, V
C
j,k} are created for each RU

j,k ∈ R.
In any 4-implementation I of S with �(I) ≤ 2, these edges allow to ensure
that the instances related to RU

j and RU
k will contain the same truth function-

alities of the two shared variables (note that RU
j,k is created only if c j and ck

share two variables).
(d) For each c j ∈ C with h(c j) = k, an edge {V V

j , VU
k } is created. In any 4-

implementation I of S with �(I) ≤ 2, this edge allows to ensure that instance
related to RU

k will contain at least one truth functionality that represent a truth-
setting that satisfies c j .

Figure 1 shows an example of the proposed transformation. Figure 1a shows the
given instance of 3SAT; Fig. 1b, the execution contexts (steps from 1 to 3 described
above); and Fig. 1c, the execution context graph (step 4).

It is easy to see how the construction can be accomplished in polynomial time.
Supposing that m represents the number of clauses of C , the time complexity of the
procedure is O(m2) due to the fact that it only needs to consider the different pairs of
clauses of C . All that remains to be shown is that C is satisfiable if and only if there
exists a 4-implementation I of S with �(I) ≤ 2.

Firstly, we will prove that there exists a 4-implementation I of S with �(I) ≤ 2
if C is satisfiable. Given any satisfying truth assignment t : U → {T, F}, let us
create the collection of instances I from R as follows. The instances denoted by I Vj ,

I C1
j , I C2

j , I C3
j , IUj , I

U
j,k , and I Cj,k are created from the execution contexts RV

j , R
C1
j ,

RC1
j , RC2

j , RC3
j , RU

j , R
U
j,k , and RC

j,k , respectively. Initially, these instances contain the
same functionalities as the related execution contexts. Let us define b : U → F as
follows:

b(ui) =
{
Ti if t (ui) = T

Fi otherwise
(2)

Let us add {b(u p), b(uq), b(us)} ⊂ F to each IUj ∈ I where u p, uq , and us are the

variables of c j . Let us add {b(u p), b(uq)} ⊂ F to each IUj,k ∈ I where u p and uq are
the variables shared between c j and ck . For all Ri ∈ R, the related instance Ii ∈ I
verifies that Ri ⊆ Ii and |Ii | = 4. Thus, I is a 4-implementation.

We must prove that δ(Ii , I j) ≤ 2 for each pair of instances Ii , I j ∈ I such that Ii
and I j are related to adjacent execution contexts in G. Each edge of G belongs to one
of the following categories:

C = {c1, c2, c3, c4} ; U = {u1, u2, u3, u4, u5, u6}
c1 = {u1, u2, ū3} ; c2 = {ū1, u2, u3} ; c3 = {ū1, ū2, ū4} ; c4 = {u4, u5, u6}

(a)

Step 1 : H(C) = {c1, c3, c4}
Step 2 : F = {X,Y, Z, T1, F1, T2, F2, T3, F3, T4, F4, T5, F5, T6, F6}
Step 3 : R = RV

1 , RV
2 , RV

3 , RV
4 , R

C1
1 , R

C2
1 , R

C3
1 , R

C1
3 , R

C2
3 , R

C3
3 , R

C1
4 , R

C2
4 , R

C3
4 , RU

1 , RU
3 , RU

4 , RU
1,3, R

U
1,3

Step 3a : RV
1 = {X, T1, T2, F3} ; RV

2 = {X,F1, T2, T3} ; RV
3 = {X, F1, F2, F4} ; RV

4 = {X, T4, T5, T6}
Step 3b : R

C1
1 = {T2, F2, T3, F3} ; R

C2
1 = {T1, F1, T3, F3} ; R

C3
1 = {T1, F1, T2, F2}

R
C1
3 = {T2, F2, T4, F4} ; R

C2
3 = {T1, F1, T4, F4} ; R

C3
3 = {T1, F1, T2, F2}

R
C1
4 = {T5, F5, T6, F6} ; R

C2
4 = {T4, F4, T6, F6} ; R

C3
4 = {T5, F5, T6, F6}

Step 3c : RU
1 = {X} ; RU

3 = {X} ; RU
4 = {X}

Step 3d : RU
1,3 = {Y,Z} ; RC

1,3 = {T1, F1, T2, F2}

(b)

V U
1

V C3
4

V U
3

V C3
1 V U

4V C3
3V C2

3V C2
1

V C2
4V C1

4

V C1
3V C1

1

V C
1,3 V V

4

V V
1 V V

2 V V
3V U

1,3

(c)

t(u1) = t(u2) = t(u5) = t(u6) = T

t(u3) = t(u4) = F

(d)

IU
1 = {X,T1, T2, F3} ; IU

3 = {X,T1, T2, F4}
I
U
4 = {X,F4, T5, T6} ; I

U
1,3 = {Y, Z, T1, T2}

(e)

Fig. 1 Example of transformation from 3SAT to MMRCDP: a clauses, b execution contexts, c execution
context graph, d a satisfying truth assignment for C , and e the equivalent 4-implementation (only the
instances that differ to the related execution contexts are shown)

– {VU
j , V V

j } ∈ E . By construction, I Vj contains X and three truth functionalities each
one representing a truth-setting that satisfies a different literal of c j . The instance
IUj contains X and at least one truth functionality that represent a truth-setting that
satisfies c j . As C is satisfiable, at least one of the literal of c j is satisfiable; so,
|IUj ∩ I Vj | ≥ 2 and thus δ(IUj , I Vj) ≤ 2.

– {VU
j , VCi

j } ∈ E for i = 1, 2, 3. By construction, each I Ci
j contains all possi-

ble truth functionalities of two variables of c j . The instance IUj contains X and
the truth functionalities given by the function b for the three variables of c j . So,

|IUj ∩ I Ci
j | = 2 and thus δ(IUj , I Ci

j) = 2 for i = 1, 2, 3.

– {VU
j , VU

k } ∈ E . This edge is created when c j and ck share a unique variable. The

instances IUj and IUk only share X and the truth functionality given by the function

b for the shared variable. So, |IUj ∩ IUk | = 2, and thus, δ(IUj , IUk) = 2.

– {VU
j , VU

j,k} ∈ E . This edge is created when c j and ck share exactly two variables.

The instances IUj and IUj,k only share the truth functionalities given by the function

b for the shared variables. So, |IUj ∩ IUj,k | = 2 and thus, δ(IUj , IUj,k) = 2.

– {VC
j,k, V

U
j,k} ∈ E . By construction, I Cj,k contains all possible truth functionalities

of the two shared variables. The instance IUj,k contains the truth functionalities

given by the function b for the two shared variables. So, |I Cj,k ∩ IUj,k | = 2 and thus

δ(I Cj,k, I
U
j,k) = 2.

We conclude that �(I) = 2. Conversely, we will prove that C is satisfiable if there
exists a 4-implementation I of S with �(I) ≤ 2. Previously, we prove some lemmas.

Lemma 1 Let S = (F ,G, R) be a HRS obtained from a 3SAT instance and let I
be a 4-implementation of S with �(I) ≤ 2. Then, for all IUj ∈ I , there do not exist

Tr , Fr ∈ F such that {Tr , Fr } ⊂ IUj .

Proof By contradiction, let us assume that there exit Tr , Fr ∈ F such that {Tr , Fr } ⊆
IUj ; so, as X ∈ RU

j and RU
j ⊆ IUj , {X, Tr , Fr } ⊆ IUj . By construction, there

exist RCi
j ∈ R such that {X, Tr , Fr } ∩ RCi

j = ∅ and |RCi
j | = 4. Therefore,

{X, Tr , Fr } ∩ I Cr
j = ∅ and so IUj ∩ I Cr

j ⊆ IUj \{X, Fr , Tr }. Then |IUj ∩ I Ci
j | ≤

|IUj \{X, Fr , Tr }| = 1 and therefore δ(IUj , I Ci
j) > 2 which implies a contradiction. �

Lemma 2 Let S = (F ,G, R) be a HRS obtained from a 3SAT instance with a
collection C of clauses on a finite set U of boolean variables and let I be a 4-
implementation of S with �(I) ≤ 2. If c j ∈ H(C) is defined over u p, uq , us ∈ U
then IUj = {X, f p, fq , fs} where fi ∈ {Ti , Fi }.
Proof Since �(I) ≤ 2, δ(IUj , I Ci

j) ≤ 2 for i = 1, 2, 3; therefore, |IUj ∩ I Ci
j | ≥ 2 for

i = 1, 2, 3. By construction, there exists a RCi
j ∈ R such that RCi

j = {Tp, Fp, Tr , Fr }
where r = q or r = s and so, I Ci

j = {Tp, Fp, Tr , Fr }. By contradiction, let us assume

that {Tp, Fp}∩ IUj = ∅; so, IUj ∩ I Ci
j ⊆ I Ci

j \{Tp, Fp} = {Tr , Fr }. As |IUj ∩ I Ci
j | ≥ 2,

{Tr , Fr } ⊆ IUj which implies a contradiction byLemma1. So, fr ∈ IUj for all variables

ur ∈ c j where fr = {Tr , Fr }. Since RU
j = {X} by construction, IUj = {X, f p, fq , fs}.

�

Lemma 3 Let S = (F ,G, R) be a HRS obtained from a 3SAT instance and let I be
a 4-implementation of S with �(I) ≤ 2. For each pair IUj , IUk ∈ I with j �= k, there

do not exist Tr , Fr ∈ F such that {Tr , Fr } ⊂ IUj ∪ IUk .

Proof Let c j and ck be the clauses of a 3SAT instance related to IUj and IUk , respec-
tively. The proof is divided into the following cases:

– c j and ck do not share variables. Let u p be a variable of c j . By Lemma 1,
{Tp, Fp} �⊂ IUj . As c j and ck do not share variables, ck is not defined over u p. So,

it is follows from Lemma 2 that {Tp, Fp} ∩ IUk = ∅. So, {Tp, Fp} �⊂ IUj ∪ IUk for
any non-shared variable u p.

– c j and ck share a unique variable u p . Let u p, uq , and ur be the variables of c j and let
u p, us , and ut be the variables of ck where s �= q, r and t �= q, r . By contradiction,
let us assume that Tp ∈ IUj and Fp ∈ IUk . By Lemma 2, IUj = {X, Tp, fq , fs}
and IUk = {X, Fp, fr , ft } where fi ∈ {Ti , Fi }, then IUj ∩ IUk = {X}. Since
|IUj ∩ IUk | < 2, we have δ(IUj , IUk) > 2 which implies a contradiction because

�(I) ≤ 2. So, {Tp, Fp} �⊂ IUj ∪ IUk .

– c j and ck share two variables u p and uq . Firstly, we prove that X /∈ IUj,k . By

construction, RU
j,k = {Y, Z}, {X, Y, Z} ∩ RC

j,k = ∅, and |RC
j,k | = 4. There-

fore, {Y, Z} ⊂ IUj,k and {X, Y, Z} ∩ I Cj,k = ∅; so, I Cj,k ∩ IUj,k ⊆ IUj,k\{Y, Z}.
Since �(I) ≤ 2, we have 2 = |IUj,k\{Y, Z}| ≥ |I Cj,k ∩ IUj,k | ≥ 2 which implies

I Cj,k ∩ IUj,k = IUj,k\{Y, Z}. Then X /∈ IUj,k because X /∈ I Cj,k .

By Lemma 2, IUj = {X, f p, fq , fr } and IUk = {X, f ′
p, f ′

q , fs} where fi , f ′
i ∈

{Ti , Fi } and r �= s. As {Y, Z} ∩ IUj = ∅, IUj ∩ IUj,k ⊆ IUj,k\{Y, Z}. Similarly, as

{Y, Z} ∩ IUk = ∅, IUk ∩ IUj,k ⊆ IUj,k\{Y, Z}. Since �(I) ≤ 2, |IUj ∩ IUj,k | ≥ 2 and

|IUj,k ∩ IUk | ≥ 2 which implies that IUj ∩ IUj,k = IUj,k ∩ IUk = IUj,k\{Y, Z}. Therefore,
if X /∈ IUj,k then IUj,k\{Y, Z} ⊂ IUj ∩ IUk ; so, |IUj ∩ IUk | > |IUj,k\{Y, Z}| = 2 which

implies that { f p, fq} = { f ′
p, f ′

q}. So, {Tp, Fp} �⊂ IUj ∪IUk and {Tq , Fq} �⊂ IUj ∪IUk .

Note that the case of three shared variables is not considered because, by construc-
tion, RU

j (and so IUj) is created only if c j ∈ H . �

The above lemmas allow us to define a truth assignment function t : U → {T, F}

as follows:

t (u j) =
{
T if Tj ∈ IUk for all IUk ∈ I such that u j ∈ ck
F if Fj ∈ IUk for all IUk ∈ I such that u j ∈ ck

(3)

All that remains to be shown is that t satisfies C . By construction, each truth
functionality of RV

j represents a truth-setting that satisfies c j and, since |RV
j | = 4,

I Vj = RV
j . For all c j , we have δ(IUh(c j)

, I Vj) ≤ 2, then we have |IUh(c j)
∩ I Vj | ≥ 2,

hence there exists at least a f p ∈ {Tp, Fp} ⊂ F such that f p ∈ IUh(c j)
∩ I Vj . Then

f p ∈ I j
V which implies that the truth value t (u p) satisfies c j . So, t satisfies C .

It is proved that C is satisfiable if and only if there exists a 4-implementation I of S
with �(I) ≤ 2. In the example of transformation, Fig. 1d, and e show a satisfying truth
assignment for C and the equivalent 4-implementation I , respectively. We conclude
that MMRC problem is NP-complete.

4 Integer Linear Programming formulation

Let S = (F , G, R) be a HRS where F = { f1, f2, . . . , f p} is a set of functionalities;
G = (V, E), an execution context graph; and R = {R1, R2, . . . , R|V |}, a collection of
execution contexts. Let I = {I1, I2, . . . , I|V |} be a n-implementation of S. We define
the sets of binary variables xi, j ∈ {0, 1} and yi, j,k ∈ {0, 1} as follows:

xi, j =
{
1 if fi ∈ I j ,

0 otherwise.
i = 1, . . . , p; j = 1, . . . , |V | (4)

yi, j,k =
{
1 if fi ∈ I j ∩ Ik,

0 otherwise.
i = 1, . . . , p; j, k = 1, . . . , |V | (5)

Then, the MMRC problem can be formulated in the following way:

minimize m (6)

s.t. xi, j = 1 ∀i, j | fi ∈ R j (7)
p∑

i=1

xi, j = n j = 1, . . . , |V | (8)

2yi, j,k ≤ xi, j + xi,k ≤ 1 + yi, j,k i = 1, . . . , p; j, k = 1, . . . , |V | (9)

m ≥ n −
p∑

i=1

yi, j,k ∀ j, k|{v j , vk} ∈ E (10)

The constraint (7) and (8) ensure that the I is an-implementationof S. The constraint
(9) ensures that the variable y is consistent with the definition (5). The reconfiguration
cost δ(I j , Ik) can be calculated as n−∑p

i=1 yi, j,k . So, the constraint (10) ensures that
m is an upper bound for the reconfiguration cost between any pair of instances corre-
sponding to adjacent execution contexts. So, the minimum maximum reconfiguration
cost of I can be obtained by minimizing m, as shown in (6).

5 Experimental results

The proposed ILP formulation has been solved using the solver Gurobi 4.6 [6]. The
experiments have been executed in an Intel Xeon X5660 (4 cores) at 2.80 GHz with
16 GB of RAM running Linux 64 bits (Red Hat Enterprise Linux 6). The test data
set consists on 50 randomly generated MMRC instances. The experiments have been
executed with a time limit of 7200 s. Table 1 summarizes the obtained results. We
refer to the problem instances solved to optimality as “solved instances”; on the other
hand, we refer to the instances that could not be solved within the imposed time limit
as “non-solved instance”. For each problem instance, the table shows the size of the
n-implementation (n), the number of functionalities (|F |), the number of edges of the
execution context graph (|E |), the number of vertices of the execution context graph
(|V |), the mean of the cardinality of the execution contexts (“C-mean”), the standard
deviation of the cardinality of the execution contexts (“C-std”), the number of the
average final percentage optimality gap (“Gap”), and the amount of time in seconds
spent by solved instances (“Time”). The rows of the table are sorted in increasing order
of |E |. As can be observed, there is a trend of increasing the time with the increasing
of the number of edges. The ILP formulation found an optimal solution in the 76 %
of the cases (38 instances). The average time for these cases was 605 s.

Table 1 Experimental results
n |F | |E | |V | C-mean C-std Gap Time

54 134 55 22 24.77 16.35 – 0.60

33 123 57 21 13.81 8.26 – 3.88

48 100 59 25 24.64 14.27 – 0.48

21 90 93 26 12.77 5.85 – 0.35

48 160 102 30 21.77 14.66 – 2.57

47 148 105 33 14.79 9.63 – 49.36

38 79 107 35 19.80 10.54 – 1.70

46 94 148 40 17.07 10.33 6.67 –

59 187 158 35 24.94 15.51 – 49.72

6 22 194 43 3.30 1.57 – 0.09

53 134 203 49 20.04 14.74 – 31.06

31 143 221 47 9.96 6.60 6.25 –

34 92 261 49 13.90 7.23 – 153.77

30 78 264 52 13.69 8.04 – 7.17

34 114 270 58 13.59 8.69 – 157.73

8 31 326 53 4.32 2.05 – 0.53

45 131 347 74 14.88 11.94 – 72.31

58 237 394 57 30.60 15.90 – 98.46

34 142 433 60 16.82 8.87 – 22.51

19 67 458 59 6.34 4.04 – 776.90

22 68 503 80 10.94 5.71 – 155.44

57 221 550 69 23.70 15.54 – 1238.63

18 66 562 84 9.52 5.31 – 9.33

6 10 601 77 3.06 1.57 – 2.53

8 14 633 73 4.63 2.31 – 0.16

52 169 638 70 27.70 13.38 – 551.91

50 204 645 75 21.59 12.12 3.12 –

44 188 687 92 19.96 12.17 – 174.31

57 145 870 87 24.00 14.54 18.75 –

36 86 891 115 14.88 8.97 5.00 –

48 96 926 87 19.63 11.26 17.39 –

49 186 980 91 19.36 11.90 9.38 –

15 54 1038 130 6.92 3.86 – 102.23

21 96 1092 132 9.76 5.69 – 247.30

40 183 1125 122 16.16 10.62 3.45 –

54 221 1131 96 26.83 16.10 – 2046.31

26 110 1146 104 11.95 7.52 – 379.87

33 147 1333 105 15.13 8.49 – 2171.91

37 153 1362 133 16.79 10.06 – 2595.82

31 83 1440 143 14.99 8.59 5.00 –

6 22 1478 120 3.50 1.56 – 0.68

38 68 1657 115 20.44 10.52 – 4626.96

Table 1 continued
25 105 1679 132 13.29 6.54 – 2090.29

35 53 1695 149 16.51 10.24 – 4626.65

18 77 1697 121 6.74 4.27 6.67 –

11 46 1827 129 5.49 3.13 – 70.51

58 171 2123 134 20.67 13.40 – 191.80

23 72 2123 136 10.40 6.17 5.56 –

35 106 2662 146 13.80 8.78 – –

43 197 2667 145 16.84 11.49 – 280.11

The average “Gap” for the non-solved instances was 7.93 % (one non-solved
instance has been excluded from the average because the solver could not calculate
the root relaxation solution within the imposed time limit; see the next-to-last row of
Table 1).

6 Practical application

Finite State Machines (FSMs) are traditionally implemented in FPGA by using
flip-flops and Look-up-Tables (LUTs). However, there is an increasing interest for
implementing FSMs using memory resources because the current FPGAs include a
very large number of these resources. In memory-based implementations, the transi-
tion and output functions are mapped to a conventional memory whose depth depends
on the number of FSM inputs and states. FSMs with a large number of states require
large memories that are inefficiently implemented in FPGAs [12].

FVSM is a new model of Finite State Machine (FSM) proposed with the aim of
improving the performance of memory-based implementations of FSMs with a large
number of states [11]. The key idea is that only a subset of the states is needed during
a period of time. Following this idea, an FVSM equivalent to a given FSM can be
obtained by decomposing the FSM into different subFSMs (this process is called vir-
tualization). The FVSMarchitecture presented in [11] is a two-levelmemory hierarchy
that include a main memory and a secondary memory. The main memory implements
a generic memory-based FSM that contains the active subFSM. When the active sub-
FSM must be changed for another one (called update process), the required states are
transferred from the secondary memory to the main memory without stopping or alter-
ing the FSM operation. The active subFSM generates the FSM output and controls
the transfer between memories.

The performance of a FVSM implementation mainly depends on the maximum
number of states that must be transfered between memories in an update process.
So, the maximum number of states in which two adjacent subFSMs differ must be
minimized. The MMRC problem have been used for this purpose. In this case, func-
tionalities (F) and execution contexts (Ri) represent states and subFSMs, respectively.
This procedure helps to obtain FVSM implementations with higher performance. Fig-
ure 2 shows an example. The FVSM shown in Fig. 2b is equivalent to the FSM shown

s1

s0

s3s2

s5
s4

s7

s6

s9s81/0

0/0

1/0

0/0

1/0

0/0

0/1

1/0

0/1

1/0

1/0 1/1

1/0

1/1

0/1

1/1 0/1

0/1
0/1

0/0

(a)

R1

R2 R3

R4

R5

s1

s0
s3s2

s5

s4

s7

s6

s9

s8

1/0

0/1

1/0

0/1
0/0

1/0 1/0

0/1

1/1

1/0

1/0

1/10/1

1/1

0/1

0/0

0/1

1/0

0/0

0/0

(b)

n = 4; F = {s0, s1, . . . , s9}
R1 = {s0, s7} ; R2 = {s1, s2, s8} ; R3 = {s3}

R4 = {s9} ; R5 = {s4, s5, s6}

R4
R5

R1

R2

R3

(c)

I1 = {s0, s7, s1, s6} ; I2 = {s1, s2, s8, s0} ; I3 = {s3, s0, s6, s8}
I4 = {s9, s0, s7, s8} ; I5 = {s4, s5, s6, s0} ;

(d)

Fig. 2 Practical application: a FSM, b equivalent FVSM, c MMRCP problem, and d optimal solution with
�(I) = 2

in Fig. 2a. The slashed arcs denote update processes. Figure 2c shows the MMRC
problem related to the FVSM. The number of states stored on main memory must be
power of 2, then n = 4. Figure 2d shows an optimal solution with �(I) = 2.

References

1. Cardoso, J.M.P., Diniz, P.C., Weinhardt, M.: Compiling for reconfigurable computing: a survey. ACM
Comput. Surv. 42, 13:1–13:65 (2010)

2. El-Araby, E., El-Ghazawi, T., Gaj, K.: A system-level design methodology for reconfigurable
computing applications. In: IEEE International Conference on Field-Programmable Technology,
2005. Proceedings, pp. 311–312 (2005)

3. Estrin, G.: Organization of computer systems: the fixed plus variable structure computer. Papers pre-
sented at the May 3–5. 1960, western joint IRE-AIEE-ACM computer conference, IRE-AIEE-ACM
’60 (Western), pp. 33–40. ACM, New York, NY, USA (1960)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness.
W. H. Freeman and Co., New York (1979)

5. Gokhale, M.B., Graham, P.S.: Reconfigurable Computing: Accelerating Computation with Field-
Programmable Gate Arrays. Springer, Berlin (2005)

6. Gurobi Optimization, I.: Gurobi optimizer referencemanual (2012). http://www.gurobi.com.Accessed
3 Apr 2015

7. Hauck, S., DeHon, A.: Reconfigurable Computing: The Theory and Practice of FPGA-Based
Computation. Morgan Kaufmann Publishers Inc., San Francisco (2007)

8. Kao, C.: Benefits of partial reconfiguration. Xcell, Fourth Quarter 2005. http://www.xilinx.com
(2005). Accessed 3 Apr 2015

9. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity
of Computer Computations, pp. 85–103. Plenum Press, USA (1972)

10. Raghuraman, K., Wang, H., Tragoudas, S.: Minimizing FPGA reconfiguration data at logic level. In:
7th International Symposium on Quality Electronic Design, 2006. ISQED ’06, pp. 219–224 (2006)

11. Senhadji-Navarro, R., Garcia-Vargas, I.: Finite virtual state machines. IEICE Transactions on
Information and Systems E95.D, pp. 2544–2547 (2012)

12. Senhadji-Navarro, R., Garcia-Vargas, I., Guisado, J.: Performance evaluation of RAM-based imple-
mentation of finite state machines in FPGAs. In: 19th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), pp. 225–228 (2012). doi:10.1109/ICECS.2012.6463760

http://www.gurobi.com
http://www.xilinx.com
http://dx.doi.org/10.1109/ICECS.2012.6463760

	Minimum maximum reconfiguration cost problem
	Abstract
	1 Introduction
	2 Problem statement
	3 NP-completeness
	4 Integer Linear Programming formulation
	5 Experimental results
	6 Practical application
	References

