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Figure 1. LUT-based implementation of a RAM 32x2: (a) block diagram and (b) schematic  
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Abstract— In this paper, we present a HDL description of a 
RAM with asymmetric port widths which allows read and 
write operations with different data size. This RAM is suitable 
for implementing run-time reconfigurable systems in FPGA. 
The proposed RAM specification has been tested with different 
target devices. 

I. INTRODUCTION

In spite of the idea of reconfigurable logic is not novel, 
the growing interest on reconfigurable systems in recent 
years have been motivated basically by the partial dynamic 
reconfiguration capabilities of new Field Programmable Gate 
Array (FPGA) devices [1, 2]. The partial dynamic 
reconfiguration allows reprogram selected areas of an FPGA 
after its initial configuration, while the remainder areas 
continue in operation. This solution presents some 
disadvantages: the reprogramming cost (e.g. size of 
reconfiguration data or reconfiguration latency) is high, the 
reconfiguration depends on the placement and routing of the 
circuit and the reconfiguration sequences must be generated 
as a technology-dependent bitstreams. Moreover, not all 
FPGA devices support dynamic reconfiguration.  

An alternative scheme to design reconfigurable systems 
is to use memory-based implementations. As the 
functionality of the circuit is defined by the RAM content, it 

can be changed by reloading the RAM. This alternative 
saves the technology dependence problem mentioned above 
due to the independence of the RAM content and its 
implementation. In the last years, different models of 
Reconfigurable Finite State Machines (RFSM) using 
memory-based implementation have been proposed [1, 2, 3]. 
These RFSM implementations require dual-port capabilities: 
one read and one write port. The first one is used for normal 
machine operation and the second one for the 
reconfiguration process. The width of the read port is 
determined by the FSM description and depends on the 
number of outputs and states [4]. However, the write port 
width depends on the architecture of the reconfigurator 
system, e.g. a microprocessor, and the strategy of 
reconfiguration (to modify a state, a transition, an output, 
etc.). Thus, the data size of read and write operations must be 
different. The availability of RAM with asymmetric port 
widths (asymmetric RAM) is useful to implement 
memory-based reconfigurable systems. 

A RAM memory is implemented in FPGA by using 
smaller memories connected via multiplexors and decoders. 
Fig. 1 shows an implementation on a Xilinx FPGA of a 
RAM with 32 words of two bits each using look-up tables 
(LUT). This manufacturer allows RAM implementation 
using either RAM blocks or LUTs configured as basic RAM 
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memories (distributed RAM). 

Usually, CAD tools inference RAM memories from HDL 
description, but the read and write port widths must be equal 
(symmetric RAM). This kind of memory is widely used in 
system-on-chip; however, it is not suitable for 
memory-based reconfigurable architectures. On the other 
hand, CAD tools allow architectural descriptions or provide 
GUI facilities to synthesize asymmetric RAMs. The Xilinx 
CoreGen tool [5] can be used to implement asymmetric 
RAMs using memory blocks. However, distributed RAM 
with asymmetric port widths can not be generated. 

The use of a specific HDL architectural description for 
each asymmetric RAM design is tedious and makes difficult 
its reusability and scalability. On the other hand, the GUI 
alternative presents some disadvantages: it is not adequate 
for script-based design flows, and it requires a separate tool 
to generate and regenerate the RAM. In addition, the 
technology-dependent implementation generated by tools 
like CoreGen may complicate the portability to different 
devices. 

To save these problems the authors present a generic 
VHDL description with the aim of easy the implementation 
of asymmetric RAMs. 

II. IMPLEMENTATION OF RAM WITH ASYMMETRIC
WIDTH PORTS

The proposed VHDL architectural description (called 
ASYMRAM) and the schematic are shown in Fig. 2 and 
Fig. 3, respectively. The ASYMRAM component can be 
used as symmetric and asymmetric RAM. The high-level 
entity consists of one decoder and a set of basic RAM 
components and multiplexors. The multiplexor and the 
decoder description use a generic VHDL behaviour 
description. The basic RAM component depends on the 
specific device. So, it must be described by the designer for 
each specific manufacturer using the appropriate primitive or 
VHDL behaviour description. This component models a 
dual-port RAM with a configurable depth and width. In 
order to support ASYMRAM initialization via signal, the 
basic RAM component must be designed with this feature. 

The RAM specification achieves a high degree of 
portability and flexibility by hiding the specific device 
architecture. Fig. 4 shows the basic RAM entity (Fig. 4-a) 
and different architectures for Xilinx FPGA devices: using 4-
input LUTs (Fig. 4-b), 6-input LUTs available in new 
Virtex-5 devices (Fig. 4-c), and SelectRAM blocks (Fig. 4-
d). Each case uses the appropriate available resource.  

III. EXPERIMENTAL RESULTS

With the aim of showing the feasibility and the usefulness 
of ASYMRAM, it has been implemented using Xilinx ISE 
7.1. We have tested ASYMRAM configured as both 
symmetric and asymmetric RAM with different target 
devices. 

entity asymram is 
  generic(  
   raw : natural:=13;  -- read address width 
   rdw : natural:=4;   -- read data width 
   waw : natural:=12;  -- write address width 
   wdw : natural:=8;   -- write data width 
   baw : natural:=12;  -- basic_ram address width 
   bdw : natural:=4;   -- basic_ram data width 
   init : bit_vector:="0" ); -- initial ram content 

  port(  
   clk : in std_logic; 
   we : in std_logic; 
   raddr : in std_logic_vector(raw-1 downto 0); 
   waddr : in std_logic_vector(waw-1 downto 0); 
   din : in std_logic_vector(wdw-1  downto 0); 
   dout : out std_logic_vector(rdw-1 downto 0)); 

end asymram; 

architecture architectural of asymram is 
 component basic_ram ... 
 component mux is ... 
 component dec is ... 

  ... 
  type bout_t is array (0 to 2**(raw-baw)*(rdw/bdw)-1) 
   of std_logic_vector(bdw-1 downto 0); 

  signal bout: bout_t; 
  type muxin_t is array (0 to rdw-1)  
   of std_logic_vector(2**(raw-baw)-1 downto 0); 

  signal muxin : muxin_t;    
  signal decout : std_logic_vector(2**(waw-baw)-1 downto 0); 
  signal we_i : std_logic_vector(2**(waw-baw)-1 downto 0);  
  type init_t is array (0 to (2**(raw-baw))*rdw-1)  
   of bit_vector(bdw*2**baw-1 downto 0); 

  function initialize_ram return init_t is 
   ... 

  end function initialize_ram; 
  constant init_i : init_t := initialize_ram; 
begin 
  BRAM0: for i in 0 to 2**(raw-baw)*(rdw/bdw)-1 generate 
   we_i(i*bdw/wdw) <= we and decout(i*bdw/wdw); 
   BRAM1: basic_ram  

 generic map( baw=>baw, bdw=>bdw, init=>init_i(i)) 
 port map( clk => clk, 
   we => we_i(i*bdw/wdw), 
   ra => raddr(raw-1 downto raw-baw), 
   wa => waddr(waw-1 downto waw-baw), 
   di => din( ((i mod (wdw/bdw)) + 1) * bdw - 1 

   downto (i mod (wdw/bdw)) * bdw), 
   do => bout(i)); 

  end generate BRAM0; 
  MUX0: if raw > baw generate 
   MUX1: for j in 0 to rdw-1 generate 

 MUX2: mux generic map( raw-baw ) 
   port map( inputs => muxin(j), 

 control => raddr(raw-baw-1 downto 0),  
 output => dout(j) ); 

   end generate MUX1; 
   WIRE0: for i in 0 to 2**(raw-baw)*(rdw/bdw)-1 generate 

 WIRE1: for j in 0 to bdw-1 generate 
   muxin( j+bdw*(i mod (rdw/bdw)) )( i*bdw/rdw ) 

 <= bout(i)(j); 
 end generate WIRE1; 

   end generate WIRE0; 
  end generate MUX0; 
  NULLMUX0: if raw<=baw generate 
   NULLMUX1: for i in 0 to rdw/bdw generate 

 dout((i+1)*bdw-1 downto i*bdw) <= bout(i); 
   end generate NULLMUX1;  

  end generate NULLMUX0; 
  DEC0: if waw>baw generate 
   DEC1: dec generic map( waw-baw ) 

 port map( inputs => waddr(waw-baw-1 downto 0), 
   outputs => decout ); 

  end generate DEC0; 
  NULLDEC0: if waw<=baw generate 
   decout <= (others=>'1'); 

  end generate NULLDEC0; 
end architectural;

Figure 2. ASYMRAM VHDL description 



As Xilinx do not provide HDL templates to infer 
asymmetric RAM [6], only symmetric RAMs with different 
depth have been synthesized in order to compare 
ASYMRAM with Xilinx HDL templates. For all test cases, 
the maximum operation frequency is the same in both 
implementations. However, the number of resources used 
differs: ASYMRAM spents less number of LUTs than the 
Xilinx HDL template for RAMs with more than 128 words 
(Fig. 5).  These differences are due to the decoding logic 
implementation. Fig. 6 shows the VHDL code of 
ASYMRAM decoder.  

IV. CONCLUSIONS

This paper presents a VHDL description of asymmetric 
RAM. The lack of VHDL templates or library components 
to generate asymmetric memories makes difficult its use in 
FPGA-based designs. This is especially interesting to 
develop memory-based reconfigurable systems. The 
asymmetric RAM has been designed to allow the portability 

to different devices and the use of different memory 
resources. The feasibility and the correctness of the proposed 
specification have been tested with different target devices. 
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Figure 3.  ASYMRAM schematic 
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entity basic_ram is 
  generic( baw: natural:=4; 

 bdw: natural:=1;  
 init: bit_vector:="0000000000000000" ); 

  port( clk: in std_logic; 
 we: in std_logic; 
 ra: in std_logic_vector( baw-1 downto 0 ); 
 wa: in std_logic_vector( baw-1 downto 0 ); 
 di: in std_logic_vector( bdw-1 downto 0 ); 
 do: out std_logic_vector( bdw-1 downto 0 )); 

end basic_ram; 

 (a) 
architecture architectural of basic_ram is 
begin   
 RAM16X1D_inst : RAM16X1D 
    generic map ( 

   INIT => init ) 
    port map ( 

   DPO => do(0),    -- Port B 1-bit data output 
   A0 => wa(0),     -- Port A address[0] input bit 
   ... 
   A3 => wa(3),     -- Port A address[3] input bit 
   D => di(0),      -- Port A 1-bit data input 
   DPRA0 => ra(0),  -- Port B address[0] input bit 
   ... 
   DPRA3 => ra(3),  -- Port B address[3] input bit 
   WCLK => clk,     -- Port A write clock input 
   WE => we );      -- Port A write enable input 

end architectural; 

 (b) 
architecture architectural of basic_ram is 
begin   
 RAM64X1D_inst : RAM64X1D 
    generic map ( 

   INIT => init ) 
    port map ( 

   DPO => do(0),    -- Port B 1-bit data output 
   A0 => wa(0),     -- Port A address[0] input bit 
   ... 
   A4 => wa(4),     -- Port A address[4] input bit 
   D => di(0),      -- Port A 1-bit data input 
   DPRA0 => ra(0),  -- Port B address[0] input bit 
   ... 
   DPRA4 => ra(4),  -- Port B address[4] input bit 
   WCLK => clk,     -- Port A write clock input 
   WE => we );      -- Port A write enable input 

end architectural; 

(c) 
architecture architectural of basic_ram is 
begin   
 RAMB16_S4_S4_inst : RAMB16_S4_S4 
    generic map ( 

   INIT_00 => init( 255 downto 0 ), 
   INIT_01 => init( 511 downto 256 ), 
   ... ) 

   port map ( 
   DOA => do,       -- Port A 4-bit Data Output 
   ADDRA => ra,     -- Port A 12-bit Address Input 
   ADDRB => wa,     -- Port B 12-bit Address Input 
   CLKA => clk,     -- Port A Clock 
   CLKB => clk,     -- Port B Clock 
   DIA => "0000",   -- Port A 4-bit Data Input 
   DIB => di,       -- Port B 4-bit Data Input 
   ENA => '1',      -- Port A RAM Enable Input 
   ENB => '1',      -- Port B RAM Enable Input 
   SSRA => '0',     -- Port A Synchronous Set/Reset Input 
   SSRB => '0',     -- Port B Synchronous Set/Reset Input 
   WEA => '0',      -- Port A Write Enable Input 
   WEB => we );     -- Port B Write Enable Input 

end architectural; 

(d) 
Figure 4. Basic RAM component description: (a) VHDL entity, (b) 4-LUT, 

(c) 6-LUT, and (d) SelectRAM 4Kx4

Figure 5. Area occupation of distributed RAM 2n×8: ASYMRAM vs 
Xilinx HDL template 

entity dec is 
generic( n: natural:=2 ); 
port(  
inputs: in std_logic_vector(n-1 downto 0); 

 outputs: out std_logic_vector(2**n-1 downto 0)); 
end dec; 

architecture behavioral of dec is 

function decode(inputs : std_logic_vector(n-1 downto 0))  
return std_logic_vector is 
 variable outputs : std_logic_vector(2**n-1 downto 0); 
begin 

  outputs := (others=>'0'); 
outputs( conv_integer(inputs) ) := '1'; 

  return outputs; 
 end decode; 

begin 
 outputs <= decode(inputs); 
end behavioral; 

Figure 6.  ASYMRAM decoder VHDL description 


