32 research outputs found

    Reconfigurable acceleration of genetic sequence alignment: A survey of two decades of efforts

    Get PDF
    Genetic sequence alignment has always been a computational challenge in bioinformatics. Depending on the problem size, software-based aligners can take multiple CPU-days to process the sequence data, creating a bottleneck point in bioinformatic analysis flow. Reconfigurable accelerator can achieve high performance for such computation by providing massive parallelism, but at the expense of programming flexibility and thus has not been commensurately used by practitioners. Therefore, this paper aims to provide a thorough survey of the proposed accelerators by giving a qualitative categorization based on their algorithms and speedup. A comprehensive comparison between work is also presented so as to guide selection for biologist, and to provide insight on future research direction for FPGA scientists

    FPGA acceleration of DNA sequence alignment: design analysis and optimization

    Get PDF
    Existing FPGA accelerators for short read mapping often fail to utilize the complete biological information in sequencing data for simple hardware design, leading to missed or incorrect alignment. In this work, we propose a runtime reconfigurable alignment pipeline that considers all information in sequencing data for the biologically accurate acceleration of short read mapping. We focus our efforts on accelerating two string matching techniques: FM-index and the Smith-Waterman algorithm with the affine-gap model which are commonly used in short read mapping. We further optimize the FPGA hardware using a design analyzer and merger to improve alignment performance. The contributions of this work are as follows. 1. We accelerate the exact-match and mismatch alignment by leveraging the FM-index technique. We optimize memory access by compressing the data structure and interleaving the access with multiple short reads. The FM-index hardware also considers complete information in the read data to maximize accuracy. 2. We propose a seed-and-extend model to accelerate alignment with indels. The FM-index hardware is extended to support the seeding stage while a Smith-Waterman implementation with the affine-gap model is developed on FPGA for the extension stage. This model can improve the efficiency of indel alignment with comparable accuracy versus state-of-the-art software. 3. We present an approach for merging multiple FPGA designs into a single hardware design, so that multiple place-and-route tasks can be replaced by a single task to speed up functional evaluation of designs. We first experiment with this approach to demonstrate its feasibility for different designs. Then we apply this approach to optimize one of the proposed FPGA aligners for better alignment performance.Open Acces

    SaLoBa: Maximizing Data Locality and Workload Balance for Fast Sequence Alignment on GPUs

    Full text link
    Sequence alignment forms an important backbone in many sequencing applications. A commonly used strategy for sequence alignment is an approximate string matching with a two-dimensional dynamic programming approach. Although some prior work has been conducted on GPU acceleration of a sequence alignment, we identify several shortcomings that limit exploiting the full computational capability of modern GPUs. This paper presents SaLoBa, a GPU-accelerated sequence alignment library focused on seed extension. Based on the analysis of previous work with real-world sequencing data, we propose techniques to exploit the data locality and improve workload balancing. The experimental results reveal that SaLoBa significantly improves the seed extension kernel compared to state-of-the-art GPU-based methods.Comment: Published at IPDPS'2

    Simple scalable nucleotic FPGA based short read aligner for exhaustive search of substitution errors

    Get PDF
    With the advent of the new and continuously improving technologies, in a couple of years DNA sequencing can be as commonplace as a simple blood test. The growth of sequencing efficiency has a larger exponent than the Moore’s law of standard processors, hence alignment and further processing of sequenced data is the bottleneck. The usage of FPGA (Field Programmable Gate Arrays) technology may provide an efficient alternative. We propose a simple algorithm for DNA sequence alignment, which can be realized efficiently by nucleotic principal agents of Non.Neumann nature. The prototype FPGA implementation runs on a small Terasic DE1-SoC demo board with a Cyclone V chip. We present test results and furthermore analyse the theoretical scalability of this system, showing that the execution time is independent of the length of reference genome sequences. A special advantage of this parallel algorithm is that it performs exhaustive search producing all match variants up to a predetermined number of point (mutation) errors

    Efficient Storage of Genomic Sequences in High Performance Computing Systems

    Get PDF
    ABSTRACT: In this dissertation, we address the challenges of genomic data storage in high performance computing systems. In particular, we focus on developing a referential compression approach for Next Generation Sequence data stored in FASTQ format files. The amount of genomic data available for researchers to process has increased exponentially, bringing enormous challenges for its efficient storage and transmission. General-purpose compressors can only offer limited performance for genomic data, thus the need for specialized compression solutions. Two trends have emerged as alternatives to harness the particular properties of genomic data: non-referential and referential compression. Non-referential compressors offer higher compression rations than general purpose compressors, but still below of what a referential compressor could theoretically achieve. However, the effectiveness of referential compression depends on selecting a good reference and on having enough computing resources available. This thesis presents one of the first referential compressors for FASTQ files. We first present a comprehensive analytical and experimental evaluation of the most relevant tools for genomic raw data compression, which led us to identify the main needs and opportunities in this field. As a consequence, we propose a novel compression workflow that aims at improving the usability of referential compressors. Subsequently, we discuss the implementation and performance evaluation for the core of the proposed workflow: a referential compressor for reads in FASTQ format that combines local read-to-reference alignments with a specialized binary-encoding strategy. The compression algorithm, named UdeACompress, achieved very competitive compression ratios when compared to the best compressors in the current state of the art, while showing reasonable execution times and memory use. In particular, UdeACompress outperformed all competitors when compressing long reads, typical of the newest sequencing technologies. Finally, we study the main aspects of the data-level parallelism in the Intel AVX-512 architecture, in order to develop a parallel version of the UdeACompress algorithms to reduce the runtime. Through the use of SIMD programming, we managed to significantly accelerate the main bottleneck found in UdeACompress, the Suffix Array Construction
    corecore