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Máté NAGY-EGRI
Wigner Institute

email: nagy-egri.mate@wigner.mta.hu

György VESZTERGOMBI
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Abstract. With the advent of the new and continuously improving tech-
nologies, in a couple of years DNA sequencing can be as commonplace
as a simple blood test. The growth of sequencing efficiency has a larger
exponent than the Moore’s law of standard processors, hence alignment
and further processing of sequenced data is the bottleneck. The usage of
FPGA (Field Programmable Gate Arrays) technology may provide an
efficient alternative. We propose a simple algorithm for DNA sequence
alignment, which can be realized efficiently by nucleotic principal agents
of Non.Neumann nature. The prototype FPGA implementation runs on
a small Terasic DE1-SoC demo board with a Cyclone V chip. We present
test results and furthermore analyse the theoretical scalability of this
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system, showing that the execution time is independent of the length of
reference genome sequences. A special advantage of this parallel algo-
rithm is that it performs exhaustive search producing all match variants
up to a predetermined number of point (mutation) errors.

1 Introduction

Revolution in microbiology and genetics are producing incredible amount of
data which calls for the application of the most modern tools of informatics
[1]. This may include analysis of sequences from related organisms, or from
apparently unrelated species. In order for a geneticist to perform analyses on
genomic data it has to be obtained through a process called genome sequenc-
ing. This task can be broken down into two main sub-processes, the first of
which involves extracting raw data from a sample using various instruments
and the second is short read alignment, which is a purely computational prob-
lem. Recently, several short read alignment applications have been developed.
The state of the art short read aligners (e.g. Bowtie[7], nvBowtie[17]) use the
the Burrows-Wheeler transform[4].
The problem is the following: For every short read find the position where it

best matches the reference, i.e. can be aligned to the reference sequence with
the lowest number of differences. Differences can be insertions, deletions or
substitution errors (also called point mutation errors). Insertions and deletions
are commonly referred to as indels.
In practice the percentage of substitution errors is much higher than that of

indels, therefore in this article we shall concentrate on the algorithms dealing
with only substitution errors. In special cases it will be specified if indels are
also taken into account.
Reference sequences are publicly available for a wide variety of species in-

cluding the human genome. Sometimes shorter fragments are used instead of
whole genomes in order to narrow down the search space and speed up the
process. Short read data is generally produced using special sequencing instru-
ments such as the Illumina HiSeq X Ten but it is also possible to find existing
data from previous experiments using public databases.
In practice there can be more than one reference sequence, which could

for example belong to different chromosomes of an organism. However, this
doesn’t alter the theoretical nature of the problem. So in our demonstration
we decided to use a single reference sequence as our input.
In the Section (2.1), (2.2) we reviewed the numeric algorithms of DNA

sequencing as Smith Waterman scosing system, Burrows-Wheeler transform.
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The basic idea of our model is introduced in the Section (2.3). The Local
Boolean alignment algorithms contains the Sliding windows sequential algo-
rithm in the Subsection (3.1), Coarse grain K parallelism in the Subsection
(3.2), Fine grain N-parallelism in the Subsection (3.3), these are close to hard-
ware application. In the Section (4.) we introduced the Nucleotic algorithms,
which is treating big-data strongly parallel on scalable way to realise by FPGA.
This is an effective method for DNA sequence alignment. In the Section (5.)
the FPGA implementation is shown on DE1-SoC Board to compare with GPU.
In the Section (5.5) we presented our method in the case of Lambda virus. We
compared these results with Bowtie method using a random and real sample
string of Lambda phage. The correlation coefficients show significant difference
between the faul and exacting matching result.

2 Numeric transformation algorithms

Traditionally the computers with the standard CPUs are ideal to perform
formula calculations therefore the alignment algorithms usually applied some
numerical or analytic transformation to the data which provided some compu-
tational procedure to reach the desired result. The sequence alignment in these
algorithms can be applied locally or globally. The Smith-Waterman algorithm,
the Burrows-Wheeler Transformation and circular convolution algorithms all
perform local alignments. The global approach shown by Figure 1 is used for
comparing sequences of similar length and is not discussed in this article.

Figure 1: Global and local alignment

Another important concept must be introduced before moving on to the
discussion of various algorithms. The DNA molecule consists of two strands:
5’→3’(forward) and 3’→5’(reverse). On the reverse strand every letter is de-
termined by the forward strand letter in the corresponding position and vice
versa (A is opposite of T and C is opposite of G). It is possible to ensure that
the sequencing instruments always reads in the 5’→3’ direction but it can hap-
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pen on both the forward strand and the reverse strand. The direction of the
reference sequence is regarded as the forward strand direction. Since a short
read could have originated from the reverse strand a special transformation
must be performed in order to create a version that is suitable for alignment on
the forward strand. This transformed version is essentially the reverse of the
original sequence after replacing each letter with its opposite. Thus for every
short read we must run our alignment algorithm for the original version plus
this new version called the reverse complement. This is illustrated in Figure
2.

Figure 2: Forward and reverse strands of DNA

2.1 Smith-Waterman scoring system

The Smith-Waterman algorithm[10] performs local sequence alignment;
that is, for determining similar regions between two strings or nucleotide
or protein sequences. Instead of looking at the total sequence, the Smith-
Waterman algorithm compares segments of all possible lengths and optimizes
the similarity measure using the H scoring matrix. Backtracking starts at the
highest scoring matrix cell and proceeds until a cell with score zero is encoun-
tered, yielding the highest scoring local alignment.
The basic element of this universal method which is able to deal simultane-

ously with substitution, point errors and indels is the calculation of the H(i, j)
scoring matrix:
H(i, 0) = 0, 1 ≤ i ≤ m, H(0, j) = 0, 1 ≤ j ≤ n

H(i, j) = max

⎛
⎜⎜⎝

0

H(i− 1, j− 1) + s(ai, bj) Match/Mismatch
maxk≥1H(i− k, j) +Wk Deletion
max1≥1H(i, j− l) +Wl Insertion

⎞
⎟⎟⎠

where 1 ≤ i ≤ m, 1 ≤ j ≤ n

We use the next notation:
a, b = Strings over the alphabet , m = length(a), n = length(b),
s(a, b) is a similarity function on the alphabet Wi is the gap-scoring scheme.
We show one example:
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Sequence 1 = ACACACTA Sequence 2 = AGCACACA

s(a, b) =

{
+2, if a = b (match)
−1, if a �= b (mismatch)

and Wi = −i.
The H matrix is the following

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− A C A C A C T A

− 0 0 0 0 0 0 0 0 0

A 0 2 1 2 1 2 1 0 2

G 0 1 1 1 1 1 1 0 1

C 0 0 3 2 3 2 3 2 1

A 0 2 2 5 4 5 4 3 4

C 0 1 4 4 7 6 7 6 5

A 0 2 3 6 6 9 8 7 8

C 0 1 4 5 8 8 11 10 9

A 0 2 3 6 7 10 10 10 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The alignment is reconstructed as follows: one is starting with the highest
value stepping toward the next highest. A diagonal jump implies there is an
alignment (either a match or a mismatch=point error). A top-down jump
implies there is a deletion. A left-right jump implies there is an insertion.
For the example, the results are:
Sequence 1 = A-CACACTA
Sequence 2 = AGCACAC-A
The motivation for local alignment is the difficulty of obtaining correct

alignments in regions of low similarity between distantly related biological
sequences, because mutations have added too much ’noise’ over evolutionary
time to allow for a meaningful comparison of those regions. Local alignment
avoids such regions altogether and focuses on those with a positive score, i.e.
those with an evolutionary conserved signal of similarity.
The Smith-Waterman algorithm is fairly demanding of time: To align two

sequences of lengths m and n, O(mn) time is required. Smith-Waterman local
similarity scores can be calculated in O(m) (linear) space if only the optimal
alignment needs to be found, but naive algorithms to produce the alignment
require O(mn) space.

2.2 Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT)[4] is applied on blocks of input data
(symbols). It is usually the case that larger blocks result in greater compress-



156 P. Fehér, Á. Fülöp, G. Debreczeni, M. Nagy-Egri, Gy. Vesztergombi

ibility of the transformed data at the expense of time and system resources.
One of the effects of BWT is to produce blocks of data with more and longer

’runs’ (= strings of identical symbols) than those found in the original data.
The increasing the number of these ’runs’ and their lengths tends to improve
the compressibility of data.
The first step of BWT is to read the T string in a block of N symbols.
The second step is adding a $ character as ending symbol assigning the

lowest character value to it in the alphabetic order.

Figure 3: Burrows-Wheeler transformation steps, where red letterr are noted
by F, and green characters are correspond to green L

The next step is to think of the block as a cyclic buffer:N strings (rotations).
The rotation matrix may be constructed in such a way, containing the shifted
blocks line by line.
The fourth step of BWT is to lexicographically sort the matrix lines (Figure

3). The first column of the matrix is denoted by F, the last column L is defined
to be the Burrows-Wheeler transform of T:

L = BWT(T).

In short:

T = AGCAGTAA → AGCAGTAA$ → L = AAT$CGAAG → F = $AAAACGGT

It is a very remarkable mathematical fact that knowing only L one can restore
uniquely the original T string.
The first step of the reversing process is that one creates F from L by

lexicographical ordering.
The basic trick of the reverse transform is the Last-to-First-Mapping prop-
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erty of the L and F strings.
L → F

A ← $
A ← A

T ← A

$ ← A

C ← A

G ← C

A ← G

A ← G

G ← T

Each element of F is pointing to the symbol of L which is preceding it in T,
i.e. one has from the beginning the pair wise reconstruction of T in the
L(i)F(i) combinations. Thus one needs only to connect them in right order.
The symbols of the T string are produced in reverse order which means that

one should start from the ending character $.

Figure 4: BWT reverse, part b) with X in F for used characters

It is worth to mark the already selected pairs in F with an ’X’ as-shown in
Figure 4 (b).
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The horizontal arrow in the first line from F to L provides the N-th, i.e. the
last symbol of T which is A.
In the next step one is jumping from the last L position (A in line #1) to the

nearest F position containing the same symbol, which ensures the piecewise
continuity. Thus in the above example one is ending in the second line of F.
The next horizontal arrow from F to L gives symbol A, which is really

identical with the (N− 1)-th character of T.
The procedure is repeated from the second line of L, selecting the nearest

A in F which is not in the same line. Thus we reach the A character in line
#3 of F.
And so on one can repeat the horizontal F → L and inclined L → F steps

until one gets the final AGCAGTAA (Figure 4).
Of course, the procedure can be formulated in a more exact way too, it is

based on two tables. The first is giving
Number of Preceding Symbols Matching Symbol in Current Position in L;
the second one is derived from F:
Number of Symbols Lexicographically Less Than Current Symbol
which are described in detail in ref [ Burrows-Wheeler Transform Discussion

and Implementation, talk by Michael Dipperstein [13]]
How can one use BWT for alignment of short reads? One can prepare the

BWT of the known reference sequence containing of N characters. If the short
read with m characters is identical with some part of the reference sequence,
then one can assume that using the last character of the short read as starting
character in F one can execute a reverse transformation from this point. As a
simple test we can check in the above T as reference whether it contains the
CAG combination.
In general there is not a single solution. E.g. one finds 2 combinations for

CAG (Figure 5).
Try to find ACAG short read or TCAG. No way, because from the last

position where the C was found one cannot go further. Let us assume that due
to a point error the short read was recorded by a point error as ATCAGTAA,
which has no exact matching with the reference sequence. In this case one
can use some kind of heuristic method, the so called backtracking. In case
of unsuccessful search the program executes some backward steps and the
recorded character is changed to a new one. The selection of the position and
value of the new character is depends on the measured quality of the recorded
characters which is monitored during the measuring process. It is important to
remark, that if one can execute exhaustive research for point error cases, then
one doesnt need to apply such heuristic algorithms, which can be demonstrated
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Figure 5: BWT search for partial string ’CAG’, two possible solution

by the following algorithm.

2.3 Pseudo-binary circular convolution

The circular convolution is a frequently used reduced version of the general
convolution formula. One can define it in the following way:

y(n) = h(n)@u(n) =

N−1∑
i=0

h(i) · (u(n− i))N,

or:

y(n) = h(n)@u(n) =

N−1∑
i=0

h(i) · (u(n+ i))N,

where: (u(n))N ,N-point periodic extension of u(n). ’Cyclic’=’circular’.
Order: ’N-point’ or ’order N’, y(n); h(n); u(n) all have length N.
Here we want to specialize it further to accommodate the DNA alignment

case. It will be assumed that the u(n) function will correspond to the reference
genome sequence of length N, whereas the short reads will be represented by
h(i) having non-zero values only for 0 ≤ i ≤ m − 1, where m < N, h(i) is
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equal to zero above this value till i = N. It is assumed that the characters of
u and h are written in binary form of 1s and 0s, thus the total length will be
increased from N to Nb = nbit ·N, where nbit is the number of bits required
to identify the character symbols.
This binary circular convolution can have a special physical meaning if one

applies and additional trick by converting the zero values to -1 in u and h

functions.
Example:
N = 5, m = 4 and nbit = 2

Symbols: a, b, c, d binary representation: 00, 01, 10, 11
pseudo binary: -1-1, -1 1, 1 -1, 11

Reference string: u bacad → binary: 0 1 0 0 1 0 0 1 1 1
bacad → pseudo-binary: -1 1 -1 -1 1 -1 -1 1 1 1

Short read string: h acad → binary: 0 0 1 0 0 1 1 1 0 0
acad → pseudo-binary: -1 -1 1 -1 -1 1 1 1 0 0

padding zeros at the end.

Binary convolution:

y(0) = h(0) · u(0) + h(1) · u(1) + h(2) · u(2) + · · ·+ h(9) · u(9)
= 0 · 0+ 0 · 1+ 1 · 0+ 0 · 0+ 0 · 1+ 1 · 0+ 1 · 0+ 1 · 1+ 0 · 1+ 0 · 1 = 1

y(1) = h(0) · u(1) + . . .

y(2) = h(0) · u(2) + h(1) · u(3) + h(2) · u(4) + · · ·+ h(9) · u(1)
= 0 · 0+ 0 · 0+ 1 · 1+ 0 · 0+ 0 · 0+ 0 · 0+ 1 · 1+ 1 · 1+ 0 · 1+ 0 · 1 = 3

y(3) = h(0) · u(3) + . . .
...

y(9) = h(0) · u(9) + . . .

Pseudo-binary convolution:

y(0) = h(0) · u(0) + h(1) · u(1) + h(2) · u(2) + · · ·+ h(9) · u(9)
= (−1) · (−1) + (−1) · 1+ 1 · (−1) + (−1) · (−1) + (−1) · 1+ 1 · (−1)+

1 · (−1) + 1 · 1+ 0 · 1+ 0 · 1 = −2

y(1) = h(0) · u(1) + . . .

y(2) = h(0) · u(2) + h(1) · u(3) + h(2) · u(4) + · · ·+ h(9) · u(1)
= (−1) · (−1) + (−1) · (−1) + 1 · 1+ (−1) · (−1) + (−1) · (−1)+

(−1) · (−1) + 1 · 1+ 1 · 1+ 0 · 1+ 0 · 1 = 8

y(3) = h(0) · u(3) + . . .
...

y(9) = h(0) · u(9) + . . .
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From this example it is obvious that the pseudo binary circular convolution
gives the exact number of bit matches between the reference sequence and the
short read and the y index provides the position for that number of matching.
Exact matching gives the value y(n) = Nb. It provides exhaustive search,
because if there are more than one exact matching position then for all the ni

values one gets Nb.
In general, an error decreases the sum by 2, thus the number of matches is

equal
M = (y(n) +m)/2.

The second remarkable feature of this formula is, that it works exactly in the
similar exhaustive way, if we allow a given number of mismatching bits.
The third interesting fact is that one can speed up the calculations, which

requires N ·N steps, by using Fast Fourier Transform of h and u. The calcu-
lation time of the convolution will be reduced to N · log(N) steps. In some
architecture this can be the optimal solution, but in the next we propose even
faster practical solutions.

3 Local Boolean alignment algorithms

From the definition it is obvious that the solution of the alignment problem
does not require intense numerical calculations, therefore in the next we con-
centrate on the bit-level or string character manipulating algorithms which
can be optimally executed in FPGA and ASIC systems.

3.1 Sliding window sequential algorithm

Let us assume that the reference genome has N base pair. One is looking for
the alignment of short reads with the length of m base pairs. For simplicity,
we assume that N = K ·m
The characters in reference genome and short read are compared individu-

ally within a sliding window (Figure 6). The number of sequential sliding steps
is equals to N−m+ 1.

.... ACGTACGT ....

Reference sequence (shifting left
1 character at a time

Sliding window (static)

�����

����

Figure 6: Sliding window principle
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If one takes into account that the sequencing instruments do not give an
exact copy of the measured specimen, in general there is no existing unique
solution for the alignment problem. Therefore one applies statistical multiple
measurement in the analysis as it is illustrated in Figure 7.

Figure 7: Statistical analysis

The base pair symbols can be converted to binary representation as it is
shown in some simple examples (Figure 8).
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Figure 8: Illustration for symbolic binary transition

Using a single processor it takes (N − m + 1) · m steps to check all the
combinations, which can be a very long time if N is large (Figure 9). It is not
worth to compare the last m − 1 positions because it is not possible to have
exact matching with the m-long short read.

3.2 Coarse grain K parallelism

If one applies K = N/m processors then one needs only m sliding steps which
reduces the execution time to m · m steps (Figure 10) which can be a very
considerable speed up, because in general m << N.
The last processor will work only for the m = 0 case because the reference

genome runs out.

3.3 Fine grain N-parallelism

If one has enough money to buy N − m + 1 processors then the execution
will require only m steps which is very small relative to the sequential single
process (N−m+ 1) ·m case (Figure 11).
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Figure 9: Single principle agent realization for serial matching search

Figure 10: Moderate number of principle agents realization for coarse grain
matching search
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Figure 11: Fine grain matching search

4 Nucleotic algorithms

The Von Neumann architecture, also known as the Von Neumann model and
Princeton architecture, is a computer architecture based on that described
in 1945 a mathematician an physicist John Von Neumann and others in the
First Draft of a Report on the EDVAC [9]. This describes a design architecture
for an electronic digital computer with parts consisting of a processing unit
containing an arithmetic logic unit and processor registers, a control unit con-
taining an instruction register and program counter, a memory to store both
data and instructions, external mass storage, and input and output mecha-
nisms. The meaning has evolved to be any stored-program computer in which
an instruction fetch and data operation cannot occur at the same time because
they share a common bus. This is referred to as the Von Neumann bottleneck
and often limits the performance of the system.
The proposed NON-Neumann architecture (NONN) is applying FPGA re-

configurable hardware realizing computation directly in the memory cells avoid-
ing the CPU-memory bottle-neck. This NONN approach can be applied only
for specific problems which are treating big-data massively parallel on SCAL-
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ABLE way. The idea of massively parallel 1-bit CPU system is not new, e.g. a
special ASIC design existed already 25 years ago [11]. The interesting fact is
that large class of the presently unsolvable problems are falling in this category
in physics, chemistry, biology, life sciences, materials, climate, geosciences, etc.
Exascale computing in general is a very nice idea, but in practice it seems

to be a non realistic aim. Here we should like to reach this aim only in case of
a limited set of problems which are important enough to be worth to invest
into them. In the real physical world the matter is consisting from atoms, but
the dominant element is the atomic nucleus containing 99.95 % of the mass.
The solid structure of the objects is ensured by the crystal or amorphous ar-
rangements of the ionic nuclei. The single and double helix in biological system
is based on the nuclear acid base pairs. If one can follow the history of this
nucleotic agents one can control the system. In wider context in cosmology
stars and galaxies can play this nucleotic role. In general numerical solution of
theoretical partial differential equations is achieved by discretization of space
and time. The lattice nodes with definite calculation procedures can be re-
garded also as nucleotic objects. In a heuristic way one can define as nucleotic
system those arrangements which are consisting of elements with precisely
defined properties and are mainly in interaction only with other elements in
their neighbourhood. This definition gives rather wide set of possibilities, the
systems can have regular, amorphous, tree-like or general graph etc. structures.
According to the definition of nucleotic problems one can ensure ultrascal-

ability, if there is a possibility to identify the so-called principal agent [12].
The principle agent executes the universal activity at each nucleotic site driven
by the common Clock-signal. In more complex cases one can have several dif-
ferent types of different principal agents which are activated by special control
logic at appropriate times. The procedure executed by individual principal
agent can take T clock cycles corresponding to its type.
The principal agents can be regarded as vertices of a graph. The information

flow is indicated by directed edges.

4.1 Bit-serial principle agent

In all the above cases each processor executes character comparison which is a
two-by-two bit process, i.e. one evaluates a double-hit coincidence. Preliminary
step for coincidence matrix creation in DNA principal agent is shown in Figure
12. Thus the main algorithm will work on the N*m coincidence matrix, because
the two bit comparisons are restoring the symbol count length independently
the coding length of the characters to N and m.
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Figure 12: Preliminary step for coincidence matrix creation in DNA principal
agent

The above defined single processor serial matching search algorithm can be
realized in FPGA by 3 hardware elements: 2 shift-registers the first for the
reference genome with length N and the second for short reads of length m,
plus one principal agent.
The principal agent algorithm is extremely simple for each clock pulse the

bit from reference genome is compared to the corresponding bit of the short
read. The XOR logics provides output 1 in case of different inputs, thus the
counter will be incremented by 1 if there was a mismatch, i.e. a point-error
(Figure 13). The error counter is working in two-complement mode. Let us
define the allowable maximal number of errors as Maxerr. At the start of each
m-bits comparison cycle the error counter is set to -Maxerr, thus the positive
value in the error counter will indicate automatically if the number of errors
exceeded Maxerr.
The readout is organized through a so-called serializer to a FIFO trans-

mitting the number of errors not exceeding Maxerr and the actual number of
shifts in the reference genome to indicate the start of the matching section.
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Figure 13: Bit-serial principal agent for DNA sequence alignment

One requires a serializer because due to the exhaustive search there can be
more than one solutions.
In case of K principal agents the 3 main FPGA processing elements are

the same. With this coarse grain design one observes a K = N/m fold speed-
up relative to the serial case (Figure 14). In this system each element of the
reference genome is wired to one principal agent.
Here the role of serializer is more emphasized because any pair of principal

agents can have simultaneous hits.
If one can afford N−m+ 1 number of principal agents then the processing

time will be independent from the length of the reference genome (Figure 15).
In this system each element of the reference genome is wired to m principal
agent.
It is important to remark that the 3 main FPGA elements are staying the

same in all the three cases. This scaling property is an essential element of the
nucleotic algorithms.
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Figure 14: Coarse grain principal agents for DNA sequence alignment

4.2 ULTRASCALABILITY with bit-parallel principal agents

One can speed up the execution time and increase the efficiency of calculations
by applying more complex processors. So far it was assumed that the proces-
sors were comparing one character of the reference sequence to one character
of the given short read. One can perform in an FPGA (or ASIC) processor
more than one comparison simultaneously.
In a special case N = 24, m = 8 and K = 3 the serial, coarse and fine grain

systems with bit-serial principal agents are shown schematically in Figure 16.
One can apply however in the same structures instead of the bit-serial

PAs so-called bit-parallel PAs too. In this case the exact matching can be
achieved in a single clock cycle (Figure 17).
The new bit-parallel PA will have similarly simple structure, just the single

XOR gate will be replaced by m pieces of XNOR gates and a m-fold AND
gate to produce the exact matching trigger signal T .
This algorithm reserves the exhaustive feature of the bit-serial PA, but it
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Figure 15: Fine grain principal agents for DNA sequence alignment

fails for point-errors, therefore the speed-up was traded for performance. One
can regain part of the losses with relatively small new investments.
Let us divide the short read e.g. into mreduce = 2 pieces and apply proces-

sors which compare m/mreduce characters simultaneously. This cutting into
half of the AND gate will produce m times gain is execution time and will
provide extremely important information for matchings with point errors. This
algorithm was proposed in [14] (Figure 18).
This simplified initial-model for DNA sequence alignment can illustrate how

can one build an ULTRASCALABLE computer system, where the pro-
cessing time is independent from the size of the problem if one pro-
vides the hardware which is proportional to the actual size.
In our specialized basic-model the alignment procedure can produce 3 dif-

ferent type of results:
a) Exact matching T=T1.AND.T2: provides the list of pointers pointing to

the position of the base pair in the reference genome from where the actual
short read is coinciding exactly with this part of reference genome.
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Figure 16: Summary of bit-serial principle agents

b) Half matching H=T1.XOR:T2 represents the list of exclusive OR cases,
where first or second half of the short read has complete match at least of
length m/2. If m >> 2 then this selection can be already very effective,
therefore it is worth to sort out these cases for second part of the aligner
algorithm. (If one can afford a bit more hardware for T1,T2,T3 and T4 logics
then one can ensure 75% matching, allowing mismatch only in one segment
shown in Figure 18 c.
c) No matching. This is the most frequent outcome. For illustration pur-

poses intentionally we selected a combination with absolute minimal number
of AND/OR gates, which simplifies the processing logics. One can easily create
systems looking for more than one substitution point-errors.
One can realize the m times speed-up in both K and N parallelism.
In the K parallelism case in one clock cycle one can test the short read

alignment only in those positions where the value of pointer index is a multiple
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Figure 17: Summary of bit-parallel principal agents

of m, assuming that the starting index value is equal to 0. For the other values
from 0 to (m− 1) one should make m− 1 shifts in the reference genome and
check for alignment one-by-one.
Of course, in the N parallel case one assign to each N − m + 1 line this

complex processor. Then one can get all the exact matches in single step. As
additional bonus one will get a relatively short list for positions which contain
all the cases where exactly one error occurred. Unfortunately there can be more
than one mismatch in the indicated segment, therefore to fix this additional
information a second round of tests is required. It stays however on the O(1)
level, because with reasonable design one can limit the expected number of
multiple solutions below 10.
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Figure 18: a) Principal agent for DNA sequence alignment with m-fold coinci-
dence for T; b) m/2-fold coincidence + 2-fold AND for T=T1*T2; c) m/4-fold
coincidence + 4-fold AND for T=T1*T2*T3*T4

5 Practical demonstration

We looked at existing FPGA-based solutions for parallel short read alignment
but we did not find any that attempts ultrascalability of a system although
numerous papers concluded that FPGAs provide an excellent platform on
which to run sequence alignment, and that clusters of reconfigurable computers
will be able to cope far more easily with the vast quantities of data produced
by new ultra-highthroughput sequencers[5][6].
Some solutions use higher level languages (e.g. handel-C)[3][2] which makes

them easier to implement but in most cases leads to a significant decrease in ef-
ficiency. Several papers target slow but more accurate dynamic programming
approaches (e.g. Smith-Waterman algorithm)[3][6]. One particular paper[5]
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discusses the implementation of a similar algorithm (Eland algorithm) on
very similar hardware (DE2-SoC) but the implementation takes a more con-
ventional approach involving hash functions and lookup tables which render
ultrascalability unfeasible.
In this section we discuss the implementation of the algorithm introduced

earlier. The source for the FPGA and the GPU implementation can be found
in our public repository:

https://bitbucket.org/exascalemultiscience/de1-soc-exaligner

The proposed simple point-error search algorithm was realized in two dif-
ferent hardwares:

• a GPU system using CUDA with an Intel Core i7 CPU 920 2.67GHz
processor and an NVIDIA GeForce GTX 980.

• an FPGA SoC(System on a chip) with a Dual-core ARM Cortex-A9
(HPS) processor and a Cyclone V SoC 5CSEMA5F31C6 Device with
85K Programmable Logic Elements

The performance as well as the result of the CUDA GPU system and the
FPGA system was compared to Bowtie, a public short read aligner.

Here is a concise version of the algorithm:

open reference_file

while not reached end of reference_file

reset hardware

read reference_segment from reference_file

write reference_segment to hardware

open reads_file

while not reached end of short_read_file

read short_read from short_read_file

write short_read to hardware

wait until hardware is finished

read and store results from hardware

end while

close short_reads_file

end while

close reference_file

open sam_output_file
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for all short_read

write alignment_data of short_read into sam_ouput_file

end for

close sam_ouput_file

5.1 FPGA implementation on DE1-SoC Board

The DE1-SoC Development Kit presents a robust hardware design platform
built around the Altera System-on-Chip (SoC) FPGA, which combines the lat-
est dual-core Cortex-A9 embedded cores with industry-leading programmable
logic for ultimate design flexibility. Alteras SoC integrates an ARM-based
hard processor system (HPS) consisting of processor, peripherals and memory
interfaces tied seamlessly with the FPGA fabric using a high-bandwidth inter-
connect backbone. The DE1-SoC development board includes hardware such
as high-speed DDR3 memory, video and audio capabilities, Ethernet network-
ing, and much more.The DE1-SOC Development Kit contains all components
needed to use the board in conjunction with a computer that runs the Mi-
crosoft Windows XP or later ( 64-bit OS and Quartus II 64-bit are required
to compile projects for DE1-SoC ) [18].
The schematic diagram of the implementation can be seen in Figure 15. In

this figure the principal agents are handled as separate functional elements but
in reality it is much more efficient to implement them as part of a larger func-
tional element which carries out the computations on a large array of registers
in parallel. A single instance of the prinicpal agent is illustrated in Figure 19
in detail. Each principal agent has two bits for the reference nucleotide and
two bits for the short read nucleotide as input. If the output bit is 1, it means
there was a match. These output bits are produced in parellel and they must
be processed sequentially because the FIFO has only one input. Normally this
would cause a major bottleneck, however in this problem we can discard the
results with a 0 value because we don’t need to process mismatches at all.
This is performed by the serializers. The serializers in Figure 15 fig15(!!!!!!!!!)
can also be aggregated into a larger functional element. There is some com-
munication between the serializers in order to determine which result will be
propagated to the FIFO. The number of clock cycles required for processing
every principal agent output is the same as the number of matches. Most of
the time there will be zero or one match in the entire reference. The case of
more than one match is possible but fairly rare.
In this section ranges are always inclusive unless otherwise specified. For

the implementation of the FPGA design we used Qsys and the Quartus II
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Figure 19: The single element of the fine grain principal agents

software. The HPS communicates with the FPGA fabric through a 32 bit AXI
bus. The communication protocol is built according to the Avalon Memory-
Mapped (Avalon MM) Interface. The interconnect between the HPS and the
FPGA design is generated using the Qsys system integration tool.
Essentially, what the Qsys tool does is creating glue code, also known as

interconnect, mostly consisting of buses and arbiters between the individual
components of the system. For example every component has a clock input
which is connected to the output of the Clock component. Another exam-
ple would be the master/slave relationship between the HPS and the on-chip
memory component.
There is a golden hardware reference design(GHRD) provided by the man-

ufacturer of the DE1-SoC, Terasic. In the GHRD project there is an existing
Qsys setup that was specifically designed for this device. This project per-
fectly matches the capabilities of the device and it can be easily extended
with additional functionality.
During Avalon MM transfers the processor takes the role of the master and
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the FPGA accelerator logic behaves as the slave. This means that transfers are
always initiated by the C program and the FPGA design reacts to it within a
few clock cycles.
In the C code Avalon MM transfers are simple read and write operations at

a virtual memory address, which can be calculated by adding the appropriate
offset to the virtual base memory address corresponding to the FPGA accel-
erator logic. The offset values and the virtual base memory addresses have to
be synchronised between the Qsys setup and the C code.
From the perspective of the FPGA design the memory ranges from 0 to 3

(4x32 bits). Values in this range can be encoded using a 2-bit wide value. In
the C code the virtual memory offset values range from 0x0 to 0xb (4x4 bytes).
According to the communication protocol it is the responsibility of the ac-

celerator logic to keep track of whether the next input is part of a short read or
the reference. Calculations start as soon as the loading of all necessary inputs
has finished. The results are then pushed into a FIFO. The C code uses polling
on a designated memory address to determine whether the FIFO holds some
data, i.e. a result is available to read. Reading the actual results takes place
on another memory address specifically allocated for the task. The FPGA can
also be reset from the C code using an Avalon MM transfer to the appropriate
memory address.

5.2 GPU implementation

In the GPU implementation most of the C code is the same as in the FPGA
implementation. The main difference is in the communication between the
two components (CPU and GPU). Instead of explicit transfers through an
interface the CPU has indirect access to the allocated memory where the
GPU calculations take place. Before and after a kernel call the data has to
be copied between the CPU memory and the GPU memory. Though it is
considered good practice to over-issue work to the GPU to help to the device
memory latency.
From an algorithmic perspective we can observe a correspondence between

principal agents in the FPGA and CUDA kernel threads. We applied the same
pseudo code (Section 5.) in both cases, despite the fact that the GPU would
be able to scan the entire string in the memory at one time.

5.3 Comparison

Bowtie numeric vs Boolean: There is no difficulty in finding one match if there
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is any. The parallel nature of Boolean approach guarantees the exhaustive
search whereas in Bowtie it would need special effort to look for multiple
solutions. Of course, the existence of multiple solutions requires additional
programming to serialize the candidates.
In case of the heuristic Bowtie and its more advanced versions the processing

of almost good matchings with few number of errors is a real challenge. One
of the possible solutions is the backtracking in BWT which means a trial and
error procedure to look for exact matching artificially modifying characters in
the measured short reads assuming recording errors in the given position.
GPU vs FPGA: Programming in GPU and FPGA requires completely dif-

ferent methodology. One should learn new languages CUDA (or OpenCL).
Nucleotic nature of the problem: extreme simple algorithms.
Hardware difference: For the FPGA minimal resources are required and

calculations are executed in the memory cells, whereas in the GPU system
complete threads are sacrificed, essentially a small CPU is used for each PA.
GPU threads have separate local memory and a very much reduced but

still rather complex mini-CPU for real and integer operations. Few number of
threads per square cm of silicon.
In FPGA memory cells and logical gates are together in logical elements

ideal for bit level programming, one could say that calculation is performed
inside the memory cells. The logical elements are relatively universal, but
simple enough not to waste silicon surface for unused resources. One can have
millions of logical elements per square cm on silicon.
The use of ASIC hardware can be even more economical. One can design

only with the minimally necessary memory cells and gates, thus no unused
elements are sitting in reserve. Its density can reach billions per square cm on
silicon.
The scalability problem occurs for both architectures because the same sig-

nal should be delivered to more and more elements. FPGA and ASIC have
a much larger density per chip resulting in shorter transmitting routes!! Fur-
thermore the network topology of such a system can be very flexible as it can
conform to the custom data-flow of any algorithm while GPUs have a fixed
infrastructure for transmitting data.
In case of nucleotic problems the network consists of mainly two components:
In first case there are connections only between neighbouring principal

agents. This structure is ideal for ultrascalability, because one can increase
the network by simple connections at the edges.
The other part of network is given by a few global transmissions propa-

gating information to a large number of elements.It is not a problem to send
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signals on a single line to 10 destinations, but the signal propagation becomes
questionable if one aims for millions of destinations with a single signal. In
principle, one can use a binary tree instead of a single line with appropriate
amplifying elements. Of course, the expansion of this binary distribution tree
is much more complex between chips and boards than inside a chip. The same
logics can be applied in GPU, FPGA and ASIC principal agents, but it is
obvious that it costs practically nothing in energy and cost at ASIC, but can
be prohibitive in case of GPU boards.
The I/O capabilities in FPGAs are larger by several orders of magnitude

(due to the pin counts) making it easier to incorporate it into a larger system.
Longer clock cycles are a serious disadvantage in FPGA and ASIC systems

but as the technology is advancing they are approaching speed of traditional
CPUs. The clock frequency also depends on the timing constraints of the RTL
design.
The number of FPGA processing units can not be increased further (as

it was explained in Section 5.3) due to a hardware limit, over up to these
values we can extrapolate, assuming the same scale behaviour. GPU have
been possible to go further, but we did not want to compare the theoretical
values with the measured run time. We might expect that longer chains and
multi-thread processor, the GPU efficiency will grow roughly up to 4-8 times
of the processing units, which reaches its peak efficiency and run time does
not improve in the future.
The table below illustrates the difference between the running time of the

FPGA and GPU implementations. The first column contains the number of
principal agents/threads used in each run and the second and third columns
contain the running times for the Lambda phage example detailed in a later
section. It only takes 1024 principal agents to run faster than the GPU due
to the ultrascalability property of the FPGA implementation. In the GPU
implementation the more threads the longer it takes to evaluate the result
of every thread because it must be performed serially by the CPU. It would
be interesting to compare the two solutions using an even higher degree of
parallelization but due to the limited capacity, a design with more than 1024
principal agents doesn’t fit in the Altera Cyclone V FPGA.
The runtimes of introduced method on FPGA and GPU are shown in Table

1. In comparison if we run the algorithm sequentially it takes 147940.670
seconds (approximately 41 hours).
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FPGA[s] GPU[s]

64 2427.410 2282.875

128 1214.420 1159.218

256 608.870 588.058

512 304.890 298.164

1024 154.280 157.256

Table 1: Runtime in FPGA and GPU

5.4 Simple example

In this section we describe the different implementations of the exaligner al-
gorithm.
Running the CUDA application is extremely simple. One should execute the

following command:

• exaligner-gpu example reference.fa example reads.fq example.sam

The FPGA application is very similar:

• exaligner-fpga example reference.fa example reads.fq example.sam

With Bowtie it is a little different:

• Command line for index creation:

bowtie2-build reference/example reference.fa example reference

• Command line for sequence alignment:

bowtie2 -x example reference -U reads/example reads.fq -S example.sam

Relevant positions in the output sam file:

Position #1.: short read ID
Position #2.: bitset, possible values in our case: 0,4,16; if 0, then forward
maching; if 16, then reverse matching; if 4, then no alignment found
Position #4.: aligned reference genome position, indexing starts with 1.
Position #10.: short read sequence
————————————————————————————————
The first few lines of the example.sam output file:
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————————————————————————————————
@HD VN:1.0 SO:unsorted
@SQ SN:example reference1 LN:420
@PG ID:Exaligner VN:1.0 CL:’./exaligner-fpga example reference.fa
example reads.fq example.sam’
example read1 0 example reference1 5 42 16M * 0

0 TGATGGTCGTCCATTA .:7@3<6&10EG2<7<
example read2 16 example reference1 4 42 16M * 0

0 TTGATGGTCGTCCATT <7<2GE01&6<3@7:.
————————————————————————————————
Below is the first matching short read from the example short reads.fq file.
The last row describes the sequencing quality and can be ignored.
————————————————————————————————
@example read1
TGATGGTCGTCCATTA
+
.:7@3<6&10EG2<7<
————————————————————————————————
In this example the following simple reference file was used:
————————————————————————————————
> example reference1

GCCTGTATGGTCGTCCATTAAGTACGCTAAGTCACAGCGCGCTGC

GCCAGGGCGTGGCAATGGTGCAGCAAGATCCGGTGGTGCTGGCGG

ATACCTTCCTCGCCAACGTGACGCTGGCACGTGATATCTCTGAAG

AACGCGTCTGGCAGGCGCTGGAAATCGTGCAGCTGGCGGAGCTGG

CGCGTAGCATGAGTGATGGTATTTACACGCCGCTTGGCGAGCAGG

GGATAAATCTCTCAGTCGGGCAAAAGCAACTGCTGGCACTGGCGC

GCGTGCTGGTGGAGACGCCGCAAATCCTGATCCTTGATGAGGCAA

CCGCCAGCATTGACTCCGGGACTGAATAGGCGATTCAACATGCTC

TGGCGGCGGTGCGTGAACATACTACGCTTGTGGTGATTGCTCACC
GCTTATCAACTATTG

The .sam output of the FPGA and GPU applications are identical. One
should not expect identical results from Bowtie because its algorithm uses
heuristics and the output is random. However, as the next section describes
the output files compare favourably.
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5.5 Lambda virus

In this article we introduced an algorithm using the advantage of the FPGA op-
tions to determine the DNA sequences. We present below the case of Lambda
virus, because the DNA molecule of 48502 base-pairs is linear.
In 1950, Esther Lederberg an American microbiologist, who performed an

experiments on E.coli mixtures. His research led to employment of Lambda
phage as a model organism in microbial genetics as well as in molecular genetics
[8].
In this article we study the short reads each comparison performed by the

reference sequence, are determined for exact matching, 1, 2, and 3 cases of
error.
We ignore the indel ie. the insertion, when an extra element appears and

the deletion case, when an item is missing in the test sequent.
We calculated the distribution of short reads over Lambda virus, where the

length of short reads is 50. The number of short reads depends on the refer-
ence position, which was calculated by exaligner algorithm (5.5 Section). This
method is able to accurately determine individual cases of error occurrences.
The generated sample file is created by wgsim program [15]. The exact

matching and 1 cases of error have been shown in Figure 20. The 2 and 3
cases of error have been presented in Figure 21. The generated and real [16]
sample string of Lambda phage was studied by Bowtie algorithm also, which
was shown in Figure 22.
Since the set of measurements considered as random sequence, therefore we

can characterize this series with the expected value, standard deviation and
the correlation coefficient in the Table 2.
There are significant difference of frequency value between the faul (Fig-

ure 20 (a)) and the exact matching (Figure 20 (b)) release. The correlation
coefficient changes significantly in this case.
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0 1 2 3 B-g B-r

0 1 0.6144 0.4194 0.3792 0.4660 0.0241

1 0.6144 1 0.8215 0.7708 0.8502 0.0391

2 0.4194 0.8215 1 0.9854 0.9718 0.0218

3 0.3792 0.7708 0.9854 1 0.9612 0.0159

B-g 0.4660 0.8502 0.9718 0.9612 1 0.0227

B-r 0.0241 0.0391 0.0218 0.0159 0.0227 1

Table 2: Correlation coefficient (B-g: Bowtie alg. on generated string, B-r:
Bowtie alg. on real string)

The FPGA method is reconfigurable and scalable, so this algorithm can be
developed further to find the indels and more complicated and longer DNA
sequence.
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Figure 20: The diagram for DNA sequence alignment, which consist of 0 (a)
resp. 1 (b) error
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Figure 21: The diagram for DNA sequence alignment, which consist of 2 (a)
resp. 3 (b) errors
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Figure 22: The diagram for DNA sequence alignment using Bowtie alg., which
consist of the generated sample resp. (a) real string (b)

6 Summarize

In this article, we introduced a new nucleotid method that is suitable for
processing large amounts of data, which is close to the hardware algorithms
(FPGA). We are shown in case of DNA sequenceces of lambda virus to use the
exaligner procedure. This method is reconfigurable and rescaling, therefore it
can be developed on the more effective tools to study much larger database as
the human genom sequence.
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