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Abstract

Existing FPGA accelerators for short read mapping often fail to utilize the

complete biological information in sequencing data for simple hardware design,

leading to missed or incorrect alignment. In this work, we propose a runtime

reconfigurable alignment pipeline that considers all information in sequenc-

ing data for the biologically accurate acceleration of short read mapping. We

focus our efforts on accelerating two string matching techniques: FM-index

and the Smith-Waterman algorithm with the affine-gap model which are com-

monly used in short read mapping. We further optimize the FPGA hardware

using a design analyzer and merger to improve alignment performance. The

contributions of this work are as follows.

1. We accelerate the exact-match and mismatch alignment by leveraging

the FM-index technique. We optimize memory access by compressing

the data structure and interleaving the access with multiple short reads.

The FM-index hardware also considers complete information in the read

data to maximize accuracy.

2. We propose a seed-and-extend model to accelerate alignment with indels.

The FM-index hardware is extended to support the seeding stage while a

Smith-Waterman implementation with the affine-gap model is developed

on FPGA for the extension stage. This model can improve the efficiency

of indel alignment with comparable accuracy versus state-of-the-art soft-

ware.

3. We present an approach for merging multiple FPGA designs into a single

hardware design, so that multiple place-and-route tasks can be replaced

by a single task to speed up functional evaluation of designs. We first

experiment with this approach to demonstrate its feasibility for different

designs. Then we apply this approach to optimize one of the proposed

FPGA aligners for better alignment performance.
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Chapter 1

Introduction

In recent years, there has been a significant explosion in the quantity of ge-

nomic data. This is mainly due to technological advancement and the declining

cost of next-generation sequencing (NGS) technology. The NGS machines are

now capable of generating millions or even billions of short DNA fragments

from the sampled cells within hours [3]. These fragments, i.e. reads, are

produced by segmenting DNA strands in the sampled cells randomly. As a

consequence of this action, the orientation and position information of the

reads with respect to the original, long DNA is lost. Therefore, a critical prior

step of lots of downstream analysis of genomics data is short read alignment

(mapping), where millions or billions of short DNA reads generated by an NGS

machine are mapped to a reference genome [4]. Figure 1.1 displays an example

of aligning reads to a short reference.

Figure 1.2 shows a snippet of an example read file, which is normally stored

in FASTQ format using ASCII encoding. It uses four lines per sequence. The

first line is the sequence identifier while the second line is the DNA short read.

The third line begins with an ’+’ character and this line only stores optional

information. The fourth line carries important information that encodes the

quality metric for the short read. Each quality value is associated with a

nucleotide in the same position of line 2, and each value has a range between

16



ID: 5
C A T C G

G N C T C G AID: 1

ID: 2

T C G GID: 3

C C A T CID: 4

A T C G

G A C T C G G T G C C A T T G
Example Reference Genome

Alignment

G A C T C G G T G C C A T T G

G N C T C G A
ID: 1

ID: 2

T C G G

ID: 3

C C A T C

ID: 4

A T C G

ID: 5

G T G CID: 6

Ex
am

p
le

 R
ea

d
s

C A T C G

G T G C

ID: 6Sequencing 
error

Genetic diversity
Ambiguous 
Character

Figure 1.1: Example of aligning reads to a reference.

@ERR194147.565556408
AGATCTCATATCGTCGCTCGTCATGCGTGTATGCGTCTGCATACGGCGCATAGT
+
IHGBGFAHGGBGFAHIGIHIIII<GDGBGHHBHDEFGDIFHHFHDBD@@A?A?;

@SRR069520.98825053

NNNNCAATAAAAGTCATGAAGACTTAATTGCCTTTTCTATCTCAGACTATTACA
+
@@KKiF=DDFDDDDFEGDFGGC?@HDAGCGGBGFAHGIE3?D?)A:0:?DF?F?

@SRR3947551.12981685

TGAACTAAAAAGGACTGTAAGGGGCCGGGCGCGGTGGCTCATGCCTGTAAT
+
@CCFFFFFHHHHGGA@@G@GJJKKKH@JJGGAAABHHEHHFFFFFEDEEE:

Sequence 1

Sequence 2

Sequence 3

Sequence ID

Short Read

Quality 
Metric

Figure 1.2: Snippet of an example FASTQ file.

33 (‘ !’ in ASCII) denoting the lowest quality and 75 (‘K’) denoting the highest

quality.

Intrinsically, the mapping process is a pattern matching problem which

can be efficiently achieved using a well-established algorithm like indexing a

reference genome. Although the time needed to create an index for the human

reference genome can be up to an hour, the reference human genome version

changes infrequently. This time can be amortized over the abundant amount

of alignment jobs.

Figure 1.3 shows the increase in sequenced data produced by the Illumina

NGS platforms from 2006 to 2017. Given that the throughput of NGS ma-

chines is far exceeding the growth of transistor counts based on Moore’s Law,

the time required for existing software aligners to map NGS data is becoming

17
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Figure 1.3: The sequencing throughput of Illumina NGS platforms. The data
in this graph is acquired from [1, 2].

prohibitive [3]. This hinders the medical applications of NGS, such as pre-

natal diagnostics and monitoring, where individuals’ DNA and RNA should

be analyzed quickly at a low cost [5, 6]. Therefore, their acceleration would

bridge the gap between alignment research and practice, allowing these diag-

nosis techniques to become part of routine clinical procedures [7].

FPGA technology is a promising candidate to accelerate short read map-

ping [8]. Its highly-parallel bit-oriented architecture has been leveraged to ac-

celerate different mapping algorithms. As the sequenced alphabet produced by

the NGS machines is abstracted into {A, C, G, T, N} which can be represented

in 3 bits, mapping the DNA nucleotides to the reference genome is inherently a

bitwise operation. Different alignment algorithms, for example, the FM-index

technique [9] or Smith-Waterman algorithm [10], have been implemented and

accelerated on FPGA, as they are commonly used in state-of-the-art software

such as Bowtie [4], Bowtie2 [11] and BWA-MEM [12]. Finally, based on our

initial experiment with exact match alignment between the reads (101 base

pairs in length) and the human reference genome, we discover that a Virtex

Ultrascale+ VU9P FPGA starts outperforming Bowtie on Intel Silver 4110

CPU running with 16 threads, should there be 7 million reads or more to

process.
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1.1 Challenges and Contributions

Despite the success, FPGA-accelerated short read mapping is rarely adopted

in genomics research and medical applications due to the following reasons:

1. Most accelerators fail to utilize the complete information available in

NGS data. To simplify the hardware design, they utilize only the Watson-

Crick alphabets {A, C, G, T}. The quality metric information and am-

biguous characters (N characters) that are commonly present in NGS

data are usually discarded or neglected. This can result in incorrect

alignment and generate biologically invalid results.

2. Many FPGA researchers select and accelerate alignment algorithms that

are in favor of hardware implementations. As a result, the alignment

workflow of these accelerators can be inconsistent with state-of-the-art

software. Without a comprehensive analysis of the corresponding align-

ment accuracy, this diminishes the confidence of realistic applications

of FPGA aligners. For example, the accelerator in [13] performs ex-

act string matching based on the FM-index, followed by approximate

string matching based on the seed-and-extend strategy with the linear

Smith-Waterman algorithm. However, this workflow is inconsistent with

the alignment model in software such as Bowtie or Bowtie2, which in

turn limits the biological validity and reproducibility of the alignments

it outputs.

3. Most FPGA aligners are platform-dependent where the design optimiza-

tions often target a single FPGA device. As a result, the design can-

not be optimized easily across platforms. Because of the cost and pri-

vacy concerns, sometimes local clusters are preferable for alignment [14].

The lack of design portability reduces the attraction of FPGA technol-

ogy to genomics scientists, allowing its expenses and requirement of re-

optimization to outweigh its potential benefits. For example, Arram et
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al. [6] propose a suffix-trie-based accelerator that is 18.1× faster than

software. However, the design targets Maxeler MaxWorkstation and the

corresponding optimizations are unlikely to generalize across platforms.

To increase the utility of FPGA aligners in genomics research and medical

applications, we present novel designs and architecture that consider complete

biological information, including quality metic and ambiguous characters to

accelerate short read alignment. With the runtime reconfigurability of FPGA,

we study different alignment workflows by proposing and implementing dif-

ferent arrangements of alignment strategies. For each arrangement, we study

the corresponding alignment speed and accuracy when compared to Bowtie

and Bowite2. We research the alignment accelerator according to Bowtie and

Bowtie2 because they are extensively used in alignment research and practice

with more than 19,470 and 29,592 citations respectively. To aid design and

performance portability, we propose an automated design analyzer and merger

to facilitate the optimization of an aligner implementation based on the target

FPGA platform. Specifically, we use the analyzer and merger to determine

the optimal FM-index implementation. Multiple similar designs that can con-

currently process a different number of reads are developed, so as to conclude

the one that can mask the memory access latency optimally.

The aim of this work is to address the above challenges and ultimately

promote the use of FPGAs to alleviate the data processing bottlenecks in DNA

sequencing alignment without compromising accuracy. The contributions of

this work are as follows:

1. We propose and develop accelerator designs that implement exact-match,

one-mismatch, two-mismatch and three-mismatch alignment strategies.

We leverage FM-index and backtracking FM-index to achieve biologi-

cally accurate alignment, by considering complete biological information

including quality metric and ambiguous characters. We also maximize

the performance by compressing the nucleotide representations and data

20



structure, interleaving the memory access with multiple short reads, and

applying bi-directional FM-index (Chapter 3).

2. We implement the seed-and-extend strategy on FPGA to perform indel

alignment that includes matches, mismatches, deletions and insertions.

The exact-match accelerator is extended to perform seeding while a

Smith-Waterman implementation with the affine gap model is developed

for the extension. We also arrange one or multiple aforementioned align-

ment strategies into a consecutive, sequential pipeline. Reads aligned by

a strategy are reported immediately while unaligned reads are directed

to subsequent strategies. For each alignment pipeline, we investigate

the relationship between speed-up and accuracy to provide guidance for

genomics scientists (Chapter 4).

3. We propose a multi-configuration alignment pipeline by exploiting the

runtime reconfigurability of FPGA. Distinct hardware implementations

are loaded in turn, so as to construct alignment strategies in the re-

quired order. This architecture can promote portability as users can

have better control over alignment parameters. Implementations can be

re-arranged, removed, or added straightforwardly to accommodate differ-

ent sequenced data quality and experiments being performed (Chapter 3

and Chapter 4).

4. We introduce an approach for merging multiple FPGA designs into a

single hardware design, so that multiple place-and-route tasks can be

replaced by a single task to speed up functional evaluation of designs, es-

pecially during the optimization stage of the applications, such as FPGA

aligners. This approach has three key elements. First, a novel ap-

proximate maximum common subgraph detection algorithm for dataflow

graphs with linear time complexity to maximize sharing of resources in

the merged design. Second, a prototype tool implementing this common

subgraph detection algorithm for dataflow graphs derived from Verilog
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designs. This tool would also generate the appropriate control circuits to

enable the selection of the original designs at runtime. Third, a compre-

hensive analysis of compilation time versus degree of similarity to identify

the optimized user parameters for the proposed approach (Chapter 5).

1.2 Thesis Organization

This work is organized into six chapters. In this chapter, the motivations,

research challenges and contributions are presented.

In Chapter 2, we present background information on the most commonly

used alignment algorithms: the FM-index technique and the Smith-Waterman

algorithm with the affine gap model. We also provide a comprehensive liter-

ature review that studies and analyzes previous FPGA accelerators for DNA

sequence alignment.

In Chapter 3, we describe the FM-index accelerators that implement exact-

match and mismatch alignment strategies. In addition, we present a runtime

reconfigurable architecture that aligns reads with different edit-distance-based

strategies. A few novel and general methods which enable customization of

the FPGA aligners for the platform beyond this work are also given. We sum-

marize this chapter by demonstrating the speed-up and accuracy, compared to

previous work and Bowtie.

In Chapter 4, we elaborate on the runtime reconfigurable accelerator that

implements the seed-and-extend strategy, which is based on an FM-index and

a Smith-Waterman implementation with the affine gap model. We then extend

the architecture by incorporating one or more of the implemented strategies

in Chapter 3, forming different arrangements of alignment strategies. For

each arrangement, a detailed investigation of the alignment performance and

accuracy is presented.

In Chapter 5, we propose an automatic merger that combines multiple ver-

sions of a design project into a single hardware implementation. The proposed
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merger can identify common computational kernels between versions, perform

the necessary merging and generate a final hardware design in linear time. We

also benchmark the merger by using several designs from the VTR Bench-

marks [15, 16], and provide a case study on Binomial Filters and one of the

proposed FPGA aligners. We conclude this chapter with some previous work

on FPGA design analysis and merging.

Finally, in Chapter 6 we conclude this thesis with the current state of our

work and thoughts about future work.

1.3 Selected Publications

The work in this thesis has been published in five conferences and journals.

We provide a list of selected publications below that are mostly based on the
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Chapter 2

Background and Related Work

This chapter presents the background information that forms the foundation

of this work. Section 2.1.1 elaborates on the most commonly used indexed

string alignment techniques: Burrows-Wheeler transform (BWT) [17] and FM-

index. Then Section 2.1.2 explains the Smith-Waterman algorithm and the

affine gap model. The seed-and-extend alignment strategy, which is broadly

used in practical indel alignment, is explained in the sub-section followed.

Finally, Section 2.2 provides a comprehensive discussion on previous FPGA

accelerators for DNA sequence alignment.

2.1 Background

2.1.1 Indexed String Alignment

In software aligners such as Bowtie, Bowtie2 and BWA-MEM which runs on

commodity CPU, indexing is a commonly applied method to quickly locate

the occurrence of a read in a long reference sequence. Indexing techniques,

such as suffix array [18], BWT and FM-index, require preprocessing so as to

substantially reduce the search space and provide fast string alignment. Since

the reference genome changes infrequently, the cost of building the index can

be amortized with an abundant number of searches.
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Suffix Array and BWT

The formation of the FM-index for a reference genome R combines the suffix

array SA and BWT of R. To generate the suffix array, R is first terminated

with a unique character: ‘$’, which is lexicographically the smallest value.

Then, all the rotations of the text are obtained and sorted correspondingly,

forming a sorted rotation list. The suffix array can be obtained by considering

the characters before ‘$’ in each entry of the rotation list.

The BWT of R: BWT (R), can be formed by extracting and concatenating

the last characters of all the entries on the sorted rotation list. Table 2.1

demonstrates the derivation of BWT with an example reference genome R =

ACTAG. The string preceding the ‘$’ sign in the sorted rotation list forms the

suffix array, which indicates the position of each possible suffix in the original

string.

Table 2.1: Example of deriving the suffix array and BWT of R.

R = ACTAG$

Index ι SA Sorted Rotation List

0 5 $ACTAG

1 0 ACTAG$

2 3 AG$ACT

3 1 CTAG$A

4 4 G$ACTA

5 2 TAG$AC

BWT (R) = G$TAAC

FM-index

To generate the FM-index of R, the suffix array, BWT (R) and R are used to

generate two functions: i(x) and c(ι, x) functions. For each element x of the

alphabet of R, i(x) is the number of characters in R that is lexicographically

smaller than x. For each index ι in BWT (R) and for each character x in
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the alphabet, c(ι, x) stores the number of occurrences of x in BWT (R) in the

range [0, ι−1]. Table 2.2 illustrates the i(x) and c(ι, x) tables for the reference

genome R.

Table 2.2: c(ι, x) and i(x) functions for R.

c(ι, x)

Index ι A C G T

0 0 0 0 0

1 0 0 1 0

2 0 0 1 0

3 0 0 1 1

4 1 0 1 1

5 2 0 1 1

6 2 1 1 1

i(x) {1, 3, 4, 5}

Essentially, the FM-index is a pattern searching technique that operates

on the i(x) and c(ι, x) functions recursively. Two pointers top and bottom are

defined to perform the search. top refers to the index of an SA element where

a specific pattern is first located, and bottom is the location in SA where the

pattern is lastly found. If bottom points to an index that is less than or equal

to the index pointed by the top, the pattern does not appear in the reference

genome.

To search for a specific pattern P in R using its FM-index, we need to

process one character at a time, starting from the last character of P . The top

and bottom are first initialized with the first and last indices of the c(ι, x) func-

tion respectively. Then both pointers are updated according to the following

equations:

topnew = c(topcurrent, x) + i(x)

bottomnew = c(bottomcurrent, x) + i(x)
(2.1)
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The final results of top and bottom are the range of indices in SA that

contains P as the prefix, which can be subsequently converted into the coordi-

nates in R. In Algorithm 1, we provide pseudocode that details the procedure

of searching P in the reference R. Note that the time complexity of locating

a pattern in the reference genome is linear with respect to |P | instead of |R|.

Data: Pattern P , c(), i(), SA of Reference R
Result: The starting locations Loc of P in R

1 l = |P | − 1
2 (top, bottom) = (0, c(|R|, P [l]))

3 for j = l to 0 do
4 top = c(top, P [j]) + i(P [j])
5 bottom = c(bottom, P [j]) + i(P [j])

6 end

7 if top < bottom then
8 for j = 0 to top− bottom do
9 Loc[j] = SA[top+ j]

10 end
11 end

Algorithm 1: Exact substring matching using FM-index.

Finally, FM-index can be extended to support mismatch alignment with

backtracking [4]. To start, a stack is maintained to store the current search

state when a mismatch happens. A different character is then attempted to

align with the reference genome. The state is restored when the number of

mismatches exceeds the permitted value. Another untested character is used

and attempted to perform alignment again.

2.1.2 The Smith-Waterman Algorithm

The Smith-Waterman algorithm is a dynamic programming technique to per-

form alignment with mismatches, insertions and deletions. It uses a scoring

matrix V to reveal the optimal local alignment between the pattern P and

the reference genome R, where |P | = m and |R| = n. Every entry in V is
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calculated recursively according to the following equation:

V (i, j) = max



0

V (i− 1, j − 1) + σ(P [i], R[j]) Match/Mismatch

V (i− 1, j) + σ(P [i],_) Deletion

V (i, j − 1) + σ(_, R[j]) Insertion

(2.2)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

Base case

V (i, 0) = 0 0 ≤ i ≤ n

V (0, j) = 0 0 ≤ j ≤ m

(2.3)

The function σ(x, y) determines the relative weighting of match, mismatch,

deletion and insertion between characters x and y. The weighting can be ad-

justed according to different alignment requirements. For example, the inser-

tion and deletion penalties can be set to a higher value than the substitution

penalty if the presence of redundant characters is less acceptable than the

character difference.

Table 2.3: Example of calculating the matrix V for the pattern P = AT and
the reference R = CTCATGG.

- C T C A T G G
- 0 0 0 0 0 0 0 0
A 0 0 0 0 2 1 0 0
T 0 0 2 1 1 4 3 2

Match: σ(x, x) = +2, Mismatch: σ(x, y) = −1
Deletion: σ(x,_) = −1, Insertion: σ(_, x) = −1

Table 2.3 illustrates the calculation of the matrix V for the alignment of

read P = AT to a reference R = CTCATGG. The optimal alignment can

be obtained by completing the matrix V . The highest score indicates how a
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pattern can be best aligned to another sequence within the allowed diversity. In

Table 2.3, the highest score is 4 which indicates that pattern P can be exactly

mapped to sequence R. By backtracking from the highest score to the entry

in which the score becomes zero, the optimal alignment can be reconstructed

as a string representation.

The Affine Gap Model

The Smith-Waterman algorithm with the affine gap model is mostly used in

state-of-the-art software such as Bowtie2. This model provides a more realistic

computation where a genetic mutation generally causes the insertion/deletion

of a large block. Compared to the above linear model, this model can account

for gaps or inserts as a single event instead of individual ones. The calculation

of V is now changed to the following:

V (i, j) = max



0

V (i− 1, j − 1) + σ(P [i], R[j]) Match/Mismatch

si,j,→ Deletion

si,j,↓ Insertion

(2.4)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n

The function σ(x, y) determines the relative weighting of match or mis-

match between characters x and y. Equation (2.5) explains the affine gap

functions si,j,→ and si,j,↓. The → and ↓ denote a character deletion and a gap

insertion in P respectively.

si,j,→ = max

V (i− 1, j)− α

si−1,j,→ − β

si,j,↓ = max

V (i, j − 1)− α

si,j−1,→ − β

(2.5)
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α is the cost for an opening-gap penalty while β is the cost for a continuous-

gap penalty, with β < α. Basically, the penalty for initiating the gap is more

expensive than the gap extension. Compared to the linear Smith-Waterman al-

gorithm with a standardized σ function for all matches, mismatches, insertions

and deletions, the affine gap model requires two additional scoring matrics to

buffer si,j,→ and si,j,↓ which increases the memory requirements.

2.1.3 The Seed-and-Extend Strategy

Despite the Smith-Waterman algorithm providing an optimal mapping for

alignment with matches, mismatches, insertions and deletions, its time com-

plexity is O(mn) which is prohibitively expensive given the reference genome is

three billion base pairs (bp) in length. Therefore, a general scheme to achieve

indel alignment in Bowtie2 or BWA-MEM is based on the seed-and-extend

strategy.

To start, the short read is first partitioned into fixed-length subsequence,

i.e. seeds. An indexing algorithm such as the FM-index is used to quickly

identify all possible matching locations, by exactly aligning seeds to the ref-

erence. Finally, the short read is then mapped to the reference using the

Smith-Waterman algorithm at each matching location. This model substan-

tially improves the alignment efficiency with a negligible accuracy loss.

2.2 Related Work

Depending on applications, different alignment strategies can be applied to

perform different genomic analyses. In the rest of this chapter, we present

a comprehensive literature review that studies the existing FPGA-accelerated

aligners, including BLAST and multiple sequence aligners. As they share some

very similar properties with short read mapping, their implementations and

experiments can provide insight and guidance to our work. The interplay
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between the hardware characteristics of FPGA and the algorithmic techniques

is also briefly mentioned and described.

2.2.1 Pairwise Sequence Alignment

A fundamental problem in the field of computational biology is the comparison

and alignment of two sequences of DNA strands. Such analysis aims to iden-

tify the relationships between two sequences to reveal mutations, insertions or

deletions of nucleotides from one biological sequence to another. Depending on

the applications, the alignment results can provide useful biological or medical

information such as evolutionary development of a species, or identification of

causal cancer genes and genetic diseases [19].

The Smith-Waterman algorithm is the most commonly used method to

perform pairwise sequence alignment (PSA). However, because of the enor-

mous size of DNA sequences, essentially three billion bp in the human genome,

software implementations of this algorithm suffer from prolonged execution

latency. To accelerate PSA, reconfigurable devices have been extensively used

to reduce the time complexity from O(mn) in software to O(m+n) on FPGA

hardware.

Simple Aligner

In [20], the authors present one of the first FPGA accelerators for the Smith-

Waterman algorithm. Reconfigurable systolic array is adapted to provide a

large amount of parallelism for the computation of the scoring matrix V . The

proposed design was tested on Virtex-II XC2V6000 and 3,225 billion entry/cell

updates are generated per second (GCUPs). Similarly, Puttegowda et al. [21]

propose a systolic architecture named HokieGene to accelerate PSA. This de-

sign targets Virtex-II XC2V6000 and it can generate 1,260 GCUPs.

The above implementations and the performance figures are, however,

achieved using runtime reconfiguration, which directly writes one string into
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the FPGA’s bitstream, and the reconfiguration process can be a bottleneck for

applications that require both sequences to be modified very often.

Therefore, Yu et al. [22] propose a reconfiguration-free implementation of

the Smith-Waterman algorithm. In particular, the design of the accelerator is

less FPGA device-specific and thus can be deployed on cross-vendor FPGA.

Systolic Array is also used as the architecture and the proposed design can

produce 814 GCUPs when implemented on Virtex-E XCV1000E-6.

Affine Gap Cost Model

Very often, the alignment of two sequences favors gap extension rather than

single insertion and deletion. Therefore, instead of giving a fixed negative score

to every gap, biologists usually apply the affine gap penalty when computing

the scoring matrix.

In [23] and [24], the authors propose the first FPGA-based accelerator that

supports the affine gap model. Systolic matching cells are implemented to sup-

port different cost functions for the Smith-Waterman Algorithm. Compared

to software implementation on Xeon 3GHz processor, a speed-up of 370× can

be achieved when implemented on Virtex-II Pro XC2VP70 FPGA.

Similarly, Jiang et al. [25] implement a reconfigurable accelerator that can

adopt the affine gap penalty. In this design, a modified equation is proposed to

improve the mapping efficiency of a processing element (PE). A special floor

plan is applied to the fine-grain parallel PE array to cut down their routing

delay. With these two techniques, the proposed implementation on Stratix

EP1S30 can generate 6.6 GCUPs and improve the performance by 345× versus

a similar software on Xeon 2.8GHz processor.

Most of the research efforts such as [26–33] utilize systolic array or fine-grain

PE architecture to accelerate PSA with the affine gap penalty. Experiments

show that, when compared to state-of-the-art software implementations, the

reconfigurable accelerators can achieve a speed-up from around 40× to 246×.
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Accelerator with Traceback

To further improve the accelerator performance, some FPGA designs real-

ize the traceback procedure instead of relying on the host CPU to perform

backtracking. For example, Benkrid et al. [34] implement a Smith-Waterman

accelerator on Virtex-II XC2VP100. A pipeline of PEs can be used to calculate

the scoring matrix and traceback. An improved accelerator is later proposed

in [35] in which a space-efficient algorithm is used to overcome the memory size

and bandwidth limitations. Compared to software on Core2 Duo 2.4GHz, a

performance gain over 300× can be obtained with 256 PEs on Virtex-4 FX100

FPGA.

Furthermore, a few researchers accelerate variants of the Smith-Waterman

such as DIALIGN [36] to accomplish better alignment sensitivity. For exam-

ple, Boukerche et al. [37] propose a reconfigurable accelerator for DIALIGN by

implementing wavefront array processors on Stratix-II EP2S180. The trace-

back procedure can also be executed on FPGA to retrieve the alignment and

the overall speed-up is around 141× compared to a similar software implemen-

tation.

Finally, Sebastião et al. [38] and Fei et al. [39] propose Smith-Waterman

accelerators that analyze the computing features of this particular dynamic

problem. By eliminating the storage requirements and data dependency, es-

pecially for the backtracking stage, these accelerators can achieve at least 3×

speed-up versus software.

Hardware Abstraction in FPGA-PSA

Some of the efforts are devoted to improving the portability and usability

of the accelerated system. In [40], the authors design a systolic architecture

that can be applied to solve general dynamic programming-based alignment

problems. Others such as [24, 34, 41] provide generic, parameterizable FPGA

cores for PSA which are portable across various FPGA platforms. Liu et
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al. [42] introduce the concept of “accelerator on the cloud” where a web server

is used to serve alignment requests. All these implementations, compared

to state-of-the-art CPU designs, can deliver a speed-up of more than 62×.

Finally, Greaves et al. [43] tackle the problem from another approach where

the software engineer can model the Smith-Waterman algorithm in C# and

automatically compile the program into parallel architecture on FPGA.

2.2.2 Database Search

Computational search through large databases of DNA is one of the important

tools to reveal homologous sequences in modern molecular biology. Database

sequences that display high similarity with the query are often expected to

derive from the same ancestral sequence.

Heuristics such as BLAST [44] are extensively used by biologists to perform

database search. Essentially, BLAST algorithm works in three consecutive

stages:

1. Word Matching

2. Ungapped Extension

3. Gapped Extension

However, as the size of the most commonly used database such as NCBI

databank [45] grows at the same pace as the increase in transistor counts

based on Moore’s law, running BLAST on a processor has been the bottleneck

in homology analysis.

In this sub-section, previous work on the reconfigurable acceleration of

BLAST is included as it shares some similar properties compared to short read

alignment. Although some variations of BLAST such as BLASTp or BLASTx

do not target the alignment of genetic nucleotides, they are also included in

the discussion because of their similarities in heuristic and methodology. A

summary of the previous work is shown in Table 2.4.
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Table 2.4: Summary of the previous work on FPGA acceleration of database
search.

Category Paper Algorithm &
Method Co-Processor Device

Max.
Query
Length
Tested

Database
Length Speedup

Basic
Accelerators

[46] Smith-Waterman Pentium-III 1GHz Virtex-E XCV2000E 2,048 64M bases 330×
[47][48] All Stages - Virtex-4 4VFX140 5,000 44M bases 215×

Hybrid
Systems

[49]
Stage 1, 2

PowerPC 405 300MHz Virtex-II PRO V2P30 200 k - 32×
[50] Pentium-4 2.60GHz Stratix-II EP2S130C5 3,000 101M bases 48×
[51] Core i7 2.80GHz Virtex-5 ML509 3,000 123M bases 46×
[52] Stage 1 DRC coprocessor Virtex-5 LX330 1M 1.4G bases 10×*

Mercury
BLAST

[53] Stage 1 Pentium-D 3GHz
Virtex-II 6000

1M 1.16G bases 7×
[54] Stage 1, 2 Opteron 2GHz 64,000 1.5G bases 11×

[55] Stage 1, 2
(partially) - 25,000 1.5G bases 50×

Result
Compatible [56] Function

Blast_Nt_Scan PowerPC 405 300MHz Virtex-4 ML410 975M
bases 400MB 3×

Database
Pre-
filter

[57] Pre-filtering -
Threshold - Virtex-5 XC5VLX330T - - 5×

[58] Pre-filtering -
TreeBLAST - Stratix-III EP3SL340 1,000 7.17G bases 12×

Hardware
Abstraction
in FPGA-
BLAST

[59] Two-Hit Method - Virtex-4 XC4VLX60 - - 52×

[60] Mitrion Virtual
Processor Itanium Virtex-4 LX200 100M - 20×

[61] Smith-Waterman Xeon E5620 Stratix-IV E530 1.6M 975M bases 59×

Basic Accelerators

One of the earliest efforts in accelerating BLAST on reconfigurable devices

is the TUC BLAST. In [47, 48], Sotiriades et al. develop the first version of

TUC BLAST in which the entire BLAST algorithm is mapped onto Virtex-

4 4VFX140 FPGA. This architecture can support small queries of up to

1,000/5,000 letters regardless of the database size. Hash table is used to build

hit finders and extension is done with basic comparators. Experiments indicate

that the proposed accelerator can achieve a speed-up of 215× versus BLASTn

on Xeon 2GHz.

Hybrid Systems

The above TUC BLAST is later on revised and incorporated with the Pow-

erPC processor onboard to perform extension [49]. Implemented on Virtex-II

PRO V2P30, the modified accelerator achieves 32× speed-up compared to the

execution on Pentium-4 3.0GHz. The authors also explore the design space
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on ASIC to work around the limitations of FPGA in [62].

Xia et al. [50, 63, 64] also propose a hybrid architecture where the first

two stages of BLAST are accelerated on Stratix-II EP2S130C5 FPGA and the

final stage is executed on CPU. To decrease the on-chip memory requirement

and support longer queries, a systolic array of 3072 PEs is used to perform

multi-seeds detection and multi-channel hardware modules are implemented

to complete ungapped extension. Experimental results demonstrate a speed-

up of 48× versus Pentium-4 2.6GHz CPU.

Furthermore, Guo et al. [51] implement a similar systolic array architec-

ture which also supports long query (≥ 3K). Word Matching and Ungapped

Extension of BLAST are accelerated on Virtex-5 ML509 FPGA. However,

this design is different from Xia et al. as look-up tables (LUTs) are used to

implement the hit detection module instead of block memories (BRAMs) to

increase the throughput of Word Matching. Experiments show that this par-

ticular implementation can deliver 46× speed-up when compared to the Core

i7 processor on Dell Precision T1500 PC.

Chen et al. [52] also present an FPGA-based reconfigurable architecture

to accelerate the word-matching stage of BLAST while maintaining the com-

putations of other stages on CPU. This design consists of three sub-stages, a

parallel Bloom filter, an off-chip hash table, and a match redundancy elimi-

nator. The performance of this architecture, when implemented on Virtex-5

LX330, demonstrates 10× speed-up against Core2 Duo 3.2GHz (1-thread) in

Word Matching*.

Mercury BLAST

The Mercury system is a platform that consists of reconfigurable logic associ-

ated with the disk controller, so as to provide computation in close proximity

to the data in the backing store [65]. This platform is frequently employed to

accelerate BLAST because of its high-throughput data channels.

Krishnamurthy et al. [53] develop the first Mercury BLAST implementa-
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tion on Virtex-II 6000. The Word Matching stage is accelerated with Bloom

filters and a hash table. Since the first stage is found to be the bottleneck

in BLAST execution, this accelerator can demonstrate 7× overall speed-up

against Pentium-4 2.8GHz.

Mercury BLAST is then improved by Buhler et al. [54] where Word Match-

ing and Ungapped Extension are both accelerated on FPGA. The FPGA-

accelerated ungapped extension employs a similar heuristic as BLAST. This

approach can achieve a speed-up of 11× while retaining 98.5-99% of all align-

ments found by NCBI BLASTN.

Finally, Lancaster et al. [55] further improve the design by implementing

a pre-filter on FPGA for the third stage and at the same time offloading

the computation of ungapped extension on CPU. By highly paralleling and

pipelining the hardware modules, the accelerator accepts query of 25k bases

and achieves 50× improvement. The same sensitivity can still be maintained

when compared to the BLAST software.

Another type of BLAST, BLASTp is also accelerated using the Mercury

framework. Word Matching is accelerated in [66] and Gapped Extension is

accelerated with Smith-Waterman in [67]. Finally, [68] presents a full acceler-

ation of BLASTp where all the previous efforts are combined to provide a full

implementation.

Single-Pass BLAST

Since BLAST involves multiple passes during database queries, some researchers

introduce a new algorithm that operates a single-pass, streaming rate mecha-

nism to improve performance. For example, Herbordt et al. [69, 70] propose

the use of a dynamic programming approach on FPGA to emulate the seeding

and extension phases of BLAST. This algorithm, TreeBLAST, can improve

the performance of the database search by 400× on Virtex-4 LX160 FPGA

compared to multiple-pass NCBI BLASTp on Xeon 2.8GHz.
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Results Compatible Accelerator

Although the mentioned implementations demonstrate significant speed-up

compared to software, the search outcomes are not always consistent with

the NCBI results. Since typical biologists would have no idea whether the

differences are statistically significant, some FPGA researchers argue that the

hardware-accelerated design should be NCBI BLAST compatible.

Datta et al. [56] propose a memory-efficient FPGA design that implements

Blast_Nt_Scan function of BLAST. The primary function of the scan function

is to stream the subject sequence data and to locate hits. Without compro-

mising fidelity, the proposed implementation on Virtex-4 ML410 can improve

performance by a factor of 3 (compared to Pentium-4 3.2GHz) while in com-

plete agreement with the standard NCBI BLAST.

Database Pre-filtering

In addition to accelerating different phases of BLAST using FPGA, another

useful approach to improve the overall performance is to profile the codebase

and reduce the database size. One idea is to quickly reduce the size of the

database to a small fraction, and then use the original NCBI BLAST code to

process the query.

Afratis et al. [57] propose the first pre-filtering approach to BLAST by

finding and reporting matches in the areas of high similarity between database

and query. They found that pre-filtering can provide at least a factor of 5 and

up to 3 orders of magnitude reduction in the database space.

Park et al. [58, 71] also apply pre-filtering with the TreeBLAST algorithm

and quickly reduce the size of the database to a small fraction. The sensitivity

of the pre-filtering approach is tuned to exceed that of the NCBI BLAST

implementation so as to ensure identical results. Experimental results show

that, compared to NCBI BLASTn, the speed-up is greater than 12× when

pre-filtering and accelerator in [69] are used in the execution.
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Hardware Abstraction in FPGA-BLAST

Despite the promising results described, the FPGA-based solutions should also

be portable and straightforward to promote the use of reconfigurable acceler-

ators among biologists.

In [72], Muriki et al. present the first portable, cost-effective and open-

source solution of FPGA-accelerated BLAST to guarantee usability. However,

this BLAST implementation on Xilinx 4085XLA is limited by the IO band-

width and as a result, this approach is slower than software. Kasap et al. [59]

also present a portable FPGA accelerator for BLAST by capturing the design

with an FPGA-platform-independent language Handel-C. The architecture of

the accelerator can be parametrized in terms of the sequence lengths, match

scores, gap penalties, and cut-off and threshold values. It is reported that the

hardware implementation is 52× faster than equivalent software implementa-

tions on Centrino Duo 2.2GHz.

Moreover, Abelsson et al. [60] propose the use of Mitrion Virtual Proces-

sor to accelerate BLAST. Since Mitrion enables software developers to tar-

get FPGA-based computers without any requirements of the hardware design

skills, users can continue using the familiar BLAST interface, while at the same

time getting searches completed 10× to 20× faster.

Finally, Lam et al. [61] introduce an FPGA-accelerated BLAST on the

cloud. To provide database search, the Smith-Waterman is accelerated on 64

Stratix-IV E530 on multiple PS4 compute nodes of Novo-G. A robust software

interface is also provided to seamlessly integrate the FPGA design into the

existing processing pipelines of NCBI BLAST.

2.2.3 Multiple Sequence Alignment

Multiple sequence alignment (MSA) is an extension to PSA and is generally

used to construct family representations of sequences or to reveal evolution-

ary histories of species. However, it is an NP-Hard problem and therefore
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the optimal solution can only be obtained using an s dimensional dynamic

programming table where s is a number of sequences [73].

A heuristic algorithm, such as ClustalW [74], has been widely used among

biologists because of its efficiency. ClustalW uses a progressive algorithm that

consists of three major steps:

1. PSA between all sequences to generate a distance matrix

2. Guiding the tree generation based on the distance matrix

3. Successively building MSA by performing PSA based on the branching

order of the guide tree

However, ClustalW faces the same problem as BLAST does due to the rapid

growth of the sequence database, and aligning a few hundred sequences could

require several hours on CPU.

Research has been done to overcome this problem by accelerating MSA

with reconfigurable devices. In [75] and [76], the authors present an accelerated

ClustalW by offloading the computation of the first stage onto FPGA. As more

than 90% of the runtime is spent in the first stage , [75] provides a speed-up of

50× on Virtex-II XC2V6000 compared to Pentium-4 3GHz for the first stage,

and [76] achieves 10× performance improvement when Stratix PEIS30 is used

instead of Xeon 2.8GHz.

Finally, the third stage of ClustalW is accelerated in [77]. Compared to

Core2 2.4GHz, an overall speed-up of 150× can be achieved by reducing sub-

groups of aligned sequences into discrete profiles before PSA is performed on

Virtex-4 FX100.

2.2.4 Mapping

As mentioned, mapping is one of the dominant applications of next-generation

sequencing where millions of short reads are generated by NGS machine and

mapped to the reference genome. Software such as Bowtie, Bowtie2 and BWA-

MEM is widely used among biologists as de facto sequence alignment programs
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Table 2.5: Summary of the previous work on FPGA acceleration of short read
alignment.

Category Paper Algorithm & Method Platform Device Speedup Mbps−1

Basic Mapper [78] Brute-Force - Virtex-5 LX330 4× 0.00567

Approximate
String
Matching

[79] Hash + Needleman-Wunsch - Virtex-5 LX330 5.2× 3.57
[80] BFAST SW Pico Computing M-503 Virtex-6 LX240T×8 31× 112
[81] FM-index Convey HC-1 Virtex-5 LX330×4 2.43× 13.2

Accurate
Mapper

[82] Compact Linear Systolic - Virtex-6 LX550T 1× 0.13
[83] Bowtie2 + Smith-Waterman Maxeler MAX5C Virtex Ultrascale+ VU9P 35% 1.03

Runtime
Reconfigurable
Mappers

[13] FM-index + Smith-Waterman Maxeler MAX3 Virtex-6 SX475T 72.2× 151
[6] FM-index Maxeler MAX3 Virtex-6 SX475T 18.1× 97.8
[84] FM-index Maxeler MPC-X1000 Stratix-V×8 14.9× 66.4

Hybrid
Systems

[85] PerM Algorithm Blade Server (AMD
2.8GHz CPU×2) Virtex-5 LX330 42.9× 8.00

[86] BWT Pico Computing M-505 FPGAs×12 48× -
[87] Dynamic Programming IBM Power8 S824L Virtex-7 VX690T 1.86× 2.50

BWA-
MEM
Accelerator

[88][89] Smith-Waterman Alpha Data
ADM-PCIE-7V3 Virtex-7 VX690T-2 2× 4.1

[90] Smith-Waterman - Virtex-7 VC707 26.4× -
[91] BWT Inter-Altera HARP Stratix-V 26%† -

of choice. Yet, the sequencing machine is improving at a rate faster than the

transistor counts according to Moore’s law. Mapping the generated sequence

such as the complete human genome is taking an order of day’s worth of com-

puting time [73]. Therefore, FPGA technology has been extensively studied

by researchers to speed up the mapping process. A summary of the previous

work on the reconfigurable acceleration of short read alignment is displayed

in Table 2.5. To allow a fair comparison, we define a normalized metric, base

pairs aligned per second (bps−1), which is given by:

bps−1 =
read length× read count

alignment time
(2.6)

Basic Mappers

Fernandez et al. [78] implement the first hardware short read mapper in 2010

where the design is based on a naive solution. The reconfigurable implemen-

tation on Virtex-5 LX330 delivers a speed-up of 1.6× to 4× when compared

to the fastest software tool RAMP [92] and ELAND [93] on Xeon Harper-

town 2.5GHz (1-thread) processor. However, the performance of this design
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decreases with the increase of read length, therefore a followed-up work [94] is

proposed in which the authors develop the first implementation of FM-index

on FPGA. As the FM-index does not need to perform all character matching

for the reference compared to the naive solution, this approach, when imple-

mented on Virtex-6 LX760, outperforms the previous work by around 2× and

more importantly, provides a 133× speed-up compared to Bowtie on Xeon

2.5GHz (1-thread) processor.

Approximate String Matching

Since [94] is only limited to exact string matching, the authors extend their

work as a multi-threaded FPGA design called FHAST which supports up to

2 mismatches [81]. In this implementation of FM-index, each read represents

a thread in the search and maximally 512 concurrent threads can be executed

using a single Virtex-5 LX330 FPGA on Convey HC-1. Experimental results

show that FHAST achieves a speed-up of up to 2.43× over Bowtie running on

Xeon L540B and E5520 (16-thread) processors, and a second version that runs

on Convey Computers HC-2ex provides higher sensitivity for a larger number

of mismatches [95]. Using four Virtex-6 LX760 FPGAs, FHAST version-II

can provide a speed-up up to 12× compared to Bowtie on two Xeon E5-2634

(8-thread) processors.

Besides FM-index, other researchers propose different FPGA-solution for

approximate string matching. In [80], Olson et al. propose an accelerator

that is based on indexing of reference with Smith-Waterman alignment both

performed on FPGA. The authors optimize the size of the candidate align-

ment location (CAL) lookup table and partition the design into eight Pico M-

503 boards each with one Virtex-6 LX240T FPGA. This 8-FPGA system can

achieve 31× speed-up versus Bowtie running on two Xeon E-5520 (8-thread)

processors.

Chen et al. [79, 96] also implement an accelerated short read aligner based

on the seed-and-extension strategy. The basic idea of such strategy rests on
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the heuristic that only a limited amount of errors (substitution, insertion and

deletion) exists for a significant amount of alignments and therefore long exact

match regions would exist. Thus aligning the exact matches, i.e. seed first,

and then extending to both directions of the sequence for approximate string

matching can reduce the search space enormously.

In these implementations, Chen et al. use a hash table as the seed engine

and apply Needleman-Wunsch search [97], a dynamic programming algorithm,

for the extension. Using a Virtex-5 LX330 device, the hardware aligners can

achieve a speed-up between 2.5× to 5.9× compared to BWA [98] at a higher

sensitivity.

Highly Accurate Mappers

On the other hand, Knodel et al. [99] design a short read mapper on FPGA

that allows a freely adjustable character mismatch threshold. This mapper is

based on a brute-force approach that relies on a massive amount of shift reg-

isters using BRAMs and comparators to perform matching, and it guarantees

a 100% mapping rate within the mismatch threshold. Compared to Bowtie on

Core2 Duo 2.66GHz (2-thread) processor, the hardware mapper can run 2×

faster and can align 20% more genome when implemented on Virtex-6 LX240T

FPGA.

The authors continue their work and design another short read mapper

based on a linear systolic computation scheme to achieve better performance [82].

Implemented on Virtex-6 LX550T FPGA, the hardware mapper reports 2×

more locations than Bowtie while maintaining the execution latency compet-

itive to software executed on i7-2600K (4-thread) processor. This solution is

also migrated onto Virtex-7 VX485T and is released as an open-source package

called PoC-Align [100].

Recently, Koliogeorgi et al. [83] design a Bowtie2 accelerator where the

extension stage is accelerated on FPGA. The extension and backtracking of the

Smith-Waterman algorithm account for 60% of the entire Bowtie2 execution.
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By leveraging techniques such as data interleaving and double buffering, the

accelerated design is guaranteed to deliver exactly the same results as Bowtie2

while providing 35% overall performance gain.

Runtime Reconfigurable Mappers

Some researchers manage to take advantage of the reconfigurable property

of the FPGA device to further improve the performance of hardware short

read aligners. In [101] and [13], Arram et al. introduce a hardware design

that incorporates specialized matchers for exact and approximate sequence

alignment, while at the same time runtime reconfiguration is used to fully

populate the FPGA with each type of matchers. This decoupling enables

the flexibility of optimizing each matcher according to the intended workload,

hence resulting in higher parallelism and performance. With this scheme,

results reported on Virtex-6 SX475T within Maxeler MAX3 are 72.2× faster

than BWA, and 56× faster than Bowtie on Xeon X5650 (20-thread) processor.

Using the same approach, the authors further extend their work and design

specialized filters that can align short reads to a reference genome with differ-

ent edit distances [6]. These filters are arranged in a pipeline according to an

increasing edit distance, in which reads unable to be mapped by a given filter

are forwarded to the next filter in the pipeline for further processing. Specif-

ically, each time the FPGA is fully populated with each filter in the pipeline

in turn with runtime reconfiguration. With specialized filters based on a novel

bi-directional backtracking version of the FM-index, it is found that the align-

ment time on Maxeler MAX3 can be up to 18× faster than BWA running on

two X5650 (12-thread) processors.

Hybrid Systems

Hybrid aligner refers to the concept of hardware-software co-design for accel-

erating short read alignment. In [86], Draghicescu et al. design BWT aligners
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on twelve Virtex-5 505 FPGAs within the Pico Computing’s machine. The ac-

celerator ties into existing BWA software and allows the CPU to perform tasks

that it is optimized for, such as file handling and memory management. The

proposed system can achieve 48× speed-up compared to the software version

of BWA running on two Xeon CPUs.

Tang et al. [85] also develop a hybrid accelerator where a host program

running on PC is dedicated to controlling the loading and storing of reads and

references data to and from the hardware. The hardware mapper is based

on PerM [102], a software with periodic spaced seeds to significantly improve

mapping efficiency for large reference genomes. Meshes of processing elements

are implemented on Virtex-5 LX330 to take the advantage of the spatial par-

allelism on FPGA. Experiments show that this accelerator can deliver 22.2×

to 42.9× speed-up versus PerM on a 6-core Xeon (Westmere) processor.

Recently, Banerjee et al. [87] propose an ASAP aligner that accelerates

Levenshtein distance calculation based on dynamic programming. The design

is implemented on Virtex-7 VX690T FPGA in an IBM POWER8 system that

uses the CAPI interface for cache coherence across the CPU and FPGA. Exper-

iments show that the accelerator is 2× faster for an end-to-end alignment tool

running on POWER8 CPU. Other mentioned efforts, such as [96] and [100], are

also tightly coupled with the software environment and presented as a hybrid

system to accelerate short read alignment.

Acceleration of BWA-MEM

Some research efforts are devoted to accelerating certain alignment software.

In particular, BWA-MEM has been widely studied and accelerated by FPGA

researchers because of the accuracy and improved efficiency of the software [12].

Basically, the BWA-MEM algorithm consists of three main steps which are

executed in succession for each read in the input:

1. SMEM (i.e. seeds) Generation
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2. Seed Extension

3. Output Generation

In [90], Chen et al. propose an acceleration engine for BWA-MEM by of-

floading the seed extension, which is the computation bottleneck, onto Virtex

VC707 FPGA. The authors develop an efficient Smith-Waterman implemen-

tation that supports massive task-level parallelism, sharply varied input sizes,

and software-pruning strategies. Compared to BWA-MEM software on a 6-

core processor with 24 threads, the proposed design can demonstrate 26.4×

improvement in execution latency. The authors continue their work by of-

floading SMEM generation onto the FPGA in the latest Intel-Altera HARP

system [91]. With a 16-PE accelerator engine, the generation of the seed is ac-

celerated by 4×, and the overall SMEM seeding stage by 26% when compared

with 16-thread CPU execution†. This work is later on improved by Cong et

al. [103] where SMEM generation stage is further improved and a non-blocking

pipeline methodology is applied to hide the latency off-chip memory access.

This improves the accelerator by 6.3× and reduces 43% resource consumption.

Houtgast et al. [88, 89] also implement a hardware aligner based on BWA-

MEM. The design is composed of a systolic array architecture to accelerate seed

extension kernel with the Smith-Waterman. By offloading the computational

bottleneck onto Virtex-7 VX690T-2 FPGA, the entire system can deliver a

total acceleration of about 45%. This work is later extended by Ahmed et

al. [104] where a hardware suffix array is used to partially accelerate SMEM

generation, which enables a total application acceleration of 2.6× compared to

the original software version.

2.3 Summary

In this chapter, we have explained the background information that forms the

foundation of this work which includes the FM-index technique and the Smith-
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Waterman algorithm. We have discussed the related work on various types of

FPGA-accelerated aligners for DNA sequences. We have also presented the

comprehensive literature review in this chapter in [105]. The following chap-

ters form the main contributions of this work: 1) in Chapter 3 we accelerate

exact-match and mismatch alignment strategies, and present novel methods

that maximize the alignment performance and accuracy; 2) in Chapter 4 we

accelerate the seed-and-extend strategy that performs indel alignment, and

investigate the relationship between speed-up and accuracy for different align-

ment pipelines; 3) in Chapter 5 we present an approach for merging multiple

FPGA designs into a one, and provide further optimization on one of the

implemented aligners.
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Chapter 3

Alignment with Exact-Match

and Mismatch

The exact-match and mismatch alignment strategies are broadly used in state-

of-the-art software aligners such as Bowtie. In particular, the exact-match

strategy plays an important role in the entire alignment workflow, as it is

statically found that around 70-80% of reads can be aligned exactly to the

reference. Therefore, the exact-match strategy contributes to a major part of

the computations.

The remaining 20-30% of reads that fail to align exactly to the reference

are then processed by the approximate string matcher, such as different mis-

match strategies. Depending on the alignment requirements, one-mismatch,

two-mismatch and even three-mismatch strategies are used to identify genetic

variations. In state-of-the-art software such as Bowtie, it supports alignment

up to 3 mismatches to accommodate several mapping requirements:

1. Many of the reads have at least one good, valid alignment.

2. Many of the reads are relatively high-quality.

3. the number of alignments reported per read is close to 1.

In this chapter, we present a novel approach that accelerates exact-match
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and mismatch alignment strategies based on the FM-index technique. This

accelerator employs complete biological information including quality metric

and ambiguous characters for biologically accurate short read alignment. We

exploit a multi-configuration pipeline that aligns reads with different edit-

distance-based strategies using runtime reconfiguration. These strategies,

which include exact-match, one-mismatch, two-mismatch, and three-mismatch

strategies, are arranged in ascending edit-distance order, resembling a similar

workflow compared to Bowtie. Unlike previous designs targeting an individual

platform, we accelerate the memory access in computations to aid performance

portability, by partitioning the FM-index into buckets with the size equal to

multiple of the memory burst size.

Ultimately, we aim to achieve the contributions 1 and 3 stated in Chapter 1

through the following methods:

1. We propose a novel alignment architecture that is composed of a four-

stage configuration alignment pipeline. It exploits the reconfigurability of

FPGA to achieve highly efficient implementation for each configuration

and a fully optimized alignment pipeline.

2. We optimize the alignment architecture using different optimization tech-

niques, which include index compression, data interleaving, and bi-directional

FM-index for mismatch alignment, while maximizing the alignment ac-

curacy.

3. We experiment with the optimal architecture based on the target plat-

form Xilinx VU9P, together with comparisons against state-of-the-art

software Bowtie on multi-core processors and some of the existing FPGA

solutions.

The rest of the chapter is organized as follows: in Section 3.1 we introduce

the proposed multi-configuration alignment pipeline; in Section 3.2 we present

our FM-index implementations and the details of the optimization techniques;
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in Section 3.3 we present the performance and accuracy comparison of our

proposed alignment pipeline versus other designs.

3.1 Multi-configuration Alignment Pipeline

We propose a general, multi-configuration architecture for alignment acceler-

ation that exploits the reconfigurability of an FPGA. Distinct hardware im-

plementations can be executed on the FPGA in a pipeline, where each imple-

mentation is composed of a homogeneous array of computational modules.

Each module is functionally equivalent to one specific alignment algo-

rithm. Runtime reconfiguration is used to load individual implementation

onto the FPGA in order, and data from the previous configuration (or initial

data from the host) are processed concurrently by the module array.

3.1.1 Motivation for Runtime Reconfiguration

Previous efforts that accelerate alignment with FPGA usually rely on a static

architecture. Essentially, the target device is configured with an implemen-

tation that is functionally equivalent to multiple alignment strategies. For

example, the FPGA implementation in [81] is composed of different alignment

modules to perform filtered search with FM-index, where reads unaligned by

one strategy (filter) are directed to the following one. Respective modules are

grouped to form exact-match, one-mismatch, and two-mismatch strategies and

are interconnected to assemble one implementation. Although a static config-

uration of these strategies as a single implementation eliminates the time for

reconfiguration, this approach has its limitations which reduce the overall per-

formance and subsequently nullify the benefit of discarding reconfiguration.

The main motivations for the runtime reconfigurable architecture can be sum-

marized as follows:

Significant Amount of Data Hazards - A typical alignment workflow is
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composed of multiple steps where data from the current step rely on the

results from the previous one. In software such as Bowtie, a read, by

default, is only handled by the mismatch strategies if an exact-match is

failed, i.e. a filtered search with the exact-match then mismatches. As

the occurrences of mismatch reads are unpredictable, this results in non-

stationary workload and incurs numerous data hazards for a statically

configured circuit. Since all the modules for different steps are mapped

onto FPGA, data hazards reduce the FPGA efficiency because some

modules are left idle occasionally.

Distinct Module Latency and Limited Resources - Different implemen-

tations of alignment modules require a distinct number of cycles to finish

processing a read. To maintain a balanced pipeline in a static configu-

ration, some modules are replicated to match the latency. For example,

when different strategies in Bowtie are mapped onto FPGA with a static

configuration, the algorithmic module for mismatches must be duplicated

more to even out the throughput of the ones for exact-match. This can

be challenging and even impossible due to the limited resources available

on FPGA.

Flexibility of Reconfigurable Architecture - Alignment parameters can

be different depending on the experimental requirements. A runtime

reconfigurable architecture can provide users better control over these pa-

rameters where strategies can be re-arranged, removed, or added straight-

forwardly. It also improves performance portability in which the module

counts within a single implementation of a strategy can increase or de-

crease subject to the availability of FPGA resources.

3.1.2 Proposed Alignment Pipeline

To guarantee the biological validity and reproducibility of the alignment re-

sults, the proposed pipeline follows a similar workflow compared to state-of-
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Figure 3.1: Alignment pipeline of the proposed architecture with runtime re-
configuration. Each implementation of a strategy is composed of a homoge-
neous array of modules. The module counts within an implementation are
given by Equation (3.1).

the-art software Bowtie. We use FM-index to implement filtered search on

FPGA with runtime reconfiguration. As illustrated in Figure 3.1 and Algo-

rithm 2, strategies are arranged in a pipeline with the order: exact-match,

one-mismatch, two-mismatch, and three-mismatch where each configuration is

composed of a homogeneous array of modules. The FM-index, which is of a

few GB, is stored on the external DDR memory attached to the FPGA. Here

we analyze the design space for each alignment module and provide back of

envelope estimations for the corresponding performance. The key parameters

used in this analysis are defined in Table 3.1.

According to Algorithm 1 in Chapter 2, alignment with FM-index involves

random access to an index location. Therefore, the index needs to be in prox-

imity to FPGA to shorten the access time. In our proposed FM-index circuit,

the index is stored on the external DDR memory attached to the FPGA, with

a copy of the index stored in each DIMM. Each module is connected to a bank

of external DDR memory using one memory channel, since the memory access

from each module does not interfere with others. For this reason, the number
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1 Function Mapping(Data):
2 do in parallel
3 stream Data from the host
4 process the transferred Data
5 stream aligned and unaligned Data back to the host
6 end

7 load configuration exact-match //FM-index
8 Mapping(all the reads)

9 load configuration one-mismatch //backtracking FM-index
10 Mapping(unaligned reads Rna0 from line 8);

11 load configuration two-mismatch //backtracking FM-index
12 Mapping(unaligned reads Rna1 from line 10)

13 load configuration three-mismatch //FM-index
14 partition unaligned reads Rna2 from line 12 into four seeds [S0 : S3]
15 Mapping( [S0 : S3])
16 compare on CPU ∀ aligned [S0 : S3]
Algorithm 2: The workflow of the proposed alignment pipeline with
runtime reconfiguration. Details about the design and implementation
of each configuration are provided in Section 3.2.

of DIMMs available confines the number of modules that can be replicated on

FPGA. The number of times a module can be replicated is given by:

Mj = min

(
RT −RPCI −RDDR

rj
, NDIMM

)
(3.1)

The performance of the FM-index circuit can be modeled by (3.2). The

overhead of this architecture is the reconfiguration time tre and the data com-

munication overhead between the host tcj. For a typical alignment process

with more than a million reads to align, these two numbers are negligible as

the alignment time is the dominant factor. Note that the alignment starts

off as soon as the first read arrives from the host, tcj can be hidden by the

alignment latency.

T =
∑
j

(
tre +max

(
tcj,

Njtj
Mj

))
(3.2)
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Table 3.1: Key system parameters. Note that j-mismatch with j = 0 repre-
sents exact-match alignment strategy.

RT Total available resource on the target FPGA

RPCI , RDDR Resources for PCI-e, memory controllers

NDIMM Number of memory channels for onboard DRAM

rj
Resources required by an FM-index module with
j-mismatch (where j = 0, 1, 2)

Mj Number of modules for FM-index with j-mismatch

tre, tcj
Time for runtime reconfiguration, and communication
time for the j-mismatch strategy

tj Time to align one read by the j-mismatch strategy

Nj Number of reads processed by the j-mismatch strategy

3.2 Design of the Alignment Accelerator

According to Algorithm 1, the bottleneck of FM-index based alignment is the

memory access where a character search involves access to a random memory

location. Therefore, in this section, we detail the techniques that utilize the

complete memory bandwidth and improve the performance of FM-index. This

section also presents the FPGA accelerated aligner where details and collabo-

ration between modules are described. In particular, the modules for handling

the quality metric and ambiguous characters are elaborated. The techniques

used to further improve the alignment performance are discussed as well.

3.2.1 Bucketing

Index Compression

Although FM-index is a space-efficient data structure that permits fast sub-

string matching, when indexed, the human reference genome is around 51GB.

This is often far larger than the capacity of off-chip memory. To reduce the

memory footprint, we store a subset of c(ι, x) of FM-index, while substitut-
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ing the remaining entries with a portion of the original BWT. Specifically, we

sample every d entry of c() and pack the BWT in the range of every d and

d − 1 alongside, forming a bucket . During a character search, the missing

entries in c() can be recalculated on the fly using the BWT B. Figure 3.2

shows the final compressed FM-index F and Algorithm 3 demonstrates the

corresponding procedure for substring matching.

n A C G T

0

1

2

.

.

.

c(ι, x)

d

d

. . .

BWT. . .
BWT [0] BWT [d] BWT [2d]

Restructured
FM-index F

|Θ|

d

|Θ|

d

. . .

Bucket 0 Bucket 1

cs(x) cs(x)

B B

Figure 3.2: The proposed restructured FM-index.

Given that the human reference genome Rhuman consists of 3 billion char-

acters, the storage of each c() entry requires 32 bits. Hence, subset storage of

c() table can significantly decrease the index size, especially when each BWT

character only requires 2 bits for alphabet Θ = {A, T, C, G}. The memory

usage required by the customized FM-index is reduced to:

Sampled c(ι, x) Size + Sampled BWT Size

=
|Rhuman| × (32bit)

d
× |Θ|+ |Rhuman| × (log2(|Θ|)bit)

=
3.2GB × 4

d
× 4 + 3.2GB × 2

8

=(
51.2

d
+ 0.8)GB

(3.3)

Sampling Distance d

The value of d plays an important role in memory access efficiency. First, it

affects the final size of the compressed index. More importantly, it changes the

bucket size and influences alignment performance. According to Algorithm 3,
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Data: Pattern P , Compressed FM-index F , SA of Reference R
Result: The starting locations Loc of P in R

1 l = |P | − 1
2 (top, bottom) = (0, c(|R|, P [l])) //Assume we always store c(|R|, x)
3 for j = l to 0 do
4 top = F [top/d].cs(P [j])+
5 Count(P [j], F [top/d].B, top%d) + i(P [j])
6 bottom = F [bottom/d].cs(P [j])+
7 Count(P [j], F [bottom/d].B , bottom%d) + i(P [j])

8 end

9 if top < bottom then
10 for j = 0 to top− bottom do
11 Loc[j] = SA[top+ j]
12 end
13 end

14 Function Count(char, B, position):
15 cnt = 0
16 for j = 0 to position do
17 if char == B[j] then
18 cnt++
19 end
20 end
21 return cnt

Algorithm 3: Algorithm for exact substring matching using com-
pressed FM-index. Note some notations are specified in Figure 3.2.
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every character search of P requires streaming of a bucket from the external

memory. To enable better utilization of the memory bandwidth, d should be

set based on Equation (3.3) such that the final bucket size is a multiple of the

memory burst size. For typical DDR4 memory with a burst size 64B, d = 192.

The final index size becomes 1.06GB.

3.2.2 Module Designs and Optimization

As mentioned, our work is inspired by Bowtie where a read is handled by the

mismatch subroutine if exact matching is failed, i.e. a filtered search with the

exact match then mismatches. Therefore, the hardware implementations of the

aforementioned strategies are arranged in an alignment pipeline with runtime

reconfiguration. Given by Equation 3.1, modules are replicated on FPGA to

increase parallelism. Each module within the strategy implementation is also

fully pipelined to maximize the matching throughput.

Host Device

Onboard 
DRAMF

Reads Aligned Result

FPGA

Memory 
Command

Top

Bottom
Compute for 

Top & Bottom

BRAMsReads

cs(a) cs(c)
cs(g)cs(t)

cs(x) B

+

sy
m

Bucket

Exact-match module

New 
Pointer

i(x)

i(t)i(g)i(c)

i(x)

i(a)

BWT char 
Counter

Figure 3.3: Simplified top-level diagram for an exact-match module. The
diagram on the left shows the detail of the compute block for Top & Bottom.
Note that for readability it only displays the logic for one pointer calculation.

All strategies utilize our restructured FM-index to perform alignment. Fig-

ure 3.3 shows a simplified top-level diagram that implements Algorithm 3 for

exact-match strategy. The process of alignment within all types of strategies

begins with streaming the reads from the host to FPGA while the restructured

FM-index F is preloaded onto the onboard memory. The new pointers for top
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and bottom are then calculated based on the symbol and the correlated buck-

ets from the onboard memory. A command block is responsible for sending

memory requests according to the new pointer values. Results are streamed

back to the host once the reads are matched, or when the reads are unaligned

and needed to redirect to the subsequent strategy.

To support mismatch alignment, additional logic is included in the exact-

match strategy for one and two mismatch strategies to support backtrack-

ing. Since FM-index suffers from exponential scaling with the number of

permitted mismatches, bi-directional FM-index is used in the one-mismatch

and two-mismatch strategies to reduce the search space. Details about the

bi-directional FM-index can be found in [4]. In addition, our three-mismatch

strategy employs a seed-and-compare strategy. Seeds are exactly matched with

the FM-index and the mismatch locations are identified in a subsequent direct

comparison stage.

Bi-directional FM-index

In the implementation of the one-mismatch strategy, we use two different in-

dices of the reference. The first one contains the standard restructured FM-

index of R, while the second one contains the index of the reversed of R, which

is called the mirror index. This enables a character search from both the start

or the end of a read. Figure 3.4a illustrates the mechanism of alignment us-

ing bi-directional FM-index. During the search, the mismatch character can

either fall onto the left or right half of the read. Therefore, our one-mismatch

strategy proceeds in two phases to handle these two cases: Phase 1 uses our

restructured FM-index F to begin the search from the end of the read, with

the constraint that one mismatch occurs only in the left half of the read. Phase

2 uses the mirror index to begin the search from the start of the read, with the

constraint that one mismatch occurs only in the right half. By constraining

the mismatch position, a long segment of the read can be exactly matched to

the reference initially. This can largely reduce the search space size without
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Search Direction

Λ PM

Search Direction

Mirror index

(b) Two mismatches

Figure 3.4: One and two-mismatch alignment using bi-directional FM-index.
The segments shaded in grey are regions for testing one mismatch, while seg-
ments shaded in red are regions for testing two mismatches. The non-shaded
areas are exact-match regions.

sacrificing any sensitivity.

The implementation of the two-mismatch strategy also utilizes the standard

and mirror index to perform the search. To reduce the search space, the short

read is partitioned into three parts (Left Λ, Middle M , Right P ) with the same

length. A reportable alignment falls into one of the three cases as illustrated

in Figure 3.4b: (case I) 2 mismatches in ΛM ; (case II) ≤ 1 mismatch in M

and ≥ 1 mismatch in P ; (case III) 1 mismatch in Λ and 1 mismatch in P .

Therefore, the two-mismatch strategy proceeds in three phases corresponding

to these three cases: Phase 1 begins with exact matching from the end of P ,

and attempts two-mismatch alignment once it reaches M , using the standard

index. Phase 2 uses the mirror index to perform a similar search on the short

reads, with the constraint of having at most one mismatch character in M .

Phase 3 corporates the first 2 phases and finds partial alignment with one

mismatch in Λ using the standard index. Then it extends the partial alignment
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with the mirror index to perform one mismatch alignment in P .

Seed-and-compare

In the implementation of the three-mismatch strategy, it first splits each read

into four seeds - equal length non-overlapping substrings. Then, the position

of each seed is computed using the exact-match logic and the positions are

directed to the compare step on the processor. Consequently, this strategy

avoids using a backtracking algorithm and is instead able to exploit the efficient

exact-match logic. The compare step is performed on the processor for two

reasons. First, it involves a direct and consecutive comparison of nucleotides

which exhibit spatial locality. Second, this step is a constant time operation,

and is not computationally intensive enough to justify running on FPGA when

accounting for reconfiguration overhead.

Data Interleaving

Although bucketing improves the utilization of memory throughput, the align-

ment performance still suffers from the latency of memory access. According

to Algorithm 3, the new pointers for top and bottom are calculated based on

the values from F , which in turn depends on top and bottom from existing

iteration. In other words, when a symbol is processed, the requests for new

memory pointers can only be known and made when the data from the previous

request arrives. This incurs a vast amount of stall.

We tackle this problem by proposing an interleaving scheme to process mul-

tiple reads concurrently. Displayed on the left of Figure 3.3, a block memory

(BRAM), which is initially empty after reconfiguration, is used to store a few

short reads during the mapping process. In each clock cycle, a read is selected

from BRAM and the next symbol is processed. This enables full utilization of

the FPGA as almost one nucleotide can be processed and a memory request

can be sent every clock cycle. From our experiment, the latency is 40.89 µs on
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@SRR3947551.8282187 8282187/1
AAGGTATTTGATCATTATATATGAAACCAACTAGGCAAAGGAG
+
@@@F=DDFDDDDFEGDFGGC?IHDAGCGGBGFAHGIE3?D?):

Reads character

Phred Quality

Phred Quality of G 
= ASCII of ‘:’ – 33
= 58 – 33 = 25

Figure 3.5: Explanation on Phred quality using an example.

average with DDR4-2400, which requires concurrent processing of 368 reads to

negate the memory access latency. To enable fast evaluation of the interleav-

ing scheme and the acquirement of this number, we use the proposed design

analyzer and merger which will be explained in Chapter 5. Note that we apply

the data interleaving technique to the implementations of all strategies.

3.2.3 Consideration for Complete Biological Information

Another major component of this work is the capability of recognizing the

complete biological information in the alignment process. One important in-

formation is the quality value, also known as Phred quality [106], a metric that

is usually neglected in previous work. Its values are ranged from 0 to 42 and

are presented in ASCII characters (with an addition of 33). Figure 3.5 shows

an example snippet of a read file where the second line is the read and the

fourth line is Phred quality. Each character in the read is associated with a

quality score in the same position and a larger value represents a better quality.

Phred quality is a critical factor for producing biologically correct align-

ment when mismatches are encountered. Essentially, the quality sum for

an alignment is defined by the sum of Phred quality values at all mismatch

positions. Since errors can happen when cell samples are collected, or when

sequenced by NGS machine, it is necessary to rank and filter low-quality align-

ment for biological validity.

Challenges

Previous accelerators usually neglect Phred quality because of design chal-

lenges and performance issues. To start, Phred quality requires 6 bits per
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value and there is no consensus on a practicable reduction of the resolution of

the quality score [107]. This not only increases the communication overhead

between the host and FPGA but also the resource usage. It also results in pro-

longed placement and routing time, more immense fan-out, and lower clock

frequency. Furthermore, a read can have various combinations of mismatch

locations that contribute to several aligned results per read. For example,

given a reference R = ACACGT and read pattern P = ACC in Figure 3.6,

the last character of P can be replaced with A or G, forming the results ACA

or ACG, for successful alignment with one mismatch. The consideration of

Phred quality complicates the design logic and lengthens the alignment time,

as we need to sort and rank these results based on the quality sum of each

alignment.

Mismatch characterAligned at position 0

A C CRead P A C A C G T Reference R

Aligned at position 2

Figure 3.6: Example of one-mismatch alignment with two aligned results.

Separated Computation and Minimal Ports

In our proposed accelerator, the compute block for the quality sum is separated

so that the original alignment throughput and latency are not affected. A 7-

bit register is used to buffer the quality sum for one aligned result. Multiple

of these registers form a cascade of shift registers which contain the quality

sums for all aligned results of a single read. To minimize the number of

ports at the interface, only the necessary information is directed to this block

such as read ID and mismatch locations so that fan-out is reduced.

By default, 32 registers where each of them is 7-bit are cascaded to form

the required shift register so as to cache the quality sums for a read. From

our observation with the use of Bowtie, successful alignment with mismatches

exhibits less than 32 possible outcomes, given that the reads are 50 to 150 bp.
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Note that the number of registers can be decreased by changing a parameter

so as to accommodate smaller FPGA.

On-the-fly Sorting

As shown in Figure 3.7, a set of comparators is used so that results with the

highest quality values are always preserved. When a new alignment is found

for particular mismatch location(s), these comparators match the quality sum

of this aligned result with the existing ones from the shift registers. Accord-

ingly, an insertion point can be obtained and the quality sums smaller than

the current one are shifted in the shift registers. A simplified algorithm that

illustrates the corresponding process is shown in Algorithm 4. Note the un-

derlying logic is fully pipelined so that it can receive the aligned result from

the compute block for top & bottom every cycle, despite the comparison and

the shifting operations can take a few cycles.
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DRAMF

Reads Aligned Result

FPGA
Memory 

Command

Top

Bottom
Compute for 

Top & 
Bottom

One-mismatch module

i(x)

Ranking for 
Quality Sums

Reads ID, isAligned, 
Pos, Quality Sum (qs)

D

Q
En

D

Q
En

D
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[0][6:0]

Sorted_QS
[1][6:0]

Sorted_QS

Quality Sum 
(qs[6:0])

Sorted_QS
[31:0] [6:0]

Figure 3.7: Simplified top-level diagram for one-mismatch module which con-
tains the compute block for sorting quality sums of a read. For readability,
some data and control paths are omitted.

Three-mismatch Strategy and Reads containing Ambiguous

Characters

Finally, Phred quality values are also considered in alignment with the three-

mismatch strategy. The quality sum for each alignment is calculated during
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Data: Quality sum array QS ∀ mismatch locations of a read
Result: Sorted quality sum array Sorted_QS[31 : 0][6 : 0] for 32

mismatch locations of a read

1 //Initialize Sorted_QS
2 for j = 0 to 31 do
3 Sorted_QS[j] = 0 //Assume a qs value is always > 0
4 end

5 //Sorted_QS is rearranged in each iteration based on each
input QS value

6 for i = 0 to len(QS)-1 do

7 //Control and temporary variables
8 gt_qs = False
9 prev_qs = 0

10 for j = 0 to 31 do
11 if QS[i] > Sorted_QS[j] and gt_qs == False then
12 gt_qs = True

13 prev_qs = Sorted_QS[j]
14 Sorted_QS[j] = QS[i]

15 continue
16 end

17 //Start shifting along Sorted_QS
18 if gt_qs == True then
19 tmp_qs = Sorted_QS[j]

20 Sorted_QS[j] = prev_qs
21 prev_qs = tmp_qs

22 end
23 end
24 end
Algorithm 4: Simplified algorithm to rank the quality sum for the
one-mismatch module.
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the compare step on the processor, and only the ones with the highest val-

ues are reported. Additionally, reads containing the ambiguous characters (N

characters) are handled by the processor as soon as the exact-match hardware

starts processing. According to Bowtie, only alignments involving ambiguous

characters in the read are legal, and ambiguous characters in the read mis-

match all other characters. When an ambiguous character is seen in the input,

the reads are processed directly on the processor to obtain the possible align-

ments with no more than three mismatches. Given that only a small portion

of reads contains N characters, this step can be completely overlapped by the

alignment on FPGA.

3.3 Evaluations and Discussion

To evaluate the performance and limitations of our proposed alignment archi-

tecture, we first investigate the alignment speed of each strategy, by adjusting

module counts within each of the corresponding implementations. We then

provide an accuracy and performance comparison between the proposed align-

ment pipeline and existing accelerators. To optimize the design from the mem-

ory access perspective and enable better utilization of the memory bandwidth,

we set the parameter d equal to the memory burst size of the target platform.

3.3.1 Evaluation of Individual Implementation

In this experiment, we use Maxeler’s MAX5C DFE which is equipped with

Xilinx Virtex UltraScale+ VU9P connected to three DIMMs of 16GB on-

board memory. As the memory burst size is 64B, we set d = 192. Based on

Equation 3.1, a module can be replicated at most by three times within each

strategy on the target platform. The FPGA runs at 200MHz while the host

runs with Intel Xeon E5-2643 processor at 3.4GHz and 64GB DDR4-2400

memory. Centos 7.0 is installed on the host. MaxCompiler 2018.2 and Vivado
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2017.4 are used for synthesis and implementation. PCI-e 2.0 is used to transfer

the data between the host and FPGA. As the computation is bottleneck by

the onboard memory on the FPGA, PCI-e 2.0 is already sufficient for the data

transfer.

GRCh38 [108] is used as the reference and single-end reads from human_100_

300M in [109] are used as the input. This dataset contains 300×106 reads with

101bp, and was originally used to evaluate Bowtie and Bowtie2 on a multi-core

system to investigate the alignment performance. It is composed of reads gen-

erated by the Illumina HiSeq2000 instrument from various genome projects.
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Figure 3.8: The alignment speed for different module counts of the exact-
match, one-mismatch, and two-mismatch implementations (Left). The cor-
responding resource consumption with respect to the available resources is
represented in percentage (Right).

Figure 3.8 shows the alignment speed for the implementations of the exact-

match, one-mismatch, and two-mismatch strategies. For each strategy, the

corresponding computational module is populated on the FPGA by one and

three times to investigate the performance difference. The graph on the right

elaborates on the corresponding resource consumption in percentage required

by each strategy. The resource usage for DSP is not shown in the figures as

less than 1% is used in all the implementations.

As displayed in the figure, the alignment performance is dependent on the

module counts. When the number of modules is tripled, the alignment per-
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formance is improved by 3×. This showcases the scalability where the perfor-

mance scales linearly with the module counts. It also indicates that measured

results are closely compatible with Equation 3.2. The critical resource for each

module is BRAM (∼ 7 − 28% usage) because of the circular buffer for con-

current processing. There remains an adequate amount of space for module

replications should more memory DIMMs are given.

3.3.2 Overall Alignment Runtime and Accuracy

As our proposed hardware design is modeled upon the algorithms implemented

in Bowtie, this subsection evaluates the alignment accuracy, with results from

Bowtie acting as the ground truth. We use Bowtie 1.3.0 in this evaluation.

Furthermore, we compare the performance difference between our aligner and

software. We also select the accelerator proposed by Arram et al. [6] for com-

parison as it is based on a similar methodology to perform runtime alignment.

We manage to download [110] and re-implement their design on our exper-

imental device with a frequency of 200MHz. Based on the evaluation from

Section 3.3.1, we initialize the hardware with the maximum number of mod-

ules, Mj = 3, with all other settings identical to the previous sub-section.

Given the relatively small workload (∼7% of a full alignment workload),

the reconfiguration time (9-12 s per configuration) for VU9P does not have a

large impact on the overall alignment time. Moreover, different datasets and

alignment parameters are used in different previous work, and some accelera-

tors use more than one FPGA to perform the alignment. To allow a fair com-

parison, we use the normalized metric, base pairs aligned per second (bps−1),

given by Equation 2.6 in Section 2.2.4. Finally, we assume that the index F is

already buffered and preserved in the DRAM prior to each configuration.

Table 3.2 displays the comparison between the set-up and alignment results

of the hardware and software. Accuracy is defined as the fraction of correct

alignment and un-alignment from the proposed alignment pipeline among all

68



Table 3.2: A comparison between set-up and alignment results of Arram et al.,
the proposed design and Bowtie.

Arram et al. Proposed Aligner Bowtie

Device Xilinx Virtex UltraScale+ VU9P Intel Silver 4110
(16 threads)

Frequency 200MHz 2.1GHz
Lithography TSMC 16 nm Intel 14 nm

Align time 638 s 779 s 3330 s
bps−1 (million) 47.5 38.5 9.10

Accuracy 96.3% 97.7% –

of the reads. Correct alignment refers to reads matched to the same locations

as Bowtie. Correct un-alignment means that if the reads are not aligned by

Bowtie, they should not be aligned by the proposed aligner also.

The 2.3% discrepancy in accuracy, between our accelerator and Bowtie

(100% accuracy for the ground truth), is due to two reasons. First, some of the

reads are successfully aligned to the reference using FPGA but fail to map using

Bowtie. Bowtie imposes a backtracking restriction to limit effort spent finding

valid alignments. This causes Bowtie to miss some legal mismatch alignments.

This clearly demonstrates the biological validity of the proposed aligner, since

our design can exhaust all the possible mismatch locations without putting a

backtracking limit. This is important for alignment accuracy because statically

around 20% of reads from the NGS machine can be aligned with one and two-

mismatch strategies.

Second, Bowtie employs a heuristic to determine the mapping locations,

especially when the reads have multiple aligned results. Some of the reads

that can be successfully aligned by Bowtie are mapped to a different loca-

tion in our proposed aligner. The accelerator proposed by Arram et al., on

the other hand, has lower accuracy. Despite the performance, the accuracy

drops to 96.3% because of the overlooking of the quality metric, as well as

the missing stage of the three-mismatch strategy. Compared to Arram et al.,
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our proposed aligner can report 4.48 M more correct alignments. The bet-

ter performance of Arram et al. is also due to the missing three-mismatch

strategy, where short reads unaligned by the two-mismatch strategy are left

unprocessed and redirected to the host straight away. If the three-mismatch

strategy is omitted in our proposed aligner, our implementation needs around

646 s to finish processing all the reads which is similar to Arram’s work.

Finally, the proposed aligner can achieve a reasonable speed-up of 4.27×

where the alignment time is decreased from 56 minutes in software to around

13 minutes. With the assurance of biological validity and reproducibility of

the alignment results, the proposed aligner provides an opportunity to bridge

the gap between alignment research and practice, allowing applications such

as cancer diagnosis to become part of routine clinical procedures.

3.3.3 Performance Comparison with Existing

Accelerators

Table 3.3 demonstrates the performance comparison of the proposed aligner

with different accelerators. Since different designs conduct their evaluations

using different datasets, we do not compare the alignment accuracy in this

evaluation. Note that we only select the hardware aligners that are based on

Bowtie, Bowtie2, or FM-index, as they are relatively similar to ours. Accel-

erators built upon other algorithms such as Minimap2 are not considered as

they use different techniques or target long reads alignment.

The million bps−1 values in Table 3.3 indicate that our aligner outperforms

most of the existing designs apart from [13] and [6]. This showcases the benefits

of our design where the addition of computation logic for quality sums does

not affect alignment time. On the other hand, our aligner is slower than [13]

and [6] mainly because of the availability of DIMMs on the respective devices.

Their platforms are based on Maxeler MAX3 where there exist seven memory

DIMMs onboard. With the number of memory channels more than double
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Table 3.3: Performance comparison with previous hardware accelerators that
are based on similar algorithms.

Year Work Algorithm &
Method Platform Device

Read
Count

(Million)

Read
Length

(bp)

Align
Time Mbps−1

2012 [81] FM-index Convey HC-1 Virtex-5 LX330×4 18 101 138 s 3.29

2013 [13] FM-index +
Smith-Waterman Maxeler MAX3 Virtex-6 SX475T 82 90 49.0 s 151

2013 [6] FM-index Maxeler MAX3 Virtex-6 SX475T 18 75 13.8 s 97.8

2015 [84] FM-index Maxeler MPC-X1000 Stratix-V×8 10 75 11.3 s 66.4

2019 [83] Bowtie2 +
Smith-Waterman Maxeler MAX5C Virtex Ultrascale+ VU9P 60 100 5830 s 1.03

2021 Ours FM-index Maxeler MAX5C Virtex Ultrascale+ VU9P 300 101 779 s 38.5

compared to Xilinx VU9P, the alignment speed is therefore more significant in

their work. It is also important to note that their evaluation methods are based

on the theoretical upper bound estimation on each respective device. Hence,

the actual performance of their implemented designs might be poorer, as the

routing congestion and fan-out are not taken into consideration. Finally, [13]

only consists of two stages in the alignment pipeline, where the approximate

matching is performed with the linear Smith-Waterman algorithm. Therefore,

the alignment speed can be faster than the proposed aligner as we exhaust all

possible mismatch locations using backtracking FM-index.

3.3.4 Resource Consumption

Based on the proposed reconfigurable architecture with Mj = 3, Table 3.4

indicates the corresponding resource consumption for the implementation of

each strategy on VU9P, with the inclusion of the PCI-e and memory controller.

With an adequate area remaining on the FPGA, more modules can be popu-

lated on the FPGA if the number of DIMMs increases. Note these numbers

can only serve as a reference, as many factors can affect the final resource

computation when migrated onto other platforms.
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Table 3.4: Area cost of the final design on VU9P. Percentage values are relative
to the available resources on target FPGA.

LUT Register BRAM DSP

Exact-match 101 092 (8.55%) 159 260 (6.74%) 754 (14.3%) 9 (0.13%)

1-Mismatch 140 726 (11.9%) 301 540 (12.6%) 1224 (23.18%) 9 (0.13%)

2-Mismatch 150 758 (12.8%) 337 212 (14.3%) 1312 (24.8%) 9 (0.13%)

3.4 Summary

In this chapter, we propose a novel, runtime reconfigurable architecture to

accelerate exact-match and mismatch alignment strategies based on FM-index.

The novel aspects of our proposed architecture are:

1. By leveraging the runtime reconfigurability of FPGA, individual strate-

gies are used to align reads to the reference with a specific edit-distance,

forming an alignment pipeline. This pipeline provides better performance

and resource consumption for each strategy, which in turn achieves a fully

optimized alignment pipeline.

2. The implementation of each strategy is optimized using the techniques:

index compression, data interleaving, and bi-directional FM-index for

mismatch alignment.

3. Complete biological information including quality metric and ambiguous

characters are considered in our alignment pipeline for biologically accu-

rate short read alignment. With alignment results from Bowtie acting

as the ground truth, our design can achieve an accuracy of 97.7%.

In the following chapter, we explore different arrangements of alignment

strategies and evaluate the corresponding accuracy for indel alignment.
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Chapter 4

Alignment with Indels

Insertion–deletion mutations (indels) refer to the insertion and/or deletion of

nucleotides into sampled DNA and are often less than 1kbp in length [111].

Alignment with indels is important for the downstream analysis of NGS data,

such as variant calling that identifies variants in the sequenced data. In par-

ticular, indels are usually implicated as the driving mechanism for many con-

stitutional diseases such as cancer.

Indexing scheme, such as FM-index, is quite inefficient to perform gapped

alignment to locate indels. These gaps substantially increase the search space

and reduce the benefits of using a bi-directional FM-index, thereby slowing

the aligner built upon only the index-based alignment.

State-of-the-art software generally extends the index-based aligner to en-

able gapped alignment by applying the seed-and-extend strategy. Essentially,

the seeding stage extracts substrings, i.e. seeds, from a read and they are

aligned to the reference contiguously using the index. Based on the obtained

positions, the seeds are extended into full alignments using dynamic program-

ming such as the Smith-Waterman algorithm. To further improve the align-

ment sensitivity, software such as Bowtie2 employs filtered search by applying

the exact-match and even one-mismatch strategies before the seed-and-extend

strategy.
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FPGAs have been used to speed up indel alignment by accelerating in-

dividual alignment strategies such as exact-match, seed-and-extend, etc as

illustrated in Figure 4.1, and are combined and arranged into a consecutive,

sequential, statically or runtime reconfigurable pipeline similar to the align-

ment pipeline elaborated in the previous chapter.
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(a) An example reference genome and reads for illustration.
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ID: 3

ID: 4
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G T T C AA A G T

(b) Exact-match strategy (EM).
Reads 1-4 are exactly mapped to the ref-
erence. Reads 5 & 6 contain mismatch
characters and therefore they cannot be
aligned.

A A G T T A C A G T T C A C C

ID: 5

ID: 6
G T T A A

ID: 5

C A G T T A C A G T T A
ID: 6

Mismatch
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(c) One-mismatch strategy (OM).
Reads 5 & 6 can be successfully aligned to
the reference. Each read can have multi-
ple mismatch locations, which contribute
to several aligned results per read.

ID: 5 ID: 5
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ID: 1
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Mismatch
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ID: 4

(d) Seed-and-extend strategy (SE). Reads are split into subsequences known
as seeds. The seed (green) is EXACTLY aligned to reference to obtain all possible
matching locations. Each location is then extended to identify the possible mis-
matches, deletions or insertions.

Figure 4.1: An illustration of different strategies. Usually, strategies in (b), (c)
are based on an indexing algorithm such as FM-index to enable fast substring
matching. Strategy in (d) is based on indexing with dynamic programming
algorithm such as the Smith-Waterman to allow alignment with mismatches,
insertions or deletions.

Despite the promising performance, FPGA-accelerated aligners are still
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rarely adopted in genomics research and practice. This is because previous

FPGA designs only report the speed-up, but rarely consider and investigate the

corresponding alignment accuracy. For example, [13] proposes an alignment

pipeline with an exact-match strategy, followed by a seed-and-extend strategy

using the linear Smith-Waterman algorithm. In spite of a 72.2× speed-up,

the rationale behind the arrangement and selection of these strategies is not

explained. Without an adequate explanation of the choice of strategies and

the accuracy, genomics researchers have no clue if the accelerator is sufficiently

accurate for realistic genomics practice.

In the chapter, we explore different arrangements of strategies by exploit-

ing runtime reconfigurability of FPGA. For each arrangement, a few alignment

strategies are executed in order, forming an alignment pipeline. Reads

aligned by a strategy are reported immediately while unaligned reads are di-

rected to subsequent strategy. Each strategy can be formed by one or two

alignment algorithms, in which each algorithm is implemented as an indi-

vidual FPGA configuration. Further information is explained in Section 4.1

and Table 4.1. Our main goal is to investigate the relationship between speed-

up and accuracy of each alignment pipeline to provide guidance for genomics

scientists.

Ultimately, we aim to achieve the contributions 2 and 3 stated in Chapter 1

through the following methods:

1. We extend the FM-index implementation of the exact-match strategy

to perform seeding. We also develop a Smith-Waterman implementa-

tion with the affine-gap model, and complete biological information is

considered in these implementations.

2. We explore different arrangements of alignment strategies (pipelines) for

short read mapping based on the target platform Xilinx VU9P. For each

alignment pipeline, the relationship between speed-up and accuracy is

obtained using a real dataset.
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3. We compare the performance between our optimal pipeline and state-of-

the-art software Bowtie2, together with comparisons against some of the

existing FPGA solutions.

The rest of the chapter is organized as follows: in Section 4.1 we introduce

three different arrangements of alignment strategies, which are based on the

workflows proposed by some of state-of-the-art software and previous FPGA

designs; in Section 4.2 we present the implementations of the FM-index for the

seeding stage and the Smith-Waterman algorithm with the affine-gap model

for the extension stage; in Section 4.3 we present the performance and accuracy

comparison of our proposed alignment pipelines versus other designs.

4.1 Selected Pipelines / Selected Arrangements

of Alignment Strategies

The term alignment strategy generally refers to an alignment stage in state-

of-the-art software such as Bowtie, Bowtie2. For example, by default, Bowtie2

first processes the reads using an exact-match strategy in the first stage. In

the second stage, it uses one-mismatch strategy to process the reads that fail

to align previously, i.e. a filtered search. Finally, it relies on a seed-and-

extend strategy to process the remaining reads. As explained in Figure 4.1,

each strategy is usually formed by one or two alignment algorithms such as

FM-index and/or the Smith-Waterman algorithm.

According to Chapter 3, the overall alignment efficiency can be signifi-

cantly increased by leveraging the runtime reconfigurability of an FPGA. It

also provides better flexibility where genomics scientists can have greater con-

trol over the alignment parameters. Strategies can be added, re-ordered, or

removed at runtime, making this architecture completely modular. Because of

these benefits, we decide to adopt this approach to explore different alignment

pipelines/different arrangements of alignment strategies.
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Table 4.1: Selected alignment pipelines for speed and accuracy exploration.
The arrow indicates the execution flow of the strategies. The rightmost four
columns indicate the algorithms needed and the corresponding strategies real-
ized are described in the square brackets underneath.

No. Selected Pipelines Algo. I Algo. II Algo. III Algo. IV

P1
Exact-match (EM)
→ Seed-and-extend

FM-index
[EM / Seed]

Smith-
Waterman
[Extend]

- -

P2 Seed-and-extend FM-index
[Seed]

Smith-
Waterman
[Extend]

- -

P3
Exact-match (EM)
→ 1-mismatch (OM)
→ Seed-and-extend

FM-index
[EM]

Backtracking
FM-index

[OM]

FM-index
[Seed]

Smith-
Waterman
[Extend]

We use the reconfigurable architecture to configure the FPGA with dif-

ferent algorithms in turn, so as to apply alignment strategies in the required

order. If two consecutive strategies require the same algorithm, the same

FPGA configuration is reset and reused to avoid unnecessary reconfiguration.

We also apply the filtered search approach in some selected pipelines to ensure

accuracy. Only the reads that fail to be aligned by the current strategy will be

handled by the subsequent one, which decreases the number of reads handled

in each strategy along the pipeline.

In the rest of this chapter, we investigate the most promising pipelines based

on the alignment workflows proposed by state-of-the-art software and previous

FPGA design [8], in order to understand their implications on alignment speed

and accuracy. Table 4.1 details the selected pipelines and the corresponding

algorithms required, and Algorithm 6-8 explain the workflow of each pipeline.

Note that we use Bowtie2 version 2.4.1 as the default version in the following

discussion.

77



1 Function Execute(Data):
2 do in parallel
3 stream Data and/or Reference from the host
4 process the transferred Data
5 stream processed Data back to the host
6 end

Algorithm 5: The common function used in all pipelines.

1 //EM Strategy
2 load configuration FM-index
3 Execute(all the reads)

4 //Seeding for SE Strategy
5 reset configuration
6 Execute(unaligned reads Rna2 from line 3)

7 //Extend for SE Strategy
8 load configuration Smith-Waterman
9 Execute( [ Rna2, seed locations from line 6 ] )

Algorithm 6: P1 Workflow.

1 //Seeding for SE Strategy
2 load configuration FM-index
3 Execute(all the reads R)

4 //Extend for SE Strategy
5 load configuration Smith-Waterman
6 Execute( [ R, seed locations from line 3 ] )

Algorithm 7: P2 Workflow.

1 //EM Strategy
2 load configuration FM-index
3 Execute(all the reads)

4 //OM Strategy
5 load configuration backtracking FM-index
6 Execute(unaligned reads Rna3 from line 3)

7 //Seeding for SE Strategy
8 load configuration FM-index;
9 Execute(unaligned reads Rna4 from line 6)

10 //Extend for SE Strategy
11 load configuration Smith-Waterman;
12 Execute( [ Rna4, seed locations from line 9 ] )

Algorithm 8: P3 Workflow.
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4.1.1 Pipeline P1

This is inspired by [13] where the proposed architecture achieves a theoretical

speed-up of 293× on Maxeler MAX3 platform. This extraordinary speed-up

benefits from an alignment workflow composed of an exact-match strategy

followed by a seed-and-extend strategy with the linear Smith-Waterman algo-

rithm. We extend this workflow with the affine gap model, so that the pipeline

is consistent with one of the provided alignment workflows in Bowtie2 when

the option –no-1mm-upfront is specified.

Essentially, the FPGA is initially loaded with an FM-index implementa-

tion that performs exact-match alignment and also the seed location for the

seed-and-extend strategy. The hardware first attempts to exactly align all the

reads using Algorithm 3 in Section 3.2.1, completing the exact-match align-

ment strategy. The next strategy, which is based on seed-and-extension, begins

with processing the reads that fail to align previously. By utilizing the same

implementation, the unaligned reads are transferred back to the FPGA from

the host. Reads transferred are partitioned into fixed-length seeds and are

exactly matched to locate all possible matching locations on the FPGA. These

locations are transferred to the host for temporary storage. Since we cannot

predict the total size of the matching locations, storing these data using on-

board memory is not a viable solution. The FPGA is reconfigured with the

Smith-Waterman hardware that implements the affine-gap model. The loca-

tions and the reads are transferred back to the FPGA to complete approximate

alignment, finishing the second strategy.

4.1.2 Pipeline P2

This arrangement is used by the initial version of Bowtie2 and it outperforms

Bowtie in terms of accuracy but slackens off the alignment speed. This pipeline

can report the reads that can be exactly and approximately mapped to the

reference simultaneously.
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Implementing exclusively the seed-and-extend strategy requires the same

set of hardware used in P1. With runtime reconfiguration, the FM-index hard-

ware is used to identify the possible locations of the seeds. Then the Smith-

Waterman hardware is configured to perform extension.

4.1.3 Pipeline P3

According to [112], single nucleotide polymorphisms (SNPs) are the most abun-

dant genetic variations in the human genome. Basically, SNP refers to a sub-

stitution of a single nucleotide at a specific position in the genome, which is

present in a sufficiently large fraction of the population. With the aim to

identify SNPs precisely, we use backtracking FM-index to identify reads with

one-mismatch similar to the default workflow in Bowtie2. It also improves

alignment speed thereafter as it filters out the reads with one-mismatch, and

subsequently decreases the number of reads to process using the seed-and-

extend strategy.

Similar to P1, this pipeline starts off with the exact-match strategy using

the FM-index implementation. Then intermediate results, such as SA index

for successful mapping and unaligned reads reported, are transferred back to

the host. The FPGA is then reconfigured with the backtracking FM-index

implementation to achieve the one-mismatch alignment strategy. Reads un-

mapped by the exact-match alignment are redirected to this implementation.

Finally, the FM-index implementation for the exact-match strategy is reloaded

again to carry out seeding, and the Smith-Waterman hardware is loaded onto

FPGA afterward to perform extension. This final step is intrinsically identical

to P2.

Figure 4.2 illustrates the runtime reconfigurable architecture for P3 where

each module consists of a homogeneous array of computational modules

with the same alignment algorithm. Since runtime reconfiguration allows the

decoupling of each algorithm, we can optimize the population of the under-
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Figure 4.2: Multi-configuration alignment pipeline for P3. Each bitstream im-
plements a specific algorithm composed of an array of computational modules.

lying computational modules based on one intended work, resulting in higher

achievable parallelism.

4.1.4 Design Space and Performance

As mentioned, due to the decoupling of the alignment algorithms, the FPGA

circuit is intended for one specific task at each runtime. This allows us to

optimize the underlying computational modules based on one intended work,

results in better module uniformity and higher achievable parallelism. Here

we analyze the design space for the Smith-Waterman implementation with the

affine gap model and provide back of envelope estimations for the performance.

The key parameters used in this analysis are defined in Table 4.2.

One important advantage of the seed-and-extension strategy is the sub-

stantial reduction in the search space for the Smith-Waterman algorithm. The

calculation of the scoring matrix si,j,→, si,j,↓, V is now reduced to the char-

acters in R that is adjacent to the matching locations, and the read itself.

This exhibits spatial locality and hence we exploit the CPU and its cache to

aggregate the transfer for the reads and segments of R.

The Smith-Waterman circuit is composed of several matrix filling kernels.

Each kernel consists of systolic arrays that calculate the score for si,j,→, si,j,↓,

V . Since we don’t need to access the onboard DRAM, the replications of the
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Table 4.2: Key system parameters.

RT Total available resource on the target FPGA

RPCI Resources for PCI-e controller

rs
Resources required by a module of Smith-Waterman
algorithm

Ks Number of modules for Smith-Waterman algorithm

tre, tcs
Time for runtime reconfiguration, and time for data
communication for Smith-Waterman algorithm

ts Time to align one read for Smith-Waterman algorithm

Ns Number of reads processed by Smith-Waterman algorithm

Smith-Waterman modules are restricted by the FPGA resources only. This is

given by:

Ks =
RT −RPCI

rs
(4.1)

The performance of the Smith-Waterman circuit can be modeled by (4.2).

Similar to the FM-index implementation, data communication and reconfig-

uration overhead are negligible as the time for matrix computations is the

dominant factor.

T = tre +max

(
tcs,

Nsts
Ks

)
(4.2)

4.2 Module Designs and Optimization

This section discusses the FPGA implementations of the FM-index for the

seeding stage, and of the Smith-Waterman algorithm with the affine gap model

for the extension stage, targeting a single FPGA device. In particular, the FM-

index implementation is extended from the exact-match strategy in the last

chapter and is now capable of seeding and aligning reads exactly.
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4.2.1 Seeding: FM-index Implementation

The FPGA configuration that implements the seed extraction and seed align-

ment using FM-index is an extension of the implementation of the exact-match

strategy. Basically, the seeding process begins with streaming the reads from

the host. By following a similar seeding strategy in Bowtie2, 26 nucleotides are

extracted as seeds for every 15 nucleotides in each read, given that each read

is 101bp. Then every seed is exactly aligned to the reference using FM-index

with the pointers Top and Bottom. The pointers Top and Bottom are updated

based on the current character in the seed, and the correlated i(x) and c(ι, x)

values from the onboard memory. The final values for these pointers indicate

the SA range for the seed. For each read, we maintain a priority list such

that seeds with a smaller SA range are given higher priority in the extension

stage. Figure 4.3 displays a simplified top-level diagram that implements seed

extraction and seed alignment using FM-index.
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Host Device

Results

Figure 4.3: Simplified top-level diagram for exact-match/seeding module which
contains the compute block for the priority list. For readability, some data and
control paths are omitted.
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2-bit Representation

Despite the DNA sequence produced by the NGS machines can be abstracted

into {A, C, G, T, N}, statistically, only a small portion of reads contains N

characters. Based on our observation on accession ERR194147 [113] generated

by Illumina HiSeq 2000 sequencing machine, less than 4% of the reads con-

sist of N characters. With the aim to optimize the hardware efficiency, each

nucleotide is represented in 2 bits in the FM-index circuit. Reads containing

N characters are not transferred to FPGA and are instead processed by CPU

for seed extraction and seed alignment. Given that only an inconsiderable

amount of reads contains the N character, the seeding on the processor can be

completely overlapped by the execution of FPGA. Note that seeds containing

N characters are considered unaligned.

Hardware Priority List

As shown in Figure 4.3, a set of comparators and shift registers are used to

maintain the priority list. By default, 9 registers where each of them is 32-

bit are cascaded to form the required shift register so as to cache all possible

SA ranges for a read. Note that the number of registers can be increased by

changing a parameter to accommodate longer reads.

When a seed is successfully aligned to the reference, the SA range, i.e. the

difference between the final Top and Bottom, is obtained and compared against

the existing SA ranges on the priority list. An insertion point can be found

by comparing the SA range at each shift registers output simultaneously. The

SA ranges larger than the current one are shifted in the shift registers so that

seeds from smaller ranges receive a higher priority. Similar to the on-the-fly

sorter in Chapter 3.2.3, the underlying logic is fully pipelined so that it can

receive the aligned SA range from the compute block for each seed every cycle,

even the comparison and the shifting operations can take a few cycles.
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Figure 4.4: Simplified top-level diagram for the Smith-Waterman module with
the affine-gap model. For readability, some data and control paths are omitted.

4.2.2 Extension: Smith-Waterman Implementation with

Affine-Gap Model

Figure 4.4 displays the top-level architecture of the implementation of the

Smith-Waterman module. It is composed of three major parts: systolic ar-

rays that fill up si,j,→ and si,j,↓ and V, three matrix buffers, and a traceback

unit. Our design draws inspiration from the work in [83], however, we rely on

our FM-index circuit to locate the seed instead of using the software Bowtie2.

Basically, accelerating both the seeding and extension steps provide a more

superior speed-up, as the acceleration of only one step brings limited improve-

ment based on Amdahl’s law.

The systolic array consists of a pipeline of cells where each of them com-

putes one score for the matrices. The cells are parallel-loaded with one base

of the short read and its Phred quality, while the reference extracted in the

proximity of the matching position is shifted through the array. This allows

the calculation of the anti-diagonal of the matrix in parallel, which decreases

the time complexity from O(mn) to O(m+ n). The result of the current anti-

diagonal is buffered with registers and BRAM for data interleaving, and it is

reused in the computation of the next anti-diagonal.
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In the second part, we use block memory to create matrix buffers in order

to store up every score for si,j,→ and si,j,↓ and V during the anti-diagonal

calculation. Despite the calculation does not require buffering of every value

in the matrices, the complete storage reduces the efforts of the traceback unit.

It can reconstruct the alignment path by traversing the matrix in reverse order,

instead of recalculating the values and refilling the matrices.

Consideration for all NGS Data

The quality metrics and N characters are processed completely in the Smith-

Waterman implementation. Compared to FM-index, the N characters and

Phred quality are handled slightly differently. The reference and the reads

are represented in 3 bits. The Phred quality, which is transferred alongside

the reads, is loaded in the systolic array and used in the function σ(P [i], R[j])

for mismatch calculation. Despite the increase in the data transfer, the entire

operation is highly computationally intensive and is therefore bound by the

matrix computation. Note that based on Bowtie2, the σ function is given by:

2 + floor(4×min(q, 40.0)/40).

4.3 Evaluations and Discussion

In this section, we evaluate the selected alignment pipelines and discuss their

runtime and alignment accuracy. Then, we select the one that provides opti-

mal runtime and accuracy and compares it to other FPGA-based alignment

frameworks available.

4.3.1 Experimental Parameters

Similar to the last chapter, all the implementations are experimented on Xilinx

Virtex UltraScale+ VU9P with three DIMMs of 16GB onboard DRAM. The

FPGA runs at 200MHz while the host runs with Intel Xeon E5-2643 processor
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at 3.4GHz and 64GB DDR4-2400 memory. Vivado 2017.4 is used for synthesis

and implementation and the host is run with Centos 7.0. PCI-e 2.0 ×8 is

used to transfer the data between the host and FPGA. As the alignment is

bottleneck by either the onboard DRAM in the FM-index implementation or

the matrix computations in the Smith-Waterman circuit, PCI-e 2.0 is already

sufficient.

Our compressed FM-index is also constructed with the same parameters

similar to the last chapter (burst size = 64B, d = 192). The Smith-Waterman

implementation, on the other hand, supports a read length of m = 101 and

a reference length of n = 150. We need a larger segment from the reference

to enable gapped alignment at the start and the end of a read. We also

use the same sequence read dataset (human_100_300M in [109]) and reference

genome (GRCh38) to evaluate the performance and accuracy. Finally, we use

Bowtie2 2.4.1 in this evaluation. To ensure a fair comparison, we use the same

normalized metric, base pairs aligned per second (bps−1), given by Equation 2.6

in Section 2.2.4.

4.3.2 Alignment Runtime and Accuracy

Figure 4.5 presents the alignment time of the pipelines P1-P3. Also displayed

is the result of the default runtime of Bowtie2 on Xeon Silver 4110@ 2.1GHz

using 16 threads and 192GB RAM. We also show the result of Bowtie2 in

default settings with the parameter –no-1mm-upfront specified. This option

prevents Bowtie2 from searching for one-mismatch alignments before using the

seed-and-extend strategy.

Compared to Bowtie2, pipeline P3 provides the best acceleration with a

maximum speed-up up to 5.94× when 300M reads are processed. P1 also

provides a decent acceleration with a maximum speed-up of 4.46×. The speed-

up provided by P2, however, is only around 2.28×. Essentially, the extension

step in P2 considers any possible matching positions in all the reads, while
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Figure 4.5: The alignment speed for the selected alignment pipelines and the
default settings of Bowtie2 with and without the parameter –no-1mm-upfront
specified.

P1, P3 and Bowtie2 employ the exact-match and even one-mismatch strategies

to reduce the search space. Therefore P2 is less efficient compared to other

pipelines, especially the extension step suffers from the most prolonged latency

in all the selected pipelines.

Table 4.3 displays the comparison between the set-up and alignment ac-

curacy of the different alignment pipelines and software. Again, accuracy is

defined as the fraction of correct alignment and un-alignment from the pro-

posed alignment pipeline among all of the reads. Correct alignment refers to

reads aligned to the same locations as Bowtie2. Correct un-alignment means

that if the reads are not aligned by Bowtie2, they should not be aligned by the

proposed aligner also.

Since we have two separate Bowite2 runtime in different settings, the ac-

curacy values are obtained with the following:

• The accuracy of P1 is calculated based on the results of Bowtie2 with the

parameter –no-1mm-upfront specified, as P1 is modeled upon the default

settings of Bowtie2, but without searching for one-mismatch alignment.
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• The accuracy of P3 is obtained based on the default setting of Bowtie2, as

the alignment pipeline of P3 is basically identical to the default workflow

of Bowtie2.

• The accuracy of P2 is calculated based on the default settings of Bowtie2

with and without the parameter –no-1mm-upfront specified. Since it is

unable to perform the seed-and-extend strategy exclusively in the current

version of Bowtie2, we obtain two sets of accuracy numbers according to

our Bowtie2 runtime and then we take the average.

Table 4.3: A comparison between set-up and alignment results of the selected
alignment pipelines and the default settings of Bowtie2 with and without the
parameter –no-1mm-upfront specified.

P1 P2 P3
Bowtie2 (w/o

–no-1mm-
upfront)

Bowtie2 (w
–no-1mm-
upfront)

Device Xilinx Virtex UltraScale+ VU9P Intel Silver 4110 (16 threads)
Frequency 200MHz 2.1GHz
Lithography TSMC 16 nm Intel 14 nm

Align time 2170 s 4250 s 1630 s 9690 s 9490 s
bps−1 (million) 13.9 7.14 18.6 3.13 3.19

Accuracy 93.9% 90.6% 95.2% – –

With the consideration of complete biological information in the read dataset,

all the selected pipelines can achieve more than 90% alignment accuracy. No-

tably, P3 can achieve accuracy up to 95.2%. This showcases that the iden-

tification of SNPs using a particular backtracking FM-index implementation

can substantially improve the overall accuracy. It also improves the overall

alignment speed where around 76% of the reads are filtered out with the

exact-match and one-mismatch strategies.

The discrepancy in accuracy, between our pipelines and Bowtie2 (100%

accuracy for the ground truth), is due to two reasons. First, Bowtie2 employs

a heuristic to determine the mapping locations for the exact-match and one-
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mismatch strategies, especially when the reads have multiple aligned results.

Some of the reads that can be exactly aligned or aligned with one-mismatch by

Bowtie2 are mapped to a different location in our proposed pipelines. Second,

Bowtie2’s search for alignments for a given read is randomized. That means

that when Bowtie2 encounters a set of equally good alignment choices, it uses

a pseudo-random number to choose. Therefore, our proposed pipelines align

some of the reads to different locations in the seed-and-extend strategy. Fur-

thermore, because of some minor differences in alignment parameters such as

reseeding offset, extension attempts, and search limits, around 0.224% of the

reads are aligned in the proposed pipelines but not in Bowtie2, and vice versa.

Given that P3 provides the best results in terms of alignment speed and

accuracy, we select P3 as the most optimal pipeline. It decreases the alignment

time from around 2 hours 41 minutes in software to around 27 minutes on

FPGA. In the next evaluation, we compare our optimal pipeline with some of

the existing FPGA-accelerated aligners.

4.3.3 Performance Comparison with Existing

Accelerators

Table 4.4 presents the performance comparison between the proposed optimal

pipeline and previous accelerators from recent years. We select the aligners

that are mostly based on FM-index, or the Smith-Waterman algorithm, or

both for a fair comparison. Similar to the last chapter, we do not compare the

alignment accuracy in this evaluation because different designs conduct their

evaluations using different datasets.

The million bps−1 values in Table 4.4 indicate that our aligner outperforms

most of the previous work even we use runtime reconfiguration to deduce

and run the optimal architecture. It also showcases the advantages of our

architecture where the addition of computation logic for processing quality

metric in the FM-index and the Smith-Waterman implementation does not
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Table 4.4: Performance comparison with previous hardware accelerators that
are based on similar algorithms.

Year Work Algorithm &
Method Platform Device

Read
Count

(Million)

Read
Length

(bp)

Align
Time Mbps−1

2013 [13] FM-index +
Smith-Waterman Maxeler MAX3 Virtex-6 SX475T 82 90 49.0 s 151

2016 [88][89] Smith-Waterman Alpha Data ADM-PCIE-7V3 Virtex-7 VX690T-2 8 150 289 s 4.1

2019 [87] Dynamic
Programming IBM Power8 S824L Virtex-7 VX690T 100 128 5112 s 2.5

2019 [83] Bowtie2 +
Smith-Waterman Maxeler MAX5C Virtex Ultrascale+ VU9P 60 100 5830 s 1.03

2020 Ours FM-index +
Smith-Waterman Maxeler MAX5C Virtex Ultrascale+ VU9P 300 101 1630 s 18.6

affect alignment time.

The work [13] outperforms ours because of the following two reasons. First,

their implementation of the dynamic programming is based on the linear

Smith-Waterman algorithm, which involves only one matrix filling kernel. Our

Smith-Waterman implementation is based on the affine-gap model which is

composed of three matrix filling kernels and hence requires more compute cy-

cles. Moreover, [13] only consists of two stages in the alignment pipeline while

our alignment pipeline P3 consists of three stages to improve the alignment

accuracy.

4.3.4 Resource Consumption

Based on the proposed alignment pipeline P3, Table 4.5 indicates the corre-

sponding resource consumption for each implementation on VU9P, with the

inclusion of the PCI-e and memory controller. The resource consumption of

the exact-match strategy is slightly different from the one in Chapter 3, as

it is extended to support the seeding stage. Similar to the last chapter, with

an adequate area remaining on the FPGA for the FM-index implementation,

more modules can be populated on the FPGA if the number of DIMMs in-

creases. The Smith-Waterman implementation, however, consumes less than

25% of the resources because of the timing and fan-out issues. When the
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Smith-Waterman module is replicated, a significant amount of logic spans

across different dies on the target FPGA VU9P, which fails the timing. Fu-

ture research will involve fine-tuning the Smith-Waterman implementation to

minimize cross-die connection. Based on Equation 4.1, we can theoretically

populate four Smith-Waterman modules on the target FPGA. This will bring

further speed-up to the extension stage according to Equation 4.2 and theo-

retically contributes to a maximum 9× speed-up of P3 compared to Bowtie2.

Table 4.5: Area cost of the final design on VU9P. Percentage values are relative
to the available resources on target FPGA.

LUT Register BRAM DSP

Exact-match/Seeding 127 442 (10.8%) 239 262 (10.1%) 1000 (18.9%) 36 (0.53%)

1-Mismatch 140 726 (11.9%) 301 540 (12.6%) 1224 (23.18%) 9 (0.13%)

Smith-Waterman 279 792 (23.7%) 452 345 (19.1%) 530 (10.0%) 412 (6.02%)

4.4 Summary

In this chapter, we present different arrangements of alignment strategies and

evaluate their alignment speed and accuracy, by exploiting the runtime recon-

figurability of FPGA for acceleration. The novel aspects of this architecture

are:

1. By leveraging the runtime reconfigurability of FPGA, individual strate-

gies can be combined and re-ordered to align reads to the reference.

This pipeline enables evaluations of different arrangements of alignment

strategies.

2. Different arrangements of strategies are explored and an optimal pipeline

is obtained. It is composed of exact-match, one-mismatch, and seed-and-

extend strategy in sequential order.
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3. The exact-match strategy is extended to support the seeding stage, and

the Smith-Waterman algorithm with the affine-gap model is implemented.

4. Complete biological information including quality metric and ambiguous

characters are considered along the optimal alignment pipeline. With

alignment results from Bowtie2 acting as the ground truth, our design

can achieve an accuracy of 95.2%.

In the following chapter, we introduce an automatic merger that combines

multiple versions of a design project into a single hardware implementation,

with a case study on Binomial Filters and one of the proposed FPGA aligners.
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Chapter 5

Automated Design Analyzer and

Merger

FPGA accelerators have shown to be promising candidates to improve sys-

tem performance and power efficiency for more than two decades [114, 115].

However, the low productivity in developing FPGA-based applications and

the design portability compared to software development remains a huge ob-

stacle that hinders widespread utilization of FPGA devices in mainstream

systems [116].

One of the major challenges when designing applications on FPGA de-

vices is the lack of efficient implementation, optimization and debugging facil-

ities [117]. In particular, compiling a hardware design using standard design

tools could involve a tremendous amount of time. This long compilation time

limits the amount of implement/optimize-debug-edit cycles [118] per day and,

as a consequence, hinders the productivity of the designers.

During the optimization process, it is usual to have multiple versions [119]

of an FPGA design project being experimented on actual and specific hardware

to test the functional correctness or to evaluate their accuracy. In particular,

there exist many real-life applications that perform optimization by

fine-tuning each version of the design, where the derivation of each ver-
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sion can be independent of each other and the results from one version are not

required for deriving the other versions. For instance, Aubury and Luk [120]

propose the use of binomial filters to implement and approximate Gaussian

filtering on FPGA. The depth of the binomial filter structure can be adjusted

in each version to determine the accuracy and the frequency response. Also,

Targett et al. [121] carry out a precision and resolution exploration for shal-

low water equations for climate modeling. This study includes reducing the

bitwidth of mantissa length of variables in each version of design to balance the

tradeoff between precision and accuracy. These fine-tuning activities can im-

prove the resulting design significantly, but can be time-consuming due to the

repeated and prolonged process of placing and routing for each of the design

versions.

To address the above design optimization challenge, we propose the use of

an automatic merger that combines multiple versions of a design project into

a single hardware implementation. The proposed merger can identify com-

mon computational kernels between versions, perform the necessary merging

and generate a final hardware design in linear time. Instead of placing and

routing each individual version every time separately as shown in Figure 5.1,

the developer can implement the generated hardware once and hence improve

optimization productivity. We note that this approach is still useful for the

scenario where the derivation of each version is dependent on a former one

because developers can sometimes predict the possible parameters for the suc-

ceeding versions.

Furthermore, based on the statistics from the Proceeding of International

Conference on Field Programmable Technology (ICFPT) 2015 and 2016, 75%

of the full papers in the application sections utilize less than half of the re-

sources on FPGA. In other words, there remains adequate area on chip

for insertion of extra logic with the proposed merger, especially when

there are only minor discrepancies between each version of the de-

sign. We collect the statistic from ICFPT instead of other conferences because
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Figure 5.1: Comparison between the traditional approach and the proposed
approach during the optimization phase of an FPGA design. Traditional opti-
mization flow (left) requires placing and routing the design i times, while the
proposed approach (right) reduces the number of compilations but requires the
use of a design merger.
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there are more application-based contributions in this conference. Finally, by

relaxing the timing constraints, the proposed merger enables design-

ers to focus on checking functional correctness in hardware which is

faster and more accurate than software simulation.

This chapter presents DAM, an automated Design Analysis and Merging

approach to improve the design optimization process. Given i versions of a

design, this approach first parses each of them and generates the dataflow

graphs based on their respective datapath. Then a maximum subgraph algo-

rithm for dataflow graphs is applied to determine the common computational

kernels among them with linear time complexity. Common signals with dif-

ferent bitwidths across the versions are also analyzed and merged if possible

in order to further minimize resource consumption. Finally, the users can se-

lect a particular version of design by providing appropriate control signals to

the generated hardware implementation. The proposed approach can also be

applied to merge unrelated designs targeting a large FPGA.

Since the users do not need to follow the low-level details of the gener-

ated hardware implementation, the proposed approach can be considered as

an overlay [118] where a virtual programmable intermediate architecture is

overlaid on top of the physical fabric as a way to address the productivity and

portability challenge.

Ultimately, we aim to achieve the contribution 4 stated in Chapter 1

through the following methods:

1. We propose a novel approximate maximum common subgraph detection

algorithm for dataflow graphs with a linear time complexity that maxi-

mizes the sharing of resources for merging of different design versions.

2. We develop a prototype tool implementing a common subgraph detection

algorithm for dataflow graphs derived from Verilog designs, which in

addition generates the appropriate control circuits to enable the selection

of each design version at runtime.
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3. We provide a comprehensive analysis of compilation time versus degree

of similarity to identify the optimized user parameters for the proposed

approach.

The rest of the chapter is organized as follows: in Section 5.1 we present

the details of the proposed framework; in Section 5.2 we describe the prototype

tool and evaluate the performance of DAM; in Section 5.3 we provide a compre-

hensive analysis of compilation time versus degree of similarity; in Section 5.4

we describe some previous work similar to the proposed framework.

5.1 The DAM Framework

This section provides a comprehensive overview of DAM. Figure 5.2 illustrates

the complete workflow of the design merger. To begin with, we consider the

dataflow graphs for multiple versions of a design. As there are only minor

discrepancies between each version, every dataflow graph will look remark-

ably similar. To identify the common subgraph between versions, a maximum

common subgraph algorithm for dataflow graphs is launched and the corre-

sponding nodes are merged, including the nodes of the common signal that

can be different in bitwidth across different versions of design. Then the com-

bined dataflow graph is directed to the compiler to generate a final hardware

design.

The proposed approach has two novel aspects. First, DAM supports merg-

ing of multiple design versions in linear time based on an approximate max-

imum common subgraph algorithm for dataflow graphs. Second, it covers

merging of common variables that have different bitwidths across versions. In

the following subsections, we describe each of the modules within the merger

and their interactions in detail.
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Figure 5.2: The workflow of the proposed DAM approach.
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5.1.1 Dataflow Graph

A dataflow graph is a directed graph that represents the datapath of a circuit,

where the nodes represent the basic operations and variables of a design while

the edges between them represent specific paths that data elements follow [122].

Every hardware circuit can be translated into a dataflow graph and vice versa,

since every node in the graph corresponds to a hardware unit that can be

allocated on the chip surface and every edge represents a wire between two

units.

In the proposed approach, a dataflow graph is first abstracted from each

version v, where v = 0, 1, ..., i−1 of the hardware design with a source-to-source

compiler. Then, in order to recognize the common computational kernels, a

maximum subgraph algorithm is subsequently applied between every version of

dataflow graphs G0, G1, ...., Gi−1 to identify the maximum amount of connected

hardware elements that can be merged and shared.

5.1.2 Maximum Common Subgraph Algorithm for

Dataflow Graph

Essentially, precise detection of maximum common subgraph (MCS) in random

and arbitrary graphs is an NP-complete problem. Existing algorithms such as

McGregor or Durand-Pasari suffer from prolonged execution latency because

of their exponential time complexity [123]. The matching of multiple dataflow

graphs, specifically their vertices, is a polynomial-time problem, as it can be

modeled as a maximum weight bipartite matching. However, the matching

of the edges to minimize the interconnection area is an NP-complete problem,

since their matching must depend on the mapping of the adjacent vertices [124].

Consequently, precise algorithms are inappropriate for the proposed design

merger.
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Approximate Algorithm for MCS Detection

It is noticed that the dataflow graph extracted from hardware circuits carries

certain properties that can aid in the quick search for MCS. In general, nodes

are connected by a few edges since most operators consist of only one or two

parents and one output, and the majority of the nodes are normally labels

such as signal or port names. As a result, the dataflow graph extracted is so

sparse that an approximate algorithm such as [125] (time complexity: O(n),

where n is the number of nodes) can be used to obtain a set of MCS with

decent quality.

To approximate the MCS between two graphs Ga and Gb, a mapping Mab is

constructed from the vertices va ∈ Va of graph Ga onto the equivalent vertices

vb ∈ Vb of graph Gb. In [125], Rutgers et al. present a greedy algorithm which

uses best-first search to traverse the graph Ga and Gb. In each round of search,

a vertex va is heuristically chosen from Ga so as to find a mapping to a vertex

vb of Gb. For every possible vb, the best candidate to choose from is determined

by the following heuristic. To begin with, vertices in Va with fewer possible

mapping candidates in Vb are handled first, as the probability of selecting an

incorrect vertex decreases with a fewer number of candidates. After a vertex

va is chosen from Va, the selection of the corresponding vb depends on the

similarities of va and vb neighbors. Lastly, when a round of search completes,

the vertex va is finished and will not be selected again regardless of the search

result.

To initiate the above MCS algorithm, the set of inputs Ia and outputs Oa of

Ga are matched against the set of inputs Ib and outputs Ib of Gb respectively,

and this constructs the initial common vertices in Mab. Since every version of

the same design is highly similar during the design optimization process, the

input/output interface of each version must share some common signals such

as the clock or reset input. After initialization, the above heuristic, denoted

by Rutgers(Ga,Gb,Mab), is subsequently launched until all the vertices in Va
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are exhausted so as to return the MCS Mab. For further information about

the approximation algorithm, please refer to [125].

Obviously, there are several conditions to check before two nodes are iden-

tified as common. First, both nodes need to implement the same operation,

and they also have to operate on the same data type. Furthermore, associative

operations such as (a+b)+c and a+(b+c) must be extracted before perform-

ing MCS detection, and commutative operations such as a+ b and b+ a must

also be recognized as the same operation to minimize the area cost of the final

implementation.

MCS Algorithm for Multiple Graphs

Since [125] can only determine the set of MCS between two dataflow graphs,

the algorithm has to be launched iteratively until a final set of MCS for every

version is obtained. The set of notations adopted in this chapter is given by:

• i is the total number of versions for a given design;

• Gp is the dataflow graph for each version, where p = {0, 1, ..., i− 1};

• Cq is the set of MCS between every Gp, where q = {0, 1, ..., i− 2};

• C = Ci−2 is the set of MCS between every version of dataflow graphs;

• C is the negation of C which contains all the uncommon subgraphs;

• find_MCS((G0, G1, ..., Cj−3), Gj−1) refers to the algorithm that identi-

fies the set Cq, where 2 < j ≤ i.

To identify the set of MCS between every version of dataflow graphs, an

initial set of MCS C0 is obtained by comparing G0 and G1. This newly cal-

culated C0, together with G0 and G1, are matched against G2 to compute C1.

This process repeats i − 2 times until the final Ci−2 is obtained. Note that

the set Ci−2, which is equivalent to C, contains every set of MCS across all i
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versions of design. Other nodes that are not in any of the MCS fall into the

set C.

Data: G0, G1, ..., Cj−3, Gj−1, where 2 < j ≤ i
Result: Cj−2

1 Ga = {G0, G1, ..., Gj−2}
2 Gb = {Gj−1}
3 Mab = {}
4 for g in GA do
5 Mab = Mab∪ MATCH_IO( g, Gb )
6 end
7 Mab = Rutgers(Ga,Gb,Mab)
8 Cj−2 = Cj−3 ∪Mab

Algorithm 9: Pseudocode of a single iteration of MCS approxima-
tion for multiple dataflow graphs. Assume that C0 is already com-
puted for consistent input data format.

A simple illustration of each iteration of the merging process is displayed in

Algorithm 9. Each iteration is denoted by find_MCS((G0, G1, ..., Cj−3), Gj−1)).

In each iteration, Gb is initialized with the graph to be matched against, while

Ga is composed of multiple dataflow graphs across versions, which can be con-

ceptually considered as a single dataflow graph with numerous unconnected

subgraphs. After that, the common input and output ports are mapped and

inserted into Mab, and Rutgers(Ga,Gb,Mab) is then executed to compute a

partial MCS. Finally, the information about the current MCS and the MCS

from the previous iteration are joined to obtain a complete MCS. This final

step is crucial because only one vertex in Ga can be mapped to a candidate

in Gb based on Rutgers et al. Yet in reality multiple vertices can be matched

because Ga is composed of dataflow graphs from every version. The MCS

formulated in the previous version provides the information about the rest of

the mapped vertices, and hence the union of Cj−3 and Mab contributes to a

complete search result.

Since the number of versions i is relatively small, the overall time complex-

ity is given by:
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O(find_MCS(G0, G1)) +O(find_MCS((G0, G1, C0), G2))+

...+O(find_MCS((G0, ..., Gi−2, Ci−3), Gi−1))

= O(n) +O(2n+ n) + ...+O(i× n+ n)

= O(i2n)

= O(n),

which means such algorithm is acceptable for the proposed design merger be-

cause of its linear time complexity.

Final Dataflow Graph Generation

In order to generate the final hardware which is logically identical to the orig-

inals, every MCS in C is first combined to generate a merged dataflow graph.

The inputs and outputs of the merged graph are reconnected to the nodes in

C as well.

Essentially, the inputs to the MCS in C are multiplexed and the sel signal

is fed to the output interface. To activate a particular version of the original

design, an associated value is asserted at sel so that a correct signal from C

can be directed to the merged hardware. The outputs of the merged node, on

the other hand, have to be connected back to the nodes of the versions that

originally use the results. Figure 5.3 displays an example that explains the

process of multiplexing.

5.1.3 Analysis and Merging of Common Signals / Vari-

ables with Different Bitwidths

As our goal is to minimize the resource consumption for the combined imple-

mentation, we are also interested in merging the common signals even though

they are different in bitwidth across various versions of a design.
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Figure 5.3: Example of multiplexing when dataflow graphs of two separate
versions are combined and merged.

In the above MCS search, the common signals mentioned are considered to

be non-identical because of their discrepancies in bitwidth. In order to merge

these signals, the maximum bitwidth of every common signal is first obtained

and the value is used to update every node that carries the same variable.

After that, the same set of MCS algorithms is applied on C, which identifies

a new group of MCS C′ composed only of the newly-formed common signals.

To provide a clear explanation, another set of notations is adopted in this

subsection and they are defined as:

• C′ is the set of newly obtained MCS which is composed of the common

signals with different bitwidths;

• C′ = C −C′ contains all the graphs in various versions that cannot be

combined or merged with any of the methods proposed.

Assignment Nodes

Since every common signal in C′ is unique originally, extra hardware node is in-

serted in the dataflow graph during the merging phase of C′ to ensure correct-

ness. This includes appending multiplexers, partially-selecting and sign/zero-

extending the low-level bit when the signal appears as an assignment node. A
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Figure 5.4: Example of appending multiplexers, partially-selecting and sign-
extending the low-level bit when the common signal with multi-bitwidth is
merged.

signal or a variable is assigned when it is either attached to the output of an

operator, or directly connected to another signal in the dataflow graph.

Figure 5.4 shows an example of the above process when the output signals

are attached to an addition operator in two separate versions. Initially, the

common signal Y is of width 8-bit and 16-bit in version-0 and version-1 respec-

tively. Then, the operator is merged and its output is partially-selected and

sign-extended. This enables the 16-bit signal to imitate an 8-bit signal and

contributes to the same computational result.

As illustrated in the above example, different number of bits should be

selected and different values should be appended in regard to the signal type

and the operators attached. Normally, sign extension is applied when the signal

adopts signed number representation while for unsigned number representation

zero extension would suffice.
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Comparison Operator

Furthermore, for every common signal that is connected to a comparison op-

erator (e.g. == < ≤ > ≥), partially-selecting the low-level bit is required.

This is due to the fact that comparison is based on the left-to-right evaluation,

and the sign/zero-extension process performed above will incur an incorrect

comparison result if left unattended.

Connection to the MCS in C

Depending on the original structure of the dataflow graph, the inputs or out-

puts of each MCS in C′ can be connected to the previously formed MCS in C,

or simply connected to the nodes in C′. The following description summarizes

all possible combinations and provides a detailed explanation for each scenario.

1. C′ and C Unconnected — In this scenario, every input and output

of an MCS in C′ are connected to the uncommon subgraphs in set C′.

Similar to the multiplexing mechanism as shown in Figure 5.3, the inputs

are multiplexed and the sel signal is fed to the control interface. Also,

the outputs of the merged graph must be connected back to the nodes

in the uncommon graphs that use the calculated results.

2. Outputs of C′ connected to Inputs of C — This is the case where the

outputs of an MCS in C′ are connected to any input nodes of an MCS

in C. To link both MCS together, the outputs are first partially-selected

and sign/zero-extended, which is similar to the example in Figure 5.4.

The multiplexers inserted in Section 5.1.2 are also slightly modified. The

inputs of the original multiplexer in C are disconnected so that the

sign/zero-extended outputs and the unmodified outputs can connect to

them.

3. Inputs of C′ connected to Outputs of C — In this case, the outputs

of an MCS in C can be connected to the inputs of an MCS in C′ di-
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rectly, without the need to introduce extra hardware. This is because the

partial-selection and bit-extension process during assignment can always

guarantee that a common signal will carry a correct value.

Currently, the merging of common signals with multi-bitwidth always takes

place regardless of hardware cost, which may be less desirable for low-cost

operations such as addition. In the future, we can extend the merging heuristic

by considering multiplexing versus operator savings to further minimize the

final resource consumption.

5.1.4 Optional Timing Optimization

Based on [122], the throughput of a hardware mainly depends on the number

of data items that the design can process in one cycle, and also the maxi-

mum clock frequency that the design can support. Therefore, the proposed

design merger provides an optional mechanism for users to perform certain

re-pipelining if the dataflow graph is direct acyclic.

It is often hard to fulfill timing constraints when an output signal is con-

nected to many hardware nodes. Since it is difficult for the synthesis and

implementation tool to place the hardware nodes in close proximity, the re-

sulting wire length will consequently increase. To address this challenge, the

proposed approach can insert registers in a tree-like fashion such that each

register only consists of a limited amount of outputs if the timing optimization

mechanism is activated by the users.

Algorithm 10 shows the simplified timing optimization process where the

final dataflow graph is parsed two times. The first round determines the high

fan-out nodes and calculates the number of registers needed to generate the

tree-like structure. To ensure the correctness of the results after the insertion of

registers, the increase in pipeline levels is also recorded for each node. After the

first parsing, the second round begins with traversing and adding each vertex

into the final graph. When a high-fan out node is encountered, a tree-like
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register structure is added to the final graph. Finally, each of the children are

checked to ensure correct pipelining by inserting extra registers when necessary.

5.1.5 Final Implementation Generation

After detecting and approximating the MCS and merging the common nodes

with the methods proposed, the final dataflow graph, which is formed by C,

C′ and C′, can be supplied to the source-to-source compiler to generate the

final implementation.

Usually, the compiler can produce the final hardware that is in the same

language as the original design. However, depending on the needs of the de-

signers, the compiler can be extended to produce the corresponding source code

in another programming language such as Chisel [126] or Verilog to promote

productivity.

5.2 Prototype Tool and Benchmarks

5.2.1 Prototype tool based on Pyverilog

With the objective to improve designers’ productivity during the optimization

process of FPGA implementations, the key goal of DAM is to merge every

version of a design automatically while minimizing resource consumption. To

demonstrate the feasibility and viability of DAM, we prototype the proposed

approach with Pyverilog [127] to support the functionality mentioned in Sec-

tion 5.1 as a proof of concept.

Pyverilog is an open-source toolkit that provides register transfer level de-

sign analysis and code generation of Verilog HDL. Written in the Python pro-

gramming language, Pyverilog incorporates multiple libraries such as parser,

dataflow analyzer and Verilog code generator that are useful to realize the pro-

posed design merger. In our prototype, we use the given parser and dataflow

analyzer to generate the dataflow graph for each version of a Verilog-based
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Data: Final dataflow graph Cf , output connections limit l
Result: Timing optimized dataflow graph Ctf

1 //1st parsing to calculate registers needed
2 for vertex g in Cf do

3 if g.child_cnt > l then

4 //calculate the extra registers needed for the
5 //tree-like structure
6 g.tree_level = | ln(g.child_cnt) / ln(2) | - 1

7 for child h of g do

8 //Assume h.reg_level is initialized as 0
9 h.reg_level = max(g.reg_level + g.tree_level - 1,

10 h.reg_level)
11 end
12 else
13 g.tree_level = 0

14 for child h of g do
15 h.reg_level = max(g.reg_level , h.reg_level)
16 end
17 end
18 end

19 //2nd parsing to add registers
20 for vertex g in Cf do
21 Ctf .addV ertex(g)

22 if g.tree_level > 0 then

23 //add registers based on tree-like structure
24 Ctf .addRegTree(g, g.tree_level)

25 end

26 for child h of g do
27 reg_cnt = h.reg_level - g.reg_level − g.tree_level

28 //add registers to ensure correct pipelining
29 Ctf .addReg(g, h, reg_cnt)

30 end
31 end
Algorithm 10: Pseudocode of the timing optimization for the final
dataflow graph. For simplicity the function contents for addV ertex(),
addRegTree() and addReg() are omitted.
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design. Then, we approximate and combine the MCS iteratively in linear time

using the algorithm presented by Rutgers et al. [125]. As the dataflow graphs

between versions are based on the same design project and they look remark-

ably similar, Pyverilog is extended to recognize the common signals based on

their literal names for fast prototyping. Therefore, the MCS obtained is an

associative reduction where the resulting graph is independent of the input

graph permutation. To further optimize the tool efficiency, we also perform

the search and the necessary merging of the common signals that are different

in bitwidth during the above iterative MCS detection. Optional timing opti-

mization is performed by analyzing the number of fan-out of any outputs. The

final dataflow graph is processed by the Verilog code generator to produce a

final, Verilog-based hardware description.

Moreover, the decision to implement the proposed approach based on Ver-

ilog is mainly a consideration for design productivity and tool portability. Ver-

ilog is one of the most-used design languages to describe a digital circuit at the

register transfer level for FPGA-based implementations. In addition, Verilog

and VHDL are usually used as an intermediate representation for open-source

or vendor EDA tools in modern high-level synthesis and next-generation HDL

research [127]. Finally, we note that merging for block RAM is also supported

in our prototype when the design implements inferred block RAM.

With Pyverilog extended to support the proposed approach, we run the

design merger on HP EliteDesk 800 G2 Tower PC with Intel i7-6700 3.40GHz

CPU and 32GB RAM, and the merged hardware is synthesized and imple-

mented onto Xilinx Artix-7 AC701 Evaluation Platform using Vivado 2016.3

edition to recognize the overall performance and limitations.
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5.2.2 Benchmarks from VTR

Experimental Setup

We select several parameterizable Verilog designs from the VTR Benchmarks [15,

16] and automatically combine them with the prototype merger in order to un-

derstand its implications in terms of real-life applications. These applications

include bgm, LU8PEEng and array of diffeq1 which provide macros or param-

eters for users to explore different hardware structures and to offer multiple

versions of a single design.

Table 5.1 illustrates the configuration details for these applications. In dif-

feq1, each version is obtained by adjusting the bitwidth of all signals, while for

bgm and LU8PEEng the macros BITS and PRECISION are altered respectively

so that different precision can be used to calculate the final results. As low-

ering the precision and changing the corresponding macros eliminate certain

parts of the original circuit, the resulting dataflow graphs vary across differ-

ent versions. Additionally, the adjustment of the macros changes the width of

several signals, and hence creating common signals with different bitwidths for

merging.

Finally, the generated hardware and original hardware are synthesized and

implemented individually using Vivado with the default settings, and data

about the area cost and compilation time are collected subsequently. Also, the

maximum frequency for each implemented hardware is obtained by specifying

different timing values in the constraint file and compiling separately until the

tool fails to meet the timing constraint. Finally, optional timing optimization

is not activated for these benchmarks.

Experimental Results

For each application, the area cost and the maximum frequency for every ver-

sion, including the combined ones, are displayed in Table 5.1. The percentage

values are relative to available resources of the targeted FPGA device.
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Table 5.1: Resource consumption and maximum frequency of the generated
hardware versus the originals for different applications.

Application Version Difference LUTs Registers BRAMs DSPs Max. Freq.

diffeq1
Array
(Array
Size=64)

0 for all signals: bitwidth = 8 5928 4.40% 5540 2.06% 0 0 125MHz
1 for all signals: bitwidth = 16 5638 4.19% 8256 3.07% 0 256 78.74MHz
2 for all signals: bitwidth = 24 17 497 13.0% 15 827 5.88% 0 384 60.24MHz
3 for all signals: bitwidth = 32 20 790 15.4% 20 608 7.65% 0 576 58.82MHz

Merged – 22 399 16.6% 20 544 7.63% 0 576 53.19MHz

bgm

0 Macro: BITS = 8 7318 5.44% 2665 0.990% 0 22 78.13MHz
1 Macro: BITS = 16 7356 5.47% 3401 1.26% 0 22 78.13MHz
2 Macro: BITS = 32 11 518 8.56% 6030 2.24% 0 22 78.13MHz

Merged – 12 728 9.46% 8276 3.07% 0 22 70.42MHz

LU8PEEng

0 Macro: PRECISION = 8 8369 6.22% 3903 1.45% 28 16 19.46MHz
1 Macro: PRECISION = 16 9946 7.39% 4136 1.54% 28 16 19.42MHz
2 Macro: PRECISION = 32 15 366 11.4% 4637 1.72% 28 16 19.30MHz

Merged – 15 910 11.8% 6048 2.25% 28 16 83.33MHz

As expected, the reduction in bitwidth of certain signals between versions

contributes to a decrease in total resource consumption, and sometimes im-

proves the maximum frequency of the implemented hardware. The generated

hardware, on the other hand, shares similar properties in terms of area cost

and timing when compared to the original implementations. The resources con-

sumed are increased only by around 2% with reference to the Artix-7 AC701

FPGA, which is one of the smallest FPGAs in the Xilinx 7-series. Moreover,

the maximum frequencies in diffeq1 and bgm are reduced by 10 to 12%, which

are moderate given the functionality that DAM provides.

The maximum frequency supported by the merged hardware in LU8PEEng,

on the contrary, is improved by around 4× when compared to the original

implementation. This unexpected result arises from a similar timing and fan-

out issue mentioned in Section 5.1.4. Originally, the register recResult in

LU8PEEng is assigned by a wide multiplexer where the inputs are connected

to repeating subsets of the same signal. Such assignment incurs a large fan-

out and subsequently limits the maximum frequency of every version of im-

plementation. Nevertheless, the bitwidth of recResult is defined with macro

PRECISION and as a result, it is resolved as a common signal with different
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Figure 5.5: Compilation time of the generated hardware versus the combined
compilation time of each hardware application.

bitwdiths during the merging process. The insertion of registers for zero-

extension increases the number of driving gates for recResult and hence the

number of fan-out is reduced, which in turn improves the overall timing. We

note that such an improvement in the maximum frequency can be obtained by

fan-out optimization [128], which can be applied in addition to dataflow graph

merging.

Finally, Figure 5.5 shows the total compilation time of the generated hard-

ware versus the sum of compilation time of each hardware application. The

time recorded includes the duration of synthesis as well as implementation.

5.2.3 Case Study I: Binomial Filters

This subsection presents a case study on one of the applications mentioned

at the beginning of this chapter: Binomial Filters. Such filters are efficient

structures based on binomial coefficients to realize Gaussian filtering on FPGA.
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Figure 5.6: A fully-pipelined binomial filter where n = 4.

There are numerous possible variations of the basic binomial filter structure

and therefore an analysis of the accuracy and frequency response is required

when implemented on FPGA [120]. In particular, an analysis with actual

hardware is important for such filters because it usually provides more accurate

results such as frequency response with respect to signal inputs when compared

to software simulation.

An example of a binomial filter used in this experiment is shown in Fig-

ure 5.6. The structure of the binomial filter is derived from the polynomial

(1 − z−1)n, and it can be implemented with a cascade of adders with one of

the inputs delayed by a register. Such a cascade is arranged in a pipeline

structure where the depth is given by the parameter n. The quality of the

approximation to Gaussian filter depends on n where the error is reduced to

a small value for large filters. For further information about binomial filters,

please refer to [120].
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Table 5.2: Resource consumption of the generated hardware versus the original
hardware for binomial filter. The usage of BRAMs and DSPs are not displayed
because they are not used.

Version Difference LUTs Registers

0 n = 14 40 763 30.3% 67 632 25.1%

1 n = 15 43 549 32.4% 72 464 26.9%

2 n = 16 46 335 34.4% 77 312 28.7%

3 n = 17 49 887 37.1% 82 176 30.5%

4 n = 18 52 929 39.3% 87 056 32.3%

5 n = 19 55 715 41.4% 91 952 34.1%

6 n = 20 58 501 43.5% 96 864 36.0%

Merged - 61 536 45.7% 101 420 37.7%

Experimental Setup

We populate multiple binomial filters on the FPGA to allow parallel processing

where each of them supports 64-bit calculation. The FPGA is populated with

32 filters so that the total resource consumption is around 40%. As mentioned

above, the depths of the filters need to be fine-tuned to determine the accuracy

of the binomial filters. Therefore, in this experiment, the depth of the filters is

varied in each version while the target frequency is fixed at 100MHz. Similar

to the previous benchmarks, optional timing optimization is not activated in

this case study, and the generated hardware and the original design versions

are synthesized and implemented individually using Vivado with the default

settings. Table 5.2 illustrates the configuration details for every version and

also the corresponding implementation results.

Experimental Results

The area cost of every version and of the combined hardware are shown in

Table 5.2. Obviously, the reduction of depth contributes to a decrease in to-

tal area cost in each version, while the resource consumption of the combined
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Figure 5.7: Compilation time of the generated hardware versus the combined
compilation time of the originals for the binomial filter.

hardware remains competitive compared to the originals. The LUTs and reg-

isters consumed are only increased by around 2% with reference to the target

Artix-7 AC701 FPGA. This clearly showcases the efficiency of the MCS ap-

proximation algorithm since the bitwidth is set to be identical across versions,

and the merging of common signals with different bitwidths is not executed in

this case study.

The total compilation time, on the other hand, is presented in Figure 5.7.

Similar to the VTR benchmark, the time recorded includes the duration of

synthesis as well as implementation. From the figure, it can be seen that the

speed-up in compilation time is around 5.9× when compared to the combined

compilation time of all the originals. In particular, the overall compilation

time is reduced from 1 hour to around 10 minutes. Such a significant result

is due to the increase in version counts and also the relatively high similarity

between versions. It shows that the MCS algorithm proposed in Section 5.1 is

able to identify most of the common vertices among all the dataflow graphs,

and this contributes to a promising speed-up in compilation time with only a

minor increase in resource consumption. Also, it is expected that the overall

compilation speed-up will be more significant if more versions are supplied to

the proposed design merger. Finally, the execution time for MCS detection

and dataflow graph merging is only 1.43 seconds and is insignificant compared

to the synthesis and compilation time.
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Figure 5.8: Simplified top-level diagram for an exact-match/seeding module.
The BRAM and counter in the bottom left of the figure determine the number
of reads interleaved. For readability it only displays the logic for one pointer
calculation, and some data and control paths are omitted.

5.2.4 Case Study II: FM-index

This subsection presents another study that is based on the FM-index im-

plementations presented in Chapter 3 and 4. In particular, we look at the

implementation of the exact-match/seeding strategy in this case study. As

mentioned, we introduce a data interleaving scheme to optimize our FM-index

implementation. By processing multiple reads concurrently, it can negate the

memory access latency and enable almost full utilization of FPGA at every

cycle.

As shown in Figure 5.8, BRAMs are used to store the interleaved reads.

Another counter, which stops at its maximum, is implemented to control the

multiplexer at the input of the BRAMs. These two components determine the

number of reads that are processed concurrently to mask the memory access

latency, which varies between platforms and DDR technologies.

Experimental Setup

The initial implementation of the FM-index comes with five versions where

each of them concurrently processes a different number of reads. This number
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Table 5.3: Resource consumption of the generated hardware versus the original
hardware for the FM-index implementation (exact-match/seeding). The usage
of DSPs is not displayed because all the hardware uses 36 (0.53%) of them.
Percentage values are relative to the available resources on target Ultrascale+
VU9P FPGA.

Version No. of Reads
Interleaved LUTs Registers BRAMs

0 352 127 584 10.8% 239 313 10.1% 997 18.9%

1 368 127 442 10.1% 239 262 10.1% 1000 18.9%

2 384 127 378 10.8% 239 272 10.1% 1000 18.9%

3 400 127 079 10.8% 239 196 10.1% 1003 19.0%

4 416 127 380 10.8% 239 228 10.1% 1003 19.0%

Merged - 134 596 11.4% 236 662 10.0% 1213 23.0%

affects the depth of the BRAMs and the maximum value of the counter. To

determine the version that provides the optimal alignment performance, we

apply the proposed DAM approach available as an automated dataflow graph

merger in MaxCompiler 2018.2 [122], and synthesize and implement the merged

design using the default settings of Vivado 2018.2. We also synthesize and

implement each individual version to obtain the original compilation time and

resource consumption. Table 5.3 illustrates the configuration details for every

version and also the corresponding implementation results.

The frequency is fixed at 200MHz for all the versions and the merged

hardware. Similar to Chapter 3 and 4, Xilinx Ultrascale+ VU9P is used as

the target FPGA connected to three DIMMs of 16GB onboard memory. We

run the synthesis and implementation on Dell PowerEdge R740XD Server with

Intel Xeon Gold 6154 3.40GHz CPU and 754GB RAM.

Experimental Results

The area cost of every version and the combined hardware are shown in Ta-

ble 5.3. For each individual version, the increase in the number of reads in-

terleaved contributes to an increase in LUTs, Registers or BRAMs, while the
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Figure 5.9: Compilation time of the generated hardware versus the combined
compilation time of the originals for the FM-index implementation (exact-
match/seeding).

resource consumption of the combined hardware is fairly similar to the original

versions. The LUTs and BRAMs consumed are increased by around 1.3% and

4.1% respectively with reference to the target Ultrascale+ VU9P FPGA. The

registers consumed, however, are decreased because some registers are inferred

to BRAMs in Vivado synthesis and implementation.

The total compilation time is displayed in Figure 5.9, and it can be seen

that the speed-up in compilation time is around 4.89× when compared to the

combined compilation time of all the originals. The overall compilation time

is reduced from 26.6 hours to around 5.43 hours. Note the time recorded in

this experiment is the duration of MaxCompiler compilation which consists of

Vivado synthesis and implementation.

Finally, the alignment time of the exact-match and seeding strategy is

shown in Figure 5.10. For the exact-match alignment, the alignment time is

decreased from 304 s to 198 s when the interleaved counts are increased from

336 to 368 reads. The alignment time saturates at 198 s despite the number of

reads interleaved being increased further. We can also see a similar pattern for

the seeding strategy. Based on this experiment, we can determine the number

of reads required, i.e 368, to mask the memory access latency.
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Figure 5.10: The alignment time of the exact-match and seeding strategy
versus different number of reads interleaved.

5.3 Evaluation

As the above experiment is based on the architecture of the applications pro-

vided by VTR Benchmarks, binomial filters and FM-index, the variations or

the degree of similarity between versions cannot be adjusted randomly. In

this evaluation, we explore the relationship between compilation time and de-

gree of similarity by varying the number of design versions i and its resource

consumption on FPGA.

5.3.1 Evaluation Setup

We populate the FPGA with multiple diffeq1 modules so that 30%, 40%

and 50% of the FPGA slices are initially occupied by each unmerged design

version. After that, we introduce discrepancies between versions by changing

the signal names literally. This enables a fine-grained adjustment of the degree

of similarity between versions. Then all the design versions are applied to the

prototype merger to generate a merged design, which is passed to Vivado

subsequently to record the compilation time. The original versions are also

synthesized and implemented separately in order to make a comparison.

Essentially, the compilation time of the unmerged designs is the summa-
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Figure 5.11: The relationship between compilation time and degree of similar-
ity.

tion of the synthesis and implementation time of all the versions. For the

merged designs, the compilation time simply refers to its own synthesis and

implementation time. The degree of similarity is defined as the proportion of

computational hardware that is common between versions. We note that we

do not use the context of dataflow graph for this definition because each node

can represent different hardware types which contribute to different area costs.

5.3.2 Evaluation Results

Figure 5.11 displays a summary of the experimental results which demonstrates

the scalability of the proposed approach. Basically, 100% similarity refers to

the scenario that every design version is logically equivalent, and it indicates

the scope of the maximum compilation speed-up. The soaring compilation

time in the figure illustrates the failure of placement and routing in which the

merged hardware is larger than the area of the given FPGA.
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Originally, the total compilation time is linearly proportional to the number

of versions as indicated by the flat lines in the figure, whereas the compilation

time of the generated hardware is independent of the version counts. Since

the synthesis and implementation time of the merged designs purely depends

on the degree of similarity, extra logic is only introduced when there exist

variations between versions. Thus, the compilation time increases with the

decrease of similarity until the FPGA runs out of resources for the generated

hardware.

It is also noticed that the compilation time of the generated hardware is

largely similar regardless of the numbers of versions when every version is 85%

to 100% in common. The compilation time is around 400 s to 1000 s which

is at least 3× faster when there are seven versions of the same design. The

compilation speed-up can be further improved to around 5× if the versions

are 95% similar. It is expected that, based on the assumption that there is

adequate space on chip, the improvement will be larger when more designs are

merged. Finally, we note that although the performance numbers are based

on diffeq1, parameters such as relative compilation speed-up are important

specifications for other applications when DAM is employed by designers to

perform FPGA design optimization.

5.4 Previous Work

The concept of supporting multiple versions is described in [129] where con-

servation cores, i.e. specialized processors that focus on reducing energy, are

designed to run both past and future versions of code. However, the notation

of versions in [129] is different from our work since each version in the proposed

approach is independent of each other. In other words, all the variants between

versions are already known at the time when designers need to synthesize and

implement the hardware.

Automated dataflow graph merging has been extensively studied in the
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context of runtime reconfiguration, high-level synthesis and instruction set

extension. Fazlali et al. [124, 130] propose a datapath merging algorithm based

on approximating the maximum weighted clique to shorten the bitstream and

to reduce reconfiguration time. Voss et al. [122] present a cost-driven heuristic

to minimize the area cost within an HLS application. Other work such as [131–

135] focuses on resource sharing of multiple instruction set extensions (ISEs)

for extensible base processors. For example, a path-based heuristic approach is

presented in [131] in which a set of ISEs is transformed to a hardware datapath.

Maximal subsequences problem is then applied to maximize area reduction.

Zuluaga and Topham later extend the work by introducing latency constraints

in the merging process [134]. Similarly, a heuristic that uses the construction of

a compatibility graph is proposed in [132] and a non-exact method is suggested

to perform datapath merging. Such heuristic is also employed in [135] to

increase area reduction by accounting for the cost of multiplexers.

Since the merging latency is not a prior concern in most of the work men-

tioned (from exponential to polynomial time complexity), the corresponding

algorithms are less appropriate for DAM. A linear-time heuristic is proposed

in our work to minimize the merging time because reducing the compilation

time is an important objective of the proposed approach.

On the other hand, researchers have tackled the challenge of prolonged

hardware implementation, optimization and debugging runtime in many dif-

ferent ways. For example, overlay architectures have been leveraged to offer

faster compilation as well as improved programmability and runtime manage-

ment. Recently, overlays with different granularity ranging from virtual FP-

GAs [136–140], soft processors [141–143] to CGRA overlays [116, 117, 144–146]

and GPU-like overlays [147] have been proposed.

In addition, some have addressed the challenge from a design methodol-

ogy’s perspective. In [148, 149], the authors propose the use of pre-built hard

macros and modular design flow to minimize the placement and routing pro-

cess. A similar approach is also presented in [150] where a library of precom-
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piled macros is constructed for HLS. Finally, some researchers have devoted

their efforts to low-level FPGA EDA tools to improve implementation speed.

In [151], the authors accelerate the placement and routing process by making

quality-runtime tradeoffs. The implementation runtime can also be improved

by parallelizing the placement algorithm [152, 153]. Dynamic partial reconfigu-

ration is leveraged in [154] and [155] to shorten runtime by effectively reducing

the user design size.

Compared to these contributions, the proposed approach represents a com-

plementary solution to improve designers’ productivity by eliminating the need

to perform placement and routing for different design versions repeatedly. It

is possible to use DAM together with the above optimization techniques to

reduce the compilation time, and such opportunities are explored in the next

chapter.

5.5 Summary

In this chapter, we propose a new approach DAM to merge multiple FPGA

designs into a single one for rapid functional evaluation. The novel aspects of

DAM are:

1. A novel approximate maximum common subgraph detection algorithm

with linear time complexity is proposed to maximize the sharing of FPGA

resources after design merging.

2. A prototype tool is developed to realize the maximum common subgraph

detection algorithm for dataflow graphs derived from Verilog designs. It

also generates the appropriate control circuits to enable the selection of

each design version at runtime.

3. A comprehensive analysis of compilation time versus degree of similarity

is done, and the proposed approach can reduce the compilation time by

3× to 5×.
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Chapter 6

Conclusion

In this work, we demonstrate the use of FPGA to accelerate biologically

accurate short read alignment. This is achieved through accelerating FM-

index-based alignment and the Smith-Waterman algorithm with the affine-gap

model. We also propose an automatic design analyzer and merger to further

optimize the FM-index implementation. Below we summarize the main con-

tributions of this work:

Exact-match and mismatch alignment with FM-index

We develop and implement a four-stage alignment pipeline that follows a sim-

ilar workflow in Bowtie [156, 157]. By leveraging the runtime reconfigurabil-

ity of FPGA, exact-match, one-mismatch, two-mismatch and three-mismatch

alignment strategies are configured in turn on the FPGA. We use FM-index

to achieve biologically accurate alignment by considering complete biological

information in the read data. Additionally, we maximize the performance us-

ing three major techniques: First, we compress and partition the FM-index

into buckets. The length of each bucket is equal to an optimal multiple of

the memory burst size. Second, we interleave the memory access with multi-

ple short reads to negate the access latency. Finally, we apply bi-directional

FM-index to reduce the search space for the one-mismatch and two-mismatch
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alignment strategies. Experimental results indicate that our design maximizes

alignment accuracy compared to the state-of-the-art software Bowtie, mapping

reads 4.27× as fast. Compared to the previous hardware aligner, our achieved

accuracy is 97.7% which reports 4.48 M more valid alignments with a similar

speed.

Indel alignment with exploration of different alignment pipelines

We implement the seed-and-extend strategy on FPGA to support indel align-

ment that includes matches, mismatches, deletions and insertions [157, 158].

The exact-match implementation is extended to perform seeding while a Smith-

Waterman implementation with the affine gap model is developed for the ex-

tension. We maximize their performance using two major techniques: First,

a set of comparators and shift registers is implemented so as to maintain the

hardware priority list in seeding. Second, data interleaving is used in the ex-

tension to facilitate the anti-diagonal calculation of the three matrics. More-

over, we arrange one or multiple alignment strategies into a few sequential

pipelines. For each pipeline, we investigate the speed-up and accuracy to pro-

vide guidance for genomics scientists. Experimental results indicate that the

pipeline: exact-match alignment + one-mismatch alignment+ seed-and-extend

strategies provides a desirable performance (5.94× speed-up) with comparable

accuracy (95.2%) based on Bowtie2.

Runtime reconfigurable alignment pipeline

We propose a multi-configuration alignment pipeline by exploiting the runtime

reconfigurability of FPGA. Distinct hardware implementations are loaded in

turn, so as to run the alignment strategies in the required order. This archi-

tecture can eliminate the data hazards between strategies, provide a balanced

pipeline and promote portability as users can have better control over align-

ment parameters. Implementations can be re-arranged, removed, or added
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straightforwardly to accommodate different sequenced data quality and exper-

iments, similar to our exploration in Chapter 4.

Automatic Design Analysis and Merging

We propose a design analyzer and merger to combine multiple FPGA designs

into a single hardware design [159], so that multiple place-and-route tasks can

be replaced by a single task to speed up functional evaluation of designs, espe-

cially during the development process. This approach has the following three

key elements: First, we propose an approximate maximum common subgraph

detection algorithm with linear time complexity to combine multiple hard-

ware design versions. Second, we develop a prototype tool that implements

this algorithm and it generates the appropriate control circuits to enable the

selection of original design versions at runtime. Finally, we provide a compre-

hensive analysis of compilation time versus degree of similarity to identify the

optimized user parameters. Experimental results show that this approach can

reduce compilation time by around 5× when each design is 95% similar to the

others, and the compilation time is reduced from 1 hour to 10 minutes in the

case of binomial filters. With this approach, we can also obtain the optimal

number for data interleaving in the exact-match and seeding implementation

of the FM-index.

Overall, the work presented in this thesis has focused on accelerating bi-

ologically accurate short read alignment on FPGA, and speeding-up FPGA

development with a design analyzer and merger. We demonstrate that FPGA

can provide a substantial speed-up relative to state-of-the-art software tools

with reasonable accuracy. We also show that the design analyzer and merger

can reduce compilation time by 3× to 5×, and provide further optimization

to the FM-index implementation. In the following sub-section, we summarize

the potential extensions and future work.
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6.1 Future Work

1. For the time being, we have applied our work to accelerate single-end read

alignment and obtained the aligned positions accurately. However, the

NGS machines can also generate paired-end reads [160] where both ends

of the DNA fragment are sequenced. Each pair is separated by a known

inner distance. This enables much more accurate read alignment and

higher sensitivity for detecting indels. Therefore, an important extension

of the proposed aligner is to support paired-end read alignment. Initial

research will explore the use of the host processor to resolve the final

aligned position of each read pair. Subsequent research will investigate

the parallel architecture on FPGA to accelerate the comparison process

for all aligned positions within each read pair.

2. Most software aligners, such as Bowtie, Bowtie2 and BWA-MEM not

only experiment with real genomics data, but also evaluate their speed,

accuracy and sensitivity using simulated dataset. Read simulators such

as Mason [161] or ART [162] can generate synthetic NGS reads with cus-

tomized read error and quality parameters. These tools simulate reads

based on the reference genome, hence the actual position of each read can

be known when generated. Also, errors are introduced to the reads based

on empirical distribution which is often measured using large training

datasets. For this reason, we can extend the evaluation of the proposed

alignment pipeline using simulated reads with different read lengths, er-

ror rates, or coverage. Accordingly, we can obtain the corresponding

accuracy and sensitivity and compare them against state-of-the-art soft-

ware.

3. Currently, our FM-index implementation is based on traditional DDR

SDRAM architecture. In recent years we have seen advancements in

memory technologies such as Hybrid Memory Cube or High Bandwidth
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Memory. For example, the latest Xilinx Virtex FPGA is incorporated

with both traditional DDR SDRAM and High Bandwidth Memory tech-

nologies, while Xilinx Virtex VU9P FPGA on Amazon F1 instance [163]

is equipped with the DDR SDRAM and Hybrid Memory Cube. It would

be interesting to see the performance difference when our FM-index im-

plementation is ported onto these platforms. Our primary research will

be the extension of the proposed alignment pipeline onto F1 instance.

Subsequently, we can obtain the alignment speed, accuracy and sensitiv-

ity and compare them to Illumina DRAGEN Bio-IT Platform [164].

4. Currently, the human reference genome only represents a small num-

ber of individuals. This limits its usefulness for genotyping because it

does not reflect the genetic diversity of large populations. Specifically,

some sequences from humans are not included in the construction of

the reference genome. These sequences can be aligned incorrectly when

they originate from a region that varies from the reference. Therefore, a

graph FM-index is proposed for short read mapping in recent years, as

it captures the entire human genome along with a large number of vari-

ants [165]. An interesting future work will be the development of a graph

FM-index accelerator since memory access is also a major bottleneck in

this algorithm.

5. We would like to extend the automatic design analyzer and merger by

improving the merging heuristic, and including more functionalities and

evaluations. First, we will consider multiplexing versus operator sav-

ings to determine the optimal merging heuristic of common signals with

multi-bitwidth. Second, we will extend the signal merging for floating-

point numbers. Since a floating-point number consists of a sign, ex-

ponent and mantissa, the merging process is less trivial compared to

integer representation. Lastly, we will evaluate the design analyzer and

merger with additional applications, such as the graph FM-index hard-

130



ware when it is implemented, machine learning implementations with

adjustable mantissa or fused convolution blocks designed for different

domestic machine learning applications [166–168], or object detection

and classification for high-speed asymmetric-detection time-stretch opti-

cal microscopy on FPGA [169–172].
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