
Efficient Storage of Genomic Sequences in
High Performance Computing Systems
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Abstract
In this dissertation, we address the challenges of genomic data storage in high performance com-
puting systems. In particular, we focus on developing a referential compression approach for Next
Generation Sequence data stored in FASTQ format files. The amount of genomic data available
for researchers to process has increased exponentially, bringing enormous challenges for its effi-
cient storage and transmission. General-purpose compressors can only offer limited performance
for genomic data, thus the need for specialized compression solutions. Two trends have emerged
as alternatives to harness the particular properties of genomic data: non-referential and referential
compression. Non-referential compressors offer higher compression rations than general purpose
compressors, but still below of what a referential compressor could theoretically achieve. How-
ever, the effectiveness of referential compression depends on selecting a good reference and on
having enough computing resources available. This thesis presents one of the first referential com-
pressors for FASTQ files. We first present a comprehensive analytical and experimental evaluation
of the most relevant tools for genomic raw data compression, which led us to identify the main
needs and opportunities in this field. As a consequence, we propose a novel compression work-
flow that aims at improving the usability of referential compressors. Subsequently, we discuss
the implementation and performance evaluation for the core of the proposed workflow: a refer-
ential compressor for reads in FASTQ format that combines local read-to-reference alignments
with a specialized binary-encoding strategy. The compression algorithm, named UdeACompress,
achieved very competitive compression ratios when compared to the best compressors in the cur-
rent state of the art, while showing reasonable execution times and memory use. In particular,
UdeACompress outperformed all competitors when compressing long reads, typical of the newest
sequencing technologies. Finally, we study the main aspects of the data-level parallelism in the In-
tel AVX-512 architecture, in order to develop a parallel version of the UdeACompress algorithms
to reduce the runtime. Through the use of SIMD programming, we managed to significantly ac-
celerate the main bottleneck found in UdeACompress, the Suffix Array Construction.

Keywords: Reads Compression, Referential compression, Reads alignment, Genomic sequences, Par-
allel computing, SIMD programming, Performance evaluation.
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1. Introduction

A DNA sequencing run produces raw data that is used for assembling the fundamental data object
in bioinformatics: genomes. Genomes are the macromolecule that encodes genetic information
thorugh chromosomes, represented as combinations of four biological bases: A (Adenine), C (Cy-
tosine), G (Guanine), and T (Thymine). The understanding of the genome structure and function is
essential to many fields in the life sciences, mainly medicine and biology. Recent technological ad-
vances (i.e massive parallel processing) have led to the development of Next Generation Sequenc-
ing (NGS) technology. Such paradigm change, has allowed to accelerate the drop in sequencing
costs. Consequently, an increasing number of genomic studies are being carried out, causing an ex-
ponential growth of the amount of NGS raw data available. Such data usually needs to be kept for
further studies (mapping, assembling, among others), using computer storage systems that there-
fore quickly saturate. Data compression is an effective way to overcome this problem, however, it
requires enough computing resources and specialized approaches in order to be effective.

This thesis focuses on the development of a referential compressor for NGS raw data in FASTQ
format (the de-facto standard). The insights and knowledge obtained from an extensive review of
the state of the art, led us to identify the main needs to be tackled through the proposed algorithm.
Finally, we studied strategies for improving the algorithm’s performance by means of parallel com-
puting.

1.1. Motivation

Bioinformatics has driven an accelerated growth of the life sciences, providing technological re-
sources to improve slow and inaccurate traditional wet-lab procedures. One of the fields that has
mostly benefited by such advances is genetics, in part due to the rapid improvements in sequencing
technology. Through the evolution of the bioinformatics discipline, the sequencing process has not
only been greatly accelerated in orders of magnitude, but also its costs have been significantly re-
duced over the last decade [1–5], even faster than the reduction of storage costs. This phenomenon
is evidenced in the logarithmic plot of Figure 1-1 taken from [6], where the blue line represents
disk prices in megabytes per US dollar; yellow and red lines represent cost of DNA sequencing
in base pair per dollar (base pair is a unit used referred to representing a pair of complementary
dna bases, as they appear in the DNA double helix). The intersection between both lines in 2004
marks the point from when DNA sequencing costs began dropping at a much faster rate than of
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storage devices. Nonetheless, it is still much cheaper to store the data of a whole genome than
re-sequencing it, as sequencing costs per genome start at around of 1000 USD [7], compared to
approximately 7.15 USD per year for its data center storage [8].

Figure 1-1. Comparison between change in price of sequencing and storage devices. [6]

This reduction in costs has allowed researchers to undertake ambitious projects [9–11] to study an
unprecedented amount of individuals. A product of these increasingly large studies is the acceler-
ated growth of genomic databases [6, 12], which comes at accordingly higher costs of storage in-
frastructure. Additionally, for every megabyte of assembled genomic data, two or more megabytes
of NGS raw data are produced. From large research centers to smaller bioinformatics labs, efficient
storage for the ever increasing data is one of their major IT challenges [13] in the field.

FASTQ [14] has become the de-facto standard file formats in the bioinformatics domain for storing
NGS raw data, which is the most important issue of genomic data storage. Today’s NGS machines
produce FASTQ files typically containing millions of DNA fragments called reads [15]. Given that
FASTQ files are stored as plain text, one can easily rely on traditional general-purpose compres-
sion tools to compress them. Converting characters into bit streams [16], using static or dynamic
dictionaries [17–19] and performing statistical analyses [20] are strategies implemented by many
of these tools that alleviate to some extent the problem. These type of tools have seen widespread
use for compressing biological sequences [21, 22] due to their compatibility, robustness and ease
of use; although not without certain performance limitations [23–25]. However, general purpose
compression tools have shown far from optimal performance when applied to the compression of
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genomic data [12], due to the nature of these tools, which are optimized for compressing texts in
English language or other types of data, such as audio and video. Genomic information differs
greatly from these types of data, since not only the alphabet is much more reduced but also the
redundancy distributions exhibit a different behavior [26].

In the mean time, domain-specific lossless compressors have been developed during the last decade
in an effort to increase efficiency combining traditional techniques with more complex approaches
[27–29], to be explained in Chapter 2 of this thesis. However, compressing biological sequences
is an intensive task which demands significant computational resources [30]. Two different ap-
proaches have led this trend [12, 16]: non-referential and referential compressors. Non-referential
compressors [13, 27, 31–38] are commonly easy to use and produce self contained files, but tend
to show modest compression ratios. Referential compressors [4, 31, 39–42] may demand a more
experienced user, but are able to reach higher compression ratios when using a highly similar refer-
ence. Despite their potential, referential compressors are not widely used for two reasons: the need
for a reference and the high computational requirements. Furthermore, the achievable compression
ratio generally depends on selecting an appropriate reference for every different input. Although
promising results have been reported in overall, there are no standard compressors in this field
due to several reasons: excessive runtime, difficulty of use, special hardware requirements, lack
of essential features (as handling long reads, lossless compression, parallelism support, among
others), necessity of reference genomes or particular conditions in which some techniques can be
applied [16]. Although at the time of writing this thesis the situation had started to changed, when
we did the first state of the art review (2014), we did not find any work on referential compression
of NGS raw data. Specialized compression for DNA raw data faces therefore challenges in order
to achieve ease of use, higher compression ratios and efficient execution times.

1.2. Thesis Contributions

The main objectives of this thesis were set as follows:

• To review and evaluate the state of the art in the field of storage and compression of genomic
sequences in high performance computing architectures.

• To build a data bank collecting, preprocessing and documenting genomic data.

• To implement and evaluate different techniques for efficient compression of genomic data.

• To apply parallel processing strategies to accelerate the performance of the algorithms de-
veloped.

• To test and evaluate the performance of the developed algorithms using statistical tests.

Finally, the main contributions presented in this thesis are:
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• The characterization of the problem through an extensive literature review regarding com-
pression algorithms for genomic data compression. Since the evolution of the compressors
for genomic data was rather incipient, we performed a deeper study involving an experi-
mental performance evaluation to identify the features and needs of the compressors in the
state of the art. The main insight provided is the comparison of the various techniques and
approaches of specialized compressors, measuring their efficiency, performance and scala-
bility.

• The design of a workflow which aims at automatically selecting the reference needed by the
compressor, reducing the human intervention required and enhancing the usability of such
compression approach. Even though a full implementation is not provided, we show in detail
that implementing such idea is promising and provide implementations of some of the most
important modules.

• The design and implementation of a Multi-Technique Compression (MTC) scheme which
allows to perform a specialized lossless compression that harness the specific features in
each of the three streams inside a FASTQ file. The core of this MTC scheme is a referen-
tial compressor for the read sequences stream, which we call UdeACompress. It is based
on sequence alignment and an elaborate binary encoding scheme, aiming at improving the
reads compression ratio for the increasing reads length of newer sequencing machines. We
evaluate and compare its performance (compression ratio and speed of execution) on a set of
real and simulated data from different organisms and in a set of artificial data which allows
to compress much longer reads. Several experiments and metrics are reported and analyzed
to conclude about the pros and cons of our proposal.

• A low-level parallelization study of the main computational bottleneck in UdeACompress.
After identifying and analyzing the most consuming task in our compressor, we propose
SIMD algorithms for the construction of Suffix Arrays. We study, implement and test a set
of optimizations that achieved significant performance improvements. Finally, we imple-
ment and discuss the combination of the SIMD approach with multi-threading.

1.3. Thesis Organization

This manuscript is divided into seven chapters. Chapter 2 contains the main background concepts
related to this thesis, in the fields of bioinfomatics, compression techniques and high performance
computing.
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Chapter 3 presents a comprehensive review on the current state of the art of the genomic data com-
pression algorithms as well as a detailed survey on the most relevant tools for the compression of
FASTQ files. A performance evaluation of the top compressors in this field is also included there.
Also, an in depth review of the different approaches applied for referential compression of other
types of genomic data is presented.

Chapter 4 introduces the design of a novel workflow to complement the referential compression
of FASTQ files. Such workflow describes the sequence of processes through which the required
appropriate reference can be automatically selected. The main blocks for each process in the
workflow are explained along with the most relevant approaches to achieve the corresponding ob-
jectives.

Chapter 5 presents the implementation and evaluation of the workflow’s core: UdeACompress.
The referential approach is discussed, and experimental results are presented in detail .

Chapter 6 details the efforts for accelerating the main bottleneck found in UdeACompress: the
aligner. A detailed evaluation of the inner algorithms of such task are presented, which led to the
development of SIMD algorithms to accelerate Suffix Array Construction. Performance results are
presented as well as considerations for employing in the future a multi-threaded approach.

Finally, Chapter 7 summarizes the work done, the results achieved and draws the most important
conclusions of the thesis. Finally we discuss the future directions of this research.



2. Background

As discussed in the previous chapter, genomics databases have been growing exponentially over
the last years due to decreasing costs in genome sequencing. The biggest portion of information
stored in such databases is the direct product of genome sequencing: the reads and related meta-
data.

The development of specialized compression algorithms for NGS raw data is an issue that has re-
ceived great attention in the last decade, delivering programs with modest compression ratios and
exhibiting high execution times. In this chapter, we present the basic concepts related to genomic
data and data compression. Also, we discuss the principles of high performance computing, since
this type of architectures are commonly available at bioinformatics research centers and could be
harnessed in the process of compressing genomic data.

2.1. Compression Techniques

In this section we introduce the main concepts related to genomic data and its current storage.
Also we present the basis of genomic data compression with a brief emphasis in the compression
techniques applied in the referential and non-referential approaches.

2.1.1. Genomic Data

DNA, or deoxyribonucleic acid, is the hereditary material in humans and all other organisms ex-
cept for some types of viruses. The information in DNA is stored as a code made up of four
chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA consists of
about 3×109 bases, and more than 99.9% of those bases are the same in all individuals. The order,
or sequence, of these bases determines the information available for building and maintaining an
organism, similar to the way in which letters of the alphabet appear in a certain order to form words
and sentences [43].

DNA bases pair up with each other, A with T and C with G, to form units called base pairs. Each
base is also attached to a sugar molecule and a phosphate molecule. Together, a base, sugar, and
phosphate are called a nucleotide. Nucleotides are arranged in two long strands that form a spiral
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called a double helix. Figure 2-1 shows an illustration of the mentioned structures [43].

The term genome refers to the sum of the DNA contained in an organism’s chromosomes. Human
DNA comprises the sequence contained in the 23 pairs of chromosomes, with a length of approx-
imately 3.000 million nucleotides. Each nucleotide is described by a letter: guanine (G),adenine
(A), thymine (T), or cytosine (C) [44] [15]] (Figure 2-1). As the base pairs are grouped statically
(A, T) and (G, C), it is sufficient to represent only one base. Hence in bioinformatics, DNA se-
quences are abstracted as just sequences of letters, each corresponding to a nucleotide (also called
base). However, the importance and complexity of the DNA is major, being the center of life and
evolution. DNA carries, in genes, the instructions for making a specific protein or set of proteins.
Proteins make up body structures like organs and tissue, as well as control chemical reactions and
carry signals between cells. The discovery and understanding of DNA has impacted the develop-
ment of medicine, agriculture, forensic sciences, laws and many other important fields.

Figure 2-1. Structure of a DNA double helix [43]

Data sequences come from laboratory procedures. Most of the commercial NGS systems 1 2 3

4 are based on the in vitro cloning approach. Through biochemical processes, a DNA sample is
replicated, fragmented and represented in a matrix structure, then it is transformed into a series of
four distinct fluorescent signals (each representing a different base) monitored by a CCD camera.
The series of fluorescent signals at each position are converted into a sequence of letters. Differ-
ences in the sequencing chemistry of each NGS platform results in differences in total sequence
capacity, sequence read length, sequence run time, and final quality and accuracy of the data. A

1https://sequencing.roche.com/en.html
2https://www.thermofisher.com
3https://www.illumina.com/science/technology/next-generation-sequencing/

sequencing-technology.html
4https://www.pacb.com/applications/whole-genome-sequencing/

https://sequencing.roche.com/en.html
https://www.thermofisher.com
https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
https://www.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
https://www.pacb.com/applications/whole-genome-sequencing/
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typical run can generate tens of millions of sequence reads, and with a set of experiments that
includes biological replicates, control and treatment samples, the total number of reads can reach
into the billions [45]. All the reads are later used to map or assemble the complete genome through
a matching process , and then it can be analyzed using specific computational tools. All reads and
their scores must be stored so the genome can be re-sequenced when better assembling or mapping
methods or more accurate references become available.

A typical format for storing this raw data is FASTQ [46], which has become a de facto standard.
A FASTQ file represents reads in plain text, as shown in Figure 2-2. Although the representation
of genomic information may vary, it generally contains four fields for every read: 1) a record iden-
tifier (ID) preceded by ’@’ with a specific structure for representing experiment meta-data; 2) a
read sequence with the actual DNA nucleotide bases {A,C,G,T,N}; 3) a separator or commentary
field (commonly discarded by compressors) starting a ’+’ character and; 4) quality scores (QS) as
ASCII characters in a variable range indicating the probability of a sequencing error in each base
of the sequence. The exact ID structure, the range of QS, and the length of the reads sequences
depend on the sequencing platform used to produce the FASTQ file. Typical variations in different
versions of FASTQ files may be related to the identifiers, quality scores alphabet and the use of the
identifier field. While for short genome species such as viruses a FASTQ file can be in the order
of tens of megabytes, for humans it is in the order of tens of gigabytes.

Figure 2-2. Basic structure of the FASTQ format: identifier, read sequence, separator and the
quality scores [46].

Recent approaches in compression of genomic data have considered this type of information’s
characteristics to develop specialized algorithms, obtaining better results than general purpose
tools [45] [47] [24] [27] by exploiting traits such as the redundancy of information present in mul-
tiple individual genomes of the same species. The attempts on genetic data compression have led
to a wide variety of algorithms that can be classified depending on the methodology used to exploit
the redundancy of genomic information.

Raw data in the FASTQ file is much more redundant than genomes (which are processed data),
being also very different in size and structure. On average, a FASTQ file requires many times more
space than the respective genome of the same individual. Since reads are the biggest part of the
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storage problem, they were selected as our main compression objective.

2.1.2. Trends in Compression of Genomic Data

Data compression seeks to reduce the number of bits used to store or transmit information. It en-
compasses a wide variety of compression techniques [16], which can vary between software and
hardware implementations. The level of specialization of the current compression algorithms is
oriented to exploit the specific characteristics of each type of data to be compressed, allowing to
optimize its performance, this is why specific compressors for genomic data have been developed
in recent years. The effectiveness of a certain compression algorithm can be measured by comput-
ing its compression ratio, one of its various definitions [48] is the rate between the size of the input
size and the size of the output file, as follows:

Compression Ratio =
Original File Size

Compressed File Size

Although the vast majority of NGS data is currently compressed through general purpose methods,
in particular gzip, bzip and its variants, the need for improved compression has led to the develop-
ment of a number of techniques specifically for this case [29]. This takes us to consider basic char-
acteristics of biological sequences like the reduced alphabet, data distribution and DNA metadata,
in order to obtain better compressing ratios and lower execution times. All instances of genomic
information share a set of particularities that can be exploited in compression techniques. It is
frequent to find repetitions of substrings in a complete chain of DNA (e.g. repeating occurrence of
AAACGT). DNA sequences within the same species are highly repetitive. Approximatively 0.1%
of a genome is unique to an individual, the rest is shared by all members of the species [12]; an
issue that must be taken advantage of by compressors.. Achieving higher compression ratios is
one of the most important objectives in projects where new algorithms and implementations are
created for genomic data [4].

While early compressors for DNA focused on genome compression only [26, 49], during the last
decade there have been many efforts in developing specialized compressors for different types
of DNA data in different file formats. In 2013, the SequenceSqueeze competition focused on
promoting specialized compression for FASTQ files due to their relevance [50]. Several lossless
compressors for FASTQ have been released ever since [13, 22, 27, 29, 31–38, 50, 51, 51]; currently
most of them have been reviewed and tested in detail [16, 24, 52, 53]. Researchers have adopted
two trends for compression of DNA strings: Horizontal or non-referential, and vertical or referen-
tial. Recent instances of both kinds of algorithms are presented as follows. The main difference
between both approaches is the dependency of referential methods on an external appropriate pat-
tern (the reference) to perform the compression, while non-referential compressors only analyze



10 2 Background

the bases within the reads.

Non-referential methods are particularly important because they are typically used to complement
referential approaches, improving the compression capabilities of such methods. This will be a
fundamental issue in the design of the compressor to be presented in chapter 4.

2.1.3. Non-Referential Algorithms

The statistical principles that form the basis of traditional compression approaches have led to
the development of specific purpose compression algorithms. Non-referential approaches produce
self-contained files that can be decompressed with no dependency at all. which is suitable in the
absence of an adequate reference or when trying to apply the same method to sequences of different
organisms.. According to Wandelt [16], work in this type of algorithms can be further subdivided
into four compression strategies :

Bitwise methods: According to some authors [16], a straight-forward compression technique for
DNA sequence data is the encoding of four bases within one byte via bit encoding (Figure 2-3a).
This strategy takes advantage of the short set of symbols present in DNA sequences, and en-
codes each one in a 2-bit representation (covering the four symbols) instead of the 8-bit traditional
representation. [54] applies this principle, achieving a compression ratio of 4. The popular tool
DRSC [39] describes a particular compression scheme, employing arithmetic and Huffman encod-
ing, whose results vary between 4.4 and 5.3 compression ratios. Others successful usage of this
technique have been reported: combined with dictionaries [55, 56], run-length encoding [16, 57]
and others [58].

Dictionary-based methods: Dictionary-based methods are compression schemes are generally in-
dependent of the specific characteristics of the input data. As shown in Figure 2-3b, the overall
strategy is to replace repeated data elements (here: DNA subsequences) of the input with refer-
ences to a dictionary. Repetitions can be usually detected by bookkeeping previously occurring
sequences. This means that the whole dictionary does not need to be stored along with the com-
pressed data in some approaches, since it could be reconstructed at runtime during the decompres-
sion process. The procedure used to generate the dictionary and to manage pointers is what varies
between approaches. Examples of dictionary-based approaches are Lempel-Ziv-based compres-
sion algorithms, such as LZ77 or LZ78 [17]. Current methods for dictionary-compression reach
compression rates between 4:1 and 6:1 depending on the frequency of repeats in the genomes be-
ing compressed.

Dictionary-based compression improves compression ratios and allows random access to the com-
pressed DNA sequences, but can increase the cost of execution given the multiple iterations needed.
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Figure 2-3. Basic compression methods: (a)Bitwise, (b)Dictionaty based [16]

Also, storing the dictionary (even partially) requires additional resources. However, they can be
can achieve high compression on average, not only for DNA context.

Representative work in this regard is included in [59], which iterates over the whole file multiple
times to generate the dictionary, and stops when it has not significantly changed, reaching a com-
pression ratio of 5.5. Kaipa [60] deals with non-uniform distributed DNA sequences by dividing
the input in blocks and processing each one separately, using a hash table to detect repeats; this
approach shows a compression ratio between 5.3 and 5.7.

Statistical methods: Statistical algorithms create a model from the input data, representing it as
a probabilistic tree data-structure, where most repetitive sequences are assigned shorter codes
(Figure 2-4a). For simplicity, we distinguish two broad classes of codes: fixed codes, such as
Golomb codes [61], Elias codes [62] and Fibonacci codes [63], and variable codes, such as Huff-
man codes [18]. One of the most commonly used and best understood statistical encodings is
Huffman encoding [20]. It uses a variable-length code table derived from estimated probabilities
for the occurrence of each possible symbol. A binary tree is created in which leaf nodes corre-
spond to symbols and edges are labelled with probabilities and the derived codes. The resulting
Huffman code table has to be stored as well. Compression ratio of statistical algorithms are usually
between 4:1 and 8:1 [16]. It depends mainly on the existence of detectable patterns in the input
and the available memory for construction of frequency distributions. It requires more resources
than other approaches, but is useful for long sequences or even for databases, where a single sta-
tistical model could be constructed for all the elements stored. From Shannon’s entropy coding
theory [64], optimal encoding of these data from a compression standpoint depends on their distri-
bution in order to assign shorter binary codes to more probable symbols (integers).

A method that creates various program instances that predict the next symbol in a sequence with
different heuristics is presented in [65], this method exhibits a compression ratio of 4.73. [66] pro-
poses the creation of the same program instances but in separate segments of the DNA sequence,
prioritizing the heuristics that exhibit a greater compression ratio; by this strategy, a compression
ratio between 5.3 and 5.7 is obtained.



12 2 Background

Transformational methods: The sequence undergoes a preliminary process, where a special trans-
formation is applied (Figure 2-4b). This step commonly enhances the performance and com-
pression ratio of previously described techniques. One example of such transformations is the
Burrows-Wheeler transform [28]. Though these methods do not comprise a separate form of non-
referential compression, they mark a trend in recent solutions proposed to this problem since the
permuted sequence is easier to compress (with other techniques as move-to-front-transform or run-
length encoding) than the original input [27, 67, 68].

Figure 2-4. Basic compression methods: Statistical (a), Transformational (b) [16].

2.1.4. Referential Algorithms

DNA sequences from related species exhibit high levels of similarity. This fact is exploited by
referential compression schemes, whose key idea is to encode sequences with respect to another
reference sequence(s) [16, 40]. Figure 2-5 shows an example of a basic referential scheme.

Algorithms that follow this method have only recently been adopted by biologists with the appear-
ance of research projects that focus on re-sequencing genomes rather than sequencing genomes
of new species over the last years. One of the biggest challenges in referential compression al-
gorithms is to efficiently find long matches between the reference and the read sequence to be
compressed. Current approaches use heuristics based on index structures, hash-based structures,
graphs, suffix trees, alignment data among others [13, 42, 69–71]. Once matches and mismatches
are determined, another challenge is to find a space-efficient encoding scheme. A second chal-
lenge is to find a space-efficient encoding of the matches and mismatches between the input and
the reference, and other data blocks needed. Finally, finding a proper reference sequence can be
non-trivial, for which they have been commonly selected using biological criteria. In the recent
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Figure 2-5. Referential compression. A sub-sequence is represented as the pair (x,y), where ’x’ is
the start position on the reference sequence and ’y’ expresses how many symbols of
the sub-sequence are represented. Short differences may be encoded as raw strings.

years, building references from the input itself has arisen as an alternative.

A wide range of compression ratios have been reported [16, 53, 72] for genomes reference based
compression. If computational resources and a good reference are available, this approach is ideal
for the compression of long sequences or collections of sequences, since very high ratios can be
achieved (e.g. 400:1 [16]). However, it should be noted that decompression requires exactly the
same reference used for compression [22]. This is why a referential approach makes sense as long
as one reference is used to compress multiple sequences.

In spite of its potential, by 2014 referential compression had not been applied to NGS raw data
compression. Hence there was a clear opportunity to measure the impact of applying a referential
approach to compress the DNA stream onside the FASTQ. To get a deeper understanding of this
situation and the problem to be tackled, we performed a comprehensive review of the state of the
art, which will be presented in the next chapter.

2.2. High Performance Computing Systems

Considering that the long execution times of compression algorithms are often a barrier for their
adoption, it is important to find ways of accelerating them. High-performance computing (HPC)
systems are commonly used to perform bioinformatics analyses and store the data produced. Such
HPC systems are complex infrastructures made out of many central processing units (CPUs), mem-
ories and arrays of disks for storing files. The availability of this type of parallel architectures
allows us to take advantage of parallel algorithms that run faster and can tackle one of the greatest
challenges to efficient file storage: compression and decompression runtimes.

In HPC architectures, a node can have multiple processor chips, and a single chip typically in-
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cludes multiple processing cores (CPUs). Furthermore, each core is often able to run multiple
execution threads simultaneously. Multiple nodes are connected via a network infrastructure, such
as 10 or more Gbps Ethernet or Infiniband. There are two main models of HPC architecture, the
shared memory parallel (SMP) and distributed memory parallel (DMP) (see Figure 2-6). In a
shared memory architecture nodes are individual computers with a memory system that is shared
among all CPUs in it. In case of distributed memory each node can only directly access their local
memory, and processes running simultaneously pass data to one another in the form of messages
through the communication channel [44].

Figure 2-6. Multiprocessors Architecture. (a) Shared Memory scheme. (b) Distributed Memory
scheme, modified from [73]

The commercial domain of HPC technologies contains mainly four types of on-chip processing ar-
chitectures: CPUs, which comprise traditional multiple core processor architectures such as Intel
Xeon and AMD Opteron; GPUs (Graphics Processing Units), accelerators optimized for handling
great amounts of data in parallel; MICs (Many Integrated Cores), a technology by Intel that inte-
grates a large amount of processors (termed manycores) with enhanced vector operation capabili-
ties in a single chip, present in the Xeon family; and FPGAs (Field Programmable Gate Arrays),
accelerators encompassing numerous sets of logic gates and tiny processing elements in a single
chip, whose connection layout can be altered, generating a reconfigurable hardware solution. Also,
paradigms of parallel programming such as single instruction, multiple data (SIMD) have become
relevant recently. SIMD and the multi-threaded programming will be discussed in section 2.3.

Although the multicore and manycores architectures have a huge potential to tackle present and
future applications, a key issue is still open: how can developers map an application onto such a
multicore platform fast and efficiently, while profiting from the potential benefits of parallel pro-
cessing. Obviously, programming a multicore system requires some sort of parallel programming
model for algorithm design, and an appropriate programming language and supporting libraries
must be selected. A developer can choose between writing code manually to have detailed control
on the parallel execution flow, or use automatic or semi-automatic libraries to be relieved from
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the tedious and error-prone manual parallelization process. Though the quality of automatic paral-
lelization has improved in the recent years, fully automatic parallelization of sequential programs
by compilers remains as a challenge, due to the need for complex program analyses and the un-
known factors (such as input data range) during compilation [73].

A number of parallel programming languages (OCCAM, HPF, OpenCL, CUDA), libraries (PThreads,
MPI, OpenMP), and other software solutions ( auto-parallelizing compilers, e.g. SUIF, Paraphrase-
II, Paradigm, Compaan) have been developed in the last decades, yet the main problem in most
cases has been either their low acceptance among developers or the difficult to achieve optimal
performance in some cases.
By the time of our state of the art review, all the most relevant FASTQ compressors [22, 29, 50,
51, 69, 70, 74, 75] (evaluated later in this thesis) were implemented for CPUs processors. In order
to ensure maximum compatibility with the hardware that is commonly available in bioinformatics
research centers, in 6, we will present the efforts made to accelerate of the compression solution
developed in this research though CPU’s parallelism.

2.3. Parallel Programming

The main idea of parallel programming is harnessing the processors architecture executing simul-
taneously parts of the algorithms, which decreases the execution time required. Algorithms and
multiprocessing architectures are closely tied together. We cannot speak about parallel architec-
tures without speaking of the parallel algorithms to harness it [76]. Flynn’s taxonomy [77] define
different types of parallelism in computer architectures, according to the number of concurrent
instruction and data streams available. In this section we present the two types of parallelism we
considered in this research (SIMD and multi-threaded) as well as the programming models used.

2.3.1. SIMD Level Parallelism

Data-level parallelism (DLP) refers to a type of parallel processing in which the same computa-
tion is applied simultaneously to several data elements. One common instance of DLP is single
the single instruction multiple data (SIMD) paradigm. SIMD parallelism is implemented through
instruction-set extensions available in almost any modern processor. Such instructions must be
explicitly invoked by the programmer through intrinsics or directly in assembly language.

SIMD instructions have been successfully used in applications characterized by: (a) inherent DLP,
(b) typical small data types (8, 16 and 32 bits), (c) recurring memory access patterns, (d) localized
recurring operations performed on the data and (e) data-independent control flow [78]. In spite
of its benefits, SIMD brings important difficulties when parallelizing some algorithms due to the
following reasons: SIMD may not be suitable for all algorithms (or not fore the entire code), SIMD
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programming requires human work (automated parallelism is not available) which involves han-
dling numerous low-level details, and finally the instruction sets used are architecture-dependent
so binary compatibility is lower.

Although former SIMD ISA extensions were simple (e.g. MAX-1, Altivec and SSE), succes-
sive generations have become more sophisticated offering wider SIMD registers to process more
elements per instruction and using more complex instructions to operate on them. The first exten-
sions were implemented by manufacturers using 64-bit registers, and since then they have evolved
scaling SIMD extensions to 128-bit, 256-bit and 512-bit registers [78]. The inclusion of SIMD
extensions in general purpose processors is a very common trend nowadays, being present in most
modern architectures (Intel, AMD, ARM). It is expected that the widths and capabilities of SIMD
support will improve significantly in future microprocessor generations [79]. Some authors predict
that the SIMD support found in commodity microprocessors will eventually resemble the instruc-
tion sets of classic vector architectures traditionally found previously in supercomputers [80].

In this thesis, the SIMD optimizations were implemented through the usage of Intel’s intrinsics,
which correspond to C style functions that provide access to Intel instructions (including Intel
SSE, AVX, AVX-512), without the need to write assembly code. For a deeper understanding of
the instructions discussed in this chapter, we invite the reader to consult Intel intrinsics guide at
their website 5.

In chapter 6, we will focus mainly on exploiting DLP (through SIMD instructions) to accelerate
compressor. Also we will present some efforts to explore the possibilities of getting an additional
performance gain combining data-level and threads level parallelism in the aforementioned task.

2.3.1.1. Intel � AVX-512

Intel™Advanced Vector Extensions 512 [81] (Intel™AVX-512) is a set of new advanced instruc-
tions that can accelerate performance for demanding computational workloads, including useful
instructions such as gather/scatter as well as masked operations, conflict detection instructions,
non-trivial SIMD instructions, support for many data types and vector length extensions.

The SIMD capabilities in x86-based microprocessors have moved from simple 64-bit multimedia
extensions in MMX to 128 bits in SSE, and to registers of 256 bits in AVX. Intel´s AVX-512
increased the width of the registers to 512 bits, with plans to expand to 1024 bits in future genera-
tions [82] ( See Figure 2-7).

AVX-512 are 512-bit extensions to the 256-bit Advanced Vector Extensions SIMD instructions for
x86 instruction set architecture (ISA) proposed by Intel in July 2013, and supported in Intel’s Xeon

5 https://software.intel.com/sites/landingpage/IntrinsicsGuide/

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Figure 2-7. Evolution of Intel’s SIMD extension on top of x86/x87.

Phi x200 (Knights Landing) and Skylake-X CPUs; this includes the Core-X series , as well as the
new Xeon Scalable Processor Family and Xeon D-2100 Embedded Series. Compared to the Intel
Advanced Vector Extensions 2 (Intel AVX2) instruction set, Intel AVX-512 doubles the number of
vector registers available, and each vector register can pack twice the number of floating point or
double-precision numbers.

2.3.2. Thread Level Parallelism

A multicore system usually refers to a multiprocessor system that has all its processors on the
same chip [76]. This close packing allows a fast interprocessor communication without too much
power consumption. In order to harness the computational power of modern multi-core CPUs, a
program must use multi-threading programming. Such technique, however, will rely on the exis-
tence of enough coarse grain parallelism in the involved algorithms to exploit the large number of
cores. In practice, two multi-core frameworks are commonly used for multi-thread programming:
a low-level approach using POSIX threads library (Pthreads) and a higher-level approach using
the OpenMP interface. Both of them have been widely applied in bioinformatics to provide the
computing performance required by this workload [44, 78].

In this work we use OpenMP, a programming interface for shared memory parallel computing.
It offers a higher level of abstraction compared to the PThreads library. The main advantage of
the OpenMP is simplicity compared to other frameworks, which is relevant since the difficulty
for extracting parallelism from traditional sequential code is one of the main factors that prevent
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the performance increase in multi-threaded programming. It is available on various environments
(including Unix and Windows) and programming languages (C, C++, FORTRAN).

2.4. Summary

The amount and importance of genomic data will continue to increase in the near future, hence the
need to create strategies to efficiently compress it, for its later processing, storage or transmission.
In this chapter, we presented the basics of genomic data compression and a brief review of the most
relevant tools in the state of the art. Genomic data consists of strings of characters representing
base-pairs. The bulk of the information stored in genomic databases is comprised by short such
sequences called reads, a direct product of genome sequencing.

Bionformaticians have developed a variety of algorithms to compress this type of information,
mainly taking one of two approaches: referential and non-referential. Referential algorithms ex-
hibit lower execution times at higher compression ratios, although they require a read alignment
stage in order to achieve an optimal representation of the read in the reference. Non-referential
algorithms encode the compressed file using only information contained within the same file, i.e.
additional information is not required to compress and decompress the DNA sequence. On the
other hand, referential algorithms compress DNA sequences by creating references to other simi-
lar DNA strings, which may be associated to biologically close individuals.

Due to the huge size of genomic data files, which requires lots of computing resources for its pro-
cessing, it has been necessary to maximize the use of available hardware. This has led to applying
strategies of parallel programming in order to reduce the time required by the compression algo-
rithms.

In the following chapters we will apply the fundamental ideas explained here in order to develop
our compression method.
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Genomic Data Compression

Referential and non referential compressors for genomic data have been developed during more
than a decade. Most of the proposed software has been designed to exhibit a better performance
under particular conditions. At the beginning of this research, existing reviews of the state of the
art in FASTQ compression were still incipient, being mostly theoretical, or leaving uncovered the
analysis of important metrics; which resulted in lack of clarity about the real top performers in that
extent.

In our first review of the literature, we found highlighted researches about non-referential compres-
sion of FASTQ files, reporting different metrics, capabilities and restrictions for each proposal. At
the same time, we did not find experiences related to the referential compression of such files.
In the absence of an objective experimental comparison, we decided to perform a comprehensive
evaluation of the current state of the art of non-referential compressors, using local data to compare
the different proposals presented to date.

In this chapter, we present the methodology and results of a performance evaluation of non-
referential NGS data compressors. We performed a series of benchmarks over diverse special-
ized genomic compressor tools, and general-purpose compression tools such as PBZIP, P7ZIP and
PIGZ; using local genomic input data and considering metrics related to compression ratio, exe-
cution speed, parallel scalability and memory consumption. Also, we discuss the main findings
resulting from those experiments, as well as the research opportunities observed in the process.

Finally, we present a separate review of the current state of the art in referential compressors for
genomic data. This review is essentially theoretical, since no referential compressors for FASTQ
had been proposed at the time of our performance evaluation.
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3.1. State of the Art and Performance Evaluation of DNA

compressors

Compression algorithms for DNA have existed for over two decades. Early reviews of the state-of-
the-art focused on the theoretical analysis of the algorithmic foundations of compression programs.
Most of them were restricted to tools and techniques for compressing the whole assembled genome
and other sub-strings of interest, without addressing reads, quality values nor large files such as
FASTQ. The first experimental comparisons focused on genome compression [26,49], with exclu-
sive emphasis on the compression ratio.

Most authors who had proposed compression programs for DNA sequences included brief com-
parisons of performance in order to show their advantages. In 2011, Deorowicz presented his
DSRC [39] tool with a concise comparison of sequential performance which spanned the com-
pression rate and speed. That same year, Bhola introduced his non-reference prototype system [83]
evaluating compression ratio only; and Yanovsky compared the results of the Recoil program [41]
also considering compression speed. All these three authors made their evaluations considering at
most, one domain-specific tool besides the one being proposed, bringing more attention to general-
purpose compressors. This trend continued in 2012 when Deliminate program [84] was presented
and evaluated only against general-purpose tools. That year, KungFQ authors [36] also included
a few more domain-specific tools in their experiments. all these reports were limited to sequential
evaluations though.

The first extensive survey on the most relevant trends in compression of genomic sequences was
presented by Wandelt [16] in 2013. He highlighted the main techniques for genome compression
and brought special attention to reads compression. Moreover, he proposed important metrics for
the evaluation of such programs: compression rate, (de)compression time, and maximum main
memory usage. His work did not include an experimental evaluation due to difficulties to com-
pare and evaluate compression schemes. FASTQ files compression became more relevant, being
analyzed by Deorowicz in [4]. He also stated difficulties to compare experimentally the existing
tools, hence he did not perform it. In 2013 Bonfield performed an experimental comparison of
his algorithm against other tools that also participated in the SequenceSqueeze competition [50],
exclusively oriented to FASTQ files compression. His analysis was centered on the contest condi-
tions; evaluating compression ratios, execution speed, and memory required for compression; but
he did not consider the parallel scalability of tools. More recently in 2014, Rogusky [51] presented
DSRC 2 accompanied by a brief report about its scalability , and Giancarlo published a compre-
hensive and theoretical review of the state of the art [52].

In general, review works had focused on evaluating sequential performance [85, 86] with a small
set of performance variables, and comparing mostly to general-purpose tools. Furthermore, even
though general-purpose tools had evolved to parallel implementations and multi-core processors
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were already common, the few technical surveys presented to date have not considered the scala-
bility of programs running on parallel high-performance systems. Although a handful of authors
had reviewed the state-of-the-art in DNA sequence compression [12, 49, 87], very few articles had
evaluated the compression of reads and these are mostly focused on theoretical aspects of the al-
gorithms used [4, 16, 52]. The ones that attempted to do experimental performance evaluation
were mostly limited to general-purpose tools and to observing one or two performance metrics
in a sequential execution scenario. At the beginning of this thesis, we could not find any article
that evaluated traditional performance metrics along with the parallel scalability of the tools that
supported parallel execution. This is a very important issue considering the intensive computation
required for FASTQ compression, and the common availability of high-performance architectures
in bioinformatics centers.

Considering those facts, we performed a detailed technical evaluation of the state of the art of
FASTQ compression. The main goals of this evaluation were to:

• Complement the available knowledge with respect to the efficiency of non-referential FASTQ
compressors, comparing the general-purpose and domain-specific programs publicly avail-
able; evaluating multiple performance metrics in a parallel execution scenario.

• Identify, from an independent analysis, the real capabilities and needs of the state of the art
in compression of FASTQ files.

3.1.1. Evaluated Compressors

Since general-purpose tools were still widely used in bioinformatics, we decided to evaluate some
of them alongside domain-specific programs. After studying dozens of FASTQ compressors pro-
posed [13,22,27,29,33–38,50,51,88–92], we selected the seven most relevant for this evaluation;
for the sake of clarity and because of their merit. In this sub-section we briefly present the theoret-
ical bases of the selected methods, classified by their compression approach).

By the time we performed this review of the state of the art, we only found one work focused
on referential compression of read sequences data and it was not designed to work over FASTQ
files. In consequence, the following experiments only compare non-referential algorithms. De-
tailed configuration for each tool is presented in Table 3-1.

3.1.1.1. General-purpose Compression Tools

We reviewed the literature related to plain-text compression searching for open source tools that
have proven to be effective, capable of handling large files, allow multi-threaded configuration
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Table 3-1. Tools configuration used during experiments.

Program Configuration options
P7ZIP de f ault−mmt = [1..20]
P7ZIPbest −mmt = 1−mx = 9
PIGZ de f ault− p[1,2,4, ...,20] a

PIGZbest −9− p1
PBZIP2 de f ault− p[1,2,4, ...,20]
PBZIP2best −9− p1
QUIP de f ault
FAST QZ− f ast e
FAST QZ−best c
DSRC− f ast −d0−q0−b8− t[1,2,4, ...,20]
DSRC−best −d3−q0−b256− t[1.2,4, ...,20]
SCALCE−gz −− compressiongz−T [1..2]b

SCALCE−bz −− compressionbz−T 1

a In decompression, we only tested it using 1 and 2 threads.
b When using 2 threads or more, we configured:–compression pigz.

and produce common file formats. Bzip21, 7zip 2 and gzip3 were selected, being prominent open
source tools widely used in bioinformatics [4, 27, 29, 42, 45, 50, 55, 93, 94] (see Table 3-1). In text
compression, 7zip and bzip2 have been reported to achieve the highest compression ratios while
gzip is recognized as one of the fastest programs [95–97]. We used the respective parallel imple-
mentations of bzip2 (PBZIP24), 7zip (P7ZIP 5) and gzip (PIGZ6).

PBZIP2

PBZIP2 uses pthreads7 for parallel execution and authors claim it increases its speed almost lin-
early when running in shared memory architectures [92]. It is based on the Burrows-Wheeler
transform [28] combined with Huffman coding compression [20]. This means that the symbols
within the sequence are relocated to increase the repetition of certain sub-chains, which are rep-
resented more efficiently according to their probability of occurrence. The BWT transformation
improves the compression with a simple reversible method, which is convenient for problems with
reduced alphabets but huge amounts of data. We used version 1.0.6.

1http://www.bzip.org/
2http://www.lzop.org/
3http://www.gzip.org/
4http://compression.ca/pbzip2/
5http://p7zip.sourceforge.net/
6http://zlib.net/pigz/
7http://pthreads.org/

http://www.bzip.org/
http://www.lzop.org/
http://www.gzip.org/
http://compression.ca/pbzip2/
http://p7zip.sourceforge.net/
http://zlib.net/pigz/
http://pthreads.org/
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PIGZ

PIGZ uses the zlib8 and pthreads libraries. It combines Huffman coding and LZ77 [17] for build-
ing a compression dictionary that is optimized according to words repetition. Its decompression
algorithm is not parallelized due to its deflate format that must be decompressed serially; the only
parallelism strategy is to create additional threads for reading, writing and calculating CRC (check-
sum) [91]. Hence, during decompression experiments threads were scaled only up to two threads.
Version 2.3.1 was used.

P7ZIP

P7ZIP tool is an open source implementation of 7zip developed by Igor Pavlov. 7zip has been
reported to achieve a compression ratio up to 40% higher than its competitors. It generates 7z
format files using Lempel-Ziv-Markov algorithm (LZMA y LZMA2) [98]. LZMA [99] uses an
optimized version of LZ77 with large dictionary sizes and special support for repeatedly used
match distances, whose output is encoded using a complex model to make a probability predic-
tion of each bit. Furthermore, compression is improved over LZ77 using a longer history buffer,
optimal parsing, shorter codes for recently repeated matches, literal exclusion after matches, so-
phisticated dictionary data structures, and dynamic programming to select an optimal arithmetic
coding scheme . LZMA2 works a simple container format that can include both uncompressed
data and LZMA data, possibly with multiple different LZMA encoding parameters. LZMA2 sup-
ports arbitrarily scalable multi-threaded compression and decompression. We used version 15.14.

3.1.1.2. Domain-specific Compression Tools

Domain-specific lossless compression tools have been developed according to reference and non-
reference approaches [12]. As we will explain below, most of them have been developed hybrid
approaches, combining different compression techniques to threat the read sequences.

In this extent, several tools have taken advantage of specific features of the FASTQ file stream, we
selected four lossless non-referential compressors for FASTQ format, considering their scientific
impact, performance previously reported and support for compressing all the strings included in
FASTQ files. Several tools ( [13, 27, 31–38]) could not be further tested due to problems such
as: incorrect output results, input data restrictions (file size, read size, fixed read length), runtime
errors, excessive runtime or very low compression ratios in preliminary evaluations.

Only the tools described below matched our requirements, configured as presented in Table 3-1.
Since the standard is compressing separately the three FASTQ file streams, that is how we present

8http://www.zlib.net/

http://www.zlib.net/
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them. Latest stable versions available were used in all cases.

FASTQZ

FASTQZ [50] is a tool written in C++ and runs in two modes: compression (parameter c) which is
slower but more efficient and encoding (e) which runs faster. Each FASTQ file is broken into three
separated streams, and then the public domain libzpaq compression library is used for creating
context models in ZPAQ format9. ZPAQ uses a context mixing algorithm based on PAQ data com-
pression archivers [100] in which the bit-wise predictions of multiple independent context models
are adaptively combined. ZPAQ is a comprehensive tool that may use LZ77, context models, BWT,
or combinations of them for the compression.

FASTQZ has some input format restrictions, so we had to pre-process our Illumina FASTQ files
before tests. We used version 15.

Identifiers: IDs are compressed considering the differences between consecutive lines, which are
encoded as a numeric field increment in the range 0-255, a match length, and trailing differences.
If running in best mode, the names previously encoded are modelled using a mix of four context
models, each consisting of: a hash of the column number, the current byte in the previous line, the
previous bits in the current byte, and the last 1, 2, 3, or 4 bytes in the current line.

Quality scores: The methods is tailored to QSs according to the common Sanger variant. Byte
codes are used to indicate runs of score 38 up to length 55, or groups of three scores in the range
35-38, or pairs of scores in the range 31-38, or single bytes for other scores; the rest of the scores
are 2 and are omitted. In fast mode, no additional encoding is done. In best mode, the resulting
codes are modelled using a mix of three direct context models.

Sequence encoding: FASTQZ packs multiple base together, assigning A=1, T=2, C=3 and G=4.
Letter N does not need to be coded because it has a QS of 0 that is inserted during decoding. It
packs 3 or 4 bases together, whichever numerical packed value does not exceed 255. Finally, any
sequence starting with G, CG, or CCG is coded in 3 bytes, and any other sequence in 4 bytes. In
best mode, the encoded sequence is compressed using a mix of 6 models ranging from order 0
through order 5 bytes. According to the authors, total memory usage is about 1.4 GB for any file
size.

QUIP

QUIP [22] is a tool implemented in ANSI C99 and is based on statistical compression with high or-
der modeling and arithmetic coding; a refinement of Huffman coding. This is very convenient since

9http://mattmahoney.net/dc/zpaq.html

http://mattmahoney.net/dc/zpaq.html
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it allows a complete separation between statistical modeling and encoding, hence, in QUIP the
same arithmetic coder is used to encode each of the streams in the file, but using different statisti-
cal models. Furthermore, QUIP uses adaptive modelling in order to achieve a higher compression.
QUIP also offers assembly-based compression (option -a), which has been tested before [22,50,85]
showing slight improvement in compression ratio while increasing execution times over twice . In
consequence, that option is not explored here. We used version 1.1.8.

Identifiers: To remove redundancy in IDs, QUIP uses a form of delta encoding. IDs are split into
separate fields which in order to compare them consecutively. Tokens that remain the same from
read to read are compressed using arithmetic coding. Numerical tokens are stored directly or as an
offset from the token in the same position in previous read. Otherwise, non-identical tokens are
encoded by matching as much of the prefix as possible to the previous read token before directly
encoding the non-matching suffix.

Quality scores: An order-3 Markov chain is used to model QSs in correlated positions. Addition-
ally, QUIP bins QSs in adjacent positions to reduce control parameters and optimize the model
accuracy. Reads with highly variable QSs are encoded using separate models.

Sequence encoding: To compress sequences of bases, they adopt a simple model based on high-
order Markov chains. The base at a given position in a read is predicted using the preceding 12
positions. Authors claim that it uses a significant amount of memory but requires very little com-
putation. Though less efficient at compressing short files, after compressing million of reads, the
parameters are tightly fit to the base composition of the dataset in order to highly compress the
remaining reads. In consequence, compressing larger files leads to a tighter fit and higher com-
pression.

DSRC

DSRC [51] is a multi-threaded tool written in C using the Boost libraries10. It offers best (-d3)
and fast (-d0) execution modes, which basically differ in applying or not LZ-matches encoding on
the sequence stream. In DSRC, I/O operations are executed using a single thread while several
threads perform the compression or decompression tasks [39]. DSRC has important extra features,
allowing fast random access to the records of a compressed file and offering options to perform
lossy compression on QSs (-q[1,2]). We used version 2.0.

Identifiers: DSRC treats them as a concatenation of several fields with separators. Since the ele-
ments in these lines can be very heterogeneous, statistics are gathered so that each element can be
compressed in an efficient way. The techniques used include: compact encoding of constant fields,
recognition of numeric and non-numeric fields, efficient encoding of columns with fixed characters

10http://www.boost.org/

http://www.boost.org/
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in non-numeric fields, detection of the numeric fields amenable to differential coding and entropy
coding.

Quality scores: DSRC dynamically decides which of the two strategies available is better suited
for storing QSs. The first approach uses an order-1 Huffman coder with the context related to the
position in the read, or an order-1 Huffman coder of the run-length-encoded quality stream. In the
second method, the quality values are compressed arithmetically with context lengths up to 6.

Sequence encoding: Symbols can be encoded in three ways, which is autonomously decided by the
tool. In the first one, each base is stored in 2 bits. In the second one, a Huffman coder is applied on
the symbols. The last method uses an arithmetic coder [101] combined with contextual probability
estimation of orders up to 9.

SCALCE

SCALCE [29] is mainly a C++ compression booster based on the Locally Consistent Parsing (LCP)
technique, which provides an efficient way of reordering reads to improve the compression ratio
and the compression runtime, independently of the compression algorithm used. This approach
has shown good performance and high scientific impact. It works better when combined with ex-
ternal compression tools, so we tested the options: SCALCE+gzip (or pigz when several threads
are configured) and SCALCE+bzip2. Although SCALCE has been evolving since the original ver-
sion published in 2012, subsequent changes have not been widely documented. We used version
2.8.

Identifiers: Lempel ziv strategies are used to compress IDs [52]. No additional details are provided
by authors.

Quality scores: SCALCE uses arithmetic coding to compress QSs [52]. To reduce runtime, it
calculates the frequency table for the alphabet of QSs only from a reasonable subset of them (1
million QSs). Lossy compression of QSs is an option, but it was not tested since we are only
interested in lossless compression. No additional details are provided by authors.

Sequence reordering and encoding The purpose of reordering reads is to group highly related
reads, in fact those reads that ideally come from the same region and have large overlaps; boosting
gzip and other Lempel Ziv 77 based compression methods. This is achieved by observing suf-
ficiently long core sub-strings that are shared between the reads, and clustering such reads to be
compressed together. This reorganization acts as a fast substitute for mapping-based reordering.
The core substrings of the boosting method are derived from the LCP method [102]. LCP is a
combinatorial pattern matching technique that aims to identify building blocks of strings. For each
read, LCP simply identifies the longest(s) core(s) substring(s). The reads are ”bucketed” based on
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such representative core strings and within the bucket, ordered lexicographically with respect to
the position of the representative core. Reads in each bucket are then compressed using Lempel-
Ziv variants or any other related method.

3.1.2. Experimental Methodology

3.1.2.1. Datasets

Input data were provided by experts from the National Genome Sequencing Center at the Univer-
sity of Antioquia, Colombia. They selected representative data from their daily work, in this case,
containing transcriptomes in three FASTQ files obtained with Illumina Hiseq ®technology. A
transcriptome is defined as the set of messenger RNA resulting from the translation of the genome
under certain conditions [103]. The structure of this type of sequence is similar to DNA raw data,
combining five symbols: A, G, C, T, N [104]. Also, the computational load represented by the
dataset was also equivalent to that of genomic data. QSs were in Phred+33 coding, which is used
in the Sanger and Illumina format from version 1.8 on; the most used technologies nowadays. File
sizes were between 7.7 and 8.1 G.

3.1.2.2. Experimental Design

Each of the selected programs were used to compress and decompress the files in the dataset. Al-
though care was taken as to run the tests when the server was free, three replicates of each test were
made in order to filter out possible additional ”noise” affecting the time measures. The first set of
tests was made with sequential configurations (single-threaded). Then, for the tools that allowed it,
the number of threads was scaled up until 20 threads. Metrics recorded were: compression ratio,
processing speed (as cumulative throughput expressed in Megabytes per second - MBps), parallel
scalability and memory consumption.

Tests were performed on a server with four Intel Xeon E5-2620 (6 cores each, with 2-way hyper-
threading), 2.00 GHz, 15MB cache, 96 GB RAM (shared memory architecture) and 1.1 TB SATA
disk with Centos 6.5 operating system (64 bits).

Time was obtained using the unix time command, and normalized to the file size to calculate
throughput. Memory was observed using Valgrind software11. All reported values are means, ex-
cept for cumulative memory measurements which are maximum. The percentage of variance in
results was always less than 10 % and thus it was not necessary to discriminate results according
to the different test files.

11http://valgrind.org/

http://valgrind.org/
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3.1.3. Results and Discussion

We first present compression ratio results and then divide the processing speed results in two: se-
quential and multi-threading performance, where we also present the parallel scalability. Last, we
analyze memory consumption.

3.1.3.1. Compression Ratio

In order to explore the trade-off between compression ratio and speed BZIP2, 7ZIP, PIGZ, FASTQZ,
SCALCE and DSRC were run in both configuration modes: fast (default configuration) and best
(to achieve a higher compression ratio).

Figure 3-1 shows compression ratios obtained from all the evaluated tools. FASTQZ-best achieved
the best compression ratio of all, being almost 70% better than the best general-purpose tool
(P7ZIP). SCALCE-bz achieved the second best compression. On the opposite side, FASTQZ-
fast achieved the lowest results; next were PIGZ and PBZIP2 in both configurations (default and
best). Best modes of execution provided a highest compression ratio; however, in all cases this
improvement tended to be insignificant. With two exceptions, all domain-specific tools performed
better than all general purpose tools: FASTQZ-fast performed worst than any other tool, and DSRC
(both configurations) performed slightly worst than P7ZIP.

Figure 3-1. Compression ratio of evaluated programs, represented by the original file size divided
by compressed file size.
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3.1.3.2. Single-thread Performance

The single-thread evaluation intended to compare tools that do not run in parallel. However, an ex-
ception to this was FASTQZ. In such a tool (both modes) the number of threads cannot be set by the
user, instead, the tool dynamically activates a multi-threading mode by default. We monitored its
execution and noticed that 2-4 threads (at most) were used dynamically. Since the multi-threading
results aimed mostly at analyzing scalability, which is not possible for FASTQZ, we decided to
include its results in Figure 3-2. In any case, running times were so high for FASTQZ that this
does not affect the interpretation of results.

During compression (Figure 3-2), DSRC-fast clearly outperformed all the other tools, reaching
54.14 MBps. QUIP came second with 39.74 MBps. Among general purpose tools PBZIP2 was
the fastest compressing 8.1 MBps, followed by PIGZ (6.2 MBps). P7ZIP was the slower compres-
sion tool processing only 1.0 MBps. General-purpose compressors were always slower than the
any domain-specific tool, except FASTQZ-best and SCALCE-bz.

Figure 3-2. Single-thread throughput (MBps) during compression and decompression. Ordered
by decompression speed

In decompression, PIGZ (both modes) outperformed the rest of evaluated tools decompressing
over a 130 MBps rate, more than twice faster than the second faster tool. DSRC-fast throughput
was also noticeable, achieving 61.07 MBps. Both P7ZIP configurations were the third faster de-
compressors. Quip decompressed 40 MBps less than DSRC-fast and slightly faster than PBZIP2;
while FASTQZ-best and SCALCE (both modes) had the worst performance. Also, it was notice-
able that even when DSRC-best and FASTQZ-fast runtime were comparable, DSRC-best achieved
a compression ratio twice higher.
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The effect of the best compression configuration (highest compression ratio) is summarized in
Table 3-2, it was calculated in comparison to fast (default configuration) results. For compression
ratio the number in the column shows how much the compression ratio improved in best mode,
while for compression and decompression speed it shows how much slower it was. In general, it
makes no sense of investing more runtime in the evaluated methods using the best configuration,
to get a non-significant improvement in the compression ratio.

Table 3-2. Effect of best configuration (highest compression ratio) in performance. We
used = when the difference was 5% or less, and ≈ when it was 10 % or less.

Program Comp. Ratio Comp. slowdown Dec. slowdown
P7ZIP ≈ ∼ 1.7× =

PIGZ = ∼ 2.3× ≈
PBZIP2 = = =

FAST QZ ∼ 3.5× ∼ 7× ∼ 4.5×
DSRC = ∼ 1.5× ∼ 2.2×
SCALCE* = ∼ 1.5× ∼ 1.23×

* For SCALCE we assumed the bz configuration as the best one.

For all general purpose tools, best configuration did not affect decompression speed, this may hap-
pens if the dictionary is stored along with the compressed data (does not need to be calculated) of
if the dictionary is static, with the same size independently of using the best or fast method. It is
interesting to notice that for all the tools (except FASTQ) fast and best modes achieved comparable
compression ratios, while having differences in compression runtime. For P7ZIP this difference is
particularly important, considering that the default version took at least two hours to compress any
of the files. For domain-specific tools, this difference was also significant during decompression.

3.1.3.3. Multi-threaded Performance

Single-threaded experiments stood clear that in all cases this best configuration did not improve
significantly the compression ratio; but it had a negative impact in the runtime. That also happened
with the SCALCE-bz configuration, being slower but not better than SCALCE-gz. Therefore, the
only best configuration included in the multi-threaded experiments was the DSRC-best, which
appeared to scale well in our preliminary tests.
For these experiments, the level of parallelism (number of threads) was set to vary from 1 to 20
threads; only DSRC (both modes), P7ZIP, SCALCE, PBZIP2 and PIGZ allowed this configura-
tion. Compared to sequential executions, differences in compression ratios were negligible.

Cumulative throughput during compression is shown in Figure 3-3a. All tools, increased through-
put as the number of configured threads increased, achieving their maximum performance when



3.1 State of the Art and Performance Evaluation of DNA compressors 31

using the maximum of 20 threads. The exception was SCALCE, it achieved the maximum perfor-
mance (almost 10 MBps) using 12 threads. DSRC-fast was clearly superior reaching more than
670 MBps. DSRC-best maximum throughput was 350 MBps, PBZIP2 reached 100 MBps, PIGZ
over 80 MBps and P7ZIP compressed at a maximum of 8.2 MBps.

(a) During compression (b) During decompression

Figure 3-3. Multi-threaded throughput

Decompression throughput can be observed in Figure 3-3b. Best performance was reached by
DSRC-fast which got to decompress up to 822 MBps using 20 threads, more than 4.5× faster than
the best general-purpose tool. DSRC-best decompressed up to 268 MBps using 18 threads. It was
faster than PIGZ, but required much more computing resources since PIGZ only used two threads
to achieve 179 MBps. PBZIP2 maximum throughput was over 150 MBps using 16 threads, being
1.75× faster than SCALCE gz using 20 threads. P7ZIP had the worst performance of all, showing
no improvement when increasing the numbers of threads, which is explained by the limitations re-
lated to de decompression of the .7z file format. Except by PIGZ, algorithm ranking is maintained
both during compression and decompression.

Best performance during multi-threaded experiments is resumed in Table 3-3. Notice how during
compression, SCALCE gz multi-threaded performance is below DSRC-fast single-threaded, and
in decompression is below PIGZ single-threaded runtime.

In Figure 3-4a we show the scalability of the programs in relation to the number of configured
threads during compression. PBZIP2, PIGZ and DSRC-fast performed similarly, scaling close to
linearly. PIGZ accelerated its performance up to 13.1×, DSRC-fast up to 12.4×, PBZIP2 up to
11.9× DSRC-best up to 9.3× and P7ZIP up to 8.3×, all using 20 threads. SCALCE gz improved
only up to 2.8× using 12 threads. It is not clear why SCALCEgz had this low scalability (which
remained almost constant from 4 threads on) since the authors do not provide any details about
the parallelism model used to implement the boosting scheme, which is very important since we
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Table 3-3. Summary of best multi-threaded performance results. Throughput (in MBps) reached
in single-thread (Ts) mode, maximum throughput reached in multi-threaded (Tm) mode and the
number of threads (N) required to reach this maximum. Results for compression (left) and decom-
pression (right) are shown. Best results of each category are in bold.

Compression Decompression

Program Ts Tm N Ts Tm N

PBZIP2 8.13 96.68 20 18.90 153.44 16

PIGZ 6.25 82.1 20 130.6 178.96 2

P7ZIP 1.0 8.24 20 49.50 49.50 1

DSRC−best 37.32 347.68 20 27.85 268.72 18

DSRC− f ast 54.14 673.26 20 61.07 822.64 20

SCALCE−gz 9.8 27.36 12 14.3 87.71 20

presume it takes most of the runtime.

(a) During compression (b) During decompression

Figure 3-4. Speedup

Decompression speedup results are shown in Figure 3-4b. Only DSRC-fast kept increasing the
speedup close to the linear case and performing 13.4× using 20 threads. DSRC-best improved
up to 9.6× using 18 threads, PBZIP2 reached a maximum 7.7× improvement using 16 threads,
SCALCE gz reached 6.1× (20 threads) and PIGZ improved its performance 1.06× using the extra
thread. From 14 threads on, PBZIP2 performance remained almost constant. P7ZIP showed no
improvement at all, for the reasons previously discussed.



3.1 State of the Art and Performance Evaluation of DNA compressors 33

3.1.3.4. Memory Usage

Maximum peak memory and maximum average memory used during execution were measured
using Valgrind’s –pages-as-heap=yes option, in order to get lower-level page profiling. Maximum
peak memory represents the minimum memory that should be available for a program to run suc-
cessfully. Results from single-thread tests are shown in Figure 3-5.

Figure 3-5. Maximum peak memory during single-thread execution (in MB), ordered by require-
ment during decompression

Requirements were similar during compression and decompression, except for DSRC-best, SCALCE
and P7ZIP which demanded less memory during decompression. The most demanding tools in
terms of peak memory were SCALCE and FASTQZ-best which required around 5.5 GB and 1.6
GB respectively, more than twice the amount required by any other tool. Peaks of PBZIP and
PIGZ were tens of times lower than those presented by domain-specific tools, except by DSRC-
fast which is as efficient as general-purpose programs in this extent. There were no difference in
the requirements of the default and best configurations of SCALCE, PBZIP2 and PIGZ. During
compression, SCALCE peak memory was very large in comparison to the input files size (more
than half the size). It required almost 4× more memory than in decompression, as a consequence
of the reads processing in the boosting method.

Figure 3-6 shows maximum average memory usage, reflecting memory consumption during the
whole runtime. Requirements tended to be similar during both tasks for QUIP, DSRC-fast and
for all the general purpose tools. Again, SCALCE (both configurations) was the most demanding
application in this experiment; and DSRC-fast was the most efficient domain-specific tool, being
comparable to general-purpose tools. Domain-specific tools (excepting DSRC-fast) demanded at
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least 15× more average memory than any of the general-purpose tools. PIGZ and PBZIP2 were
extremely efficient (being the less memory demanding), spending less than 25 MB in each run.

Figure 3-6. Maximum average memory in single-thread execution (in MB), ordered by require-
ment during decompression

P7ZIP, SCALCE and FASTQZ best had peaks considerable higher than the average requirements.
The rest of tools showed a more uniform memory demand during the execution.

In both experiments (peak and average memory), the best configuration (highest compression)
aims to increasing compression ratio at expense of using more memory. In DRSC this happens
due to the creation of a text-processing buffer and a dictionary for quick search of matches. In
FASTQZ this is due to the data structures required for the construction of a set of context models.
In SCALCE, memory demand of both configurations is the same.

We also measured memory during multi-threaded executions and scaling up the number of threads
(Figures 3-7a and 3-7b). During compression, peak memory requirements of DSRC-fast (2.8 GB)
were always higher (nearly twice) than those of PIGZ and PBZIP2. DSRC-best (up to 22 Gb) peaks
were (in most cases) over 10× higher than DSRC-fast, and are not fully shown on the plots in or-
der to keep clarity in visualization. SCALCE gz peak memory is not shown for compression task
(also for clarity), it varied slightly from 5.5 to 6 GB when scaling from 2 to 20 threads. P7ZIP (de-
manding up to 4 GB) required at least twice the memory demanded for any other general purpose
tool. PBZIP2 and PIGZ were the most efficient tools in this test (both used a maximum of 1.6 GB).

During decompression (Figure 3-7b) PIGZ had the lowest values, running with less than 50 MB
(2 threads). For the rest, the amount of memory used grew much more than expected: DSRC-fast
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(a) During compression (b) During Decompression

Figure 3-7. Maximum peak memory consumption (in MB) during multi-threaded execution

demanded around 2.7GB, DSRC-best up to 21.7 GB, PBZIP2 around 1.6 GB and SCALCE close
to 1.8 GB. For P7ZIP the peak memory remained constant, which is explained because of the lack-
ing of multi-threading during this task. SCALCE and PBZIP2 were the most efficient in terms of
memory scaling during decompression.

Figure 3-8a shows the maximum average memory used during compression and Figure 3-8b dur-
ing decompression, for the multi-threaded experiments.

(a) During compression (b) During Decompression

Figure 3-8. Maximum average memory consumption (in MB) during multi-threaded execution

For the average memory tests, DSRC-best was almost 9× worse than the fast version (in both
tasks). DSRC-fast demanded around 2.5 GB during compression and 2.1 GB during decompres-
sion (using 20 threads in both tasks), DSRC-best over 18 GB (both tasks), PBZIP2 up to 1 GB dur-
ing (both tasks), and PIGZ up to 1.2 GB during compression (20 threads) and only 10.5 MB during
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decompression (for all threads). PBZIP2 and PIGZ performed similarly during compression, de-
manding almost half of DSRC-fast demands. Again, SCALCE demands during compression are
not shown from 6 threads on (the varied between 5.4 and 5.7 GB, similar to the peak memory
measurements), during decompression they were less than 1.6 GB. General-purpose tools handled
memory in a more efficient way, except P7ZIP. P7ZIP demands grew faster as more threads were
added during compression, asking up to 4 GB of memory. During the compression, P7ZIP mem-
ory requirements remained constant in 27 MB.

3.1.3.5. Discussion

Multiple metrics have been compared in order to analyze the presented methods. Even though
there is no an absolute best compressor, the presented results may help the final user to select the
most appropriate tool according to their priorities. It is clear that high compression ratios and fast
performance are antagonizing goals. The slowest and more memory-demanding programs gener-
ally produced smaller compressed files. General-purpose tools presented compression ratios in the
range of ∼ 3:1 to 5:1, with compression rates up to 100 MBps (PBZIP2) and decompression rates
of almost 180 MBps (PIGZ). In the case of domain-specific tools, compression ratios were between
∼ 4:1 and 7:1, reaching up to 670 MBps during compression and 820 MBps during decompres-
sion (DSRC-fast). This allows to intuit that most of specialized tools used traditional compressors
(same coding part), mostly optimizing the data-handling part and perhaps the modeling part.

DSRC-fast performed similarly fast in both compression and decompression, processing between
15 -25 MBps more than the closest competitor in each task. Even though its compression ratio was
the lowest of all domain-specific tools (excepting FASTQZ fast), we should consider its FASTQ
random access support as a significant plus for handling such large files. Additionally, we observed
that the program showed the best speedup during multi-threaded execution (i.e. performance scal-
ability), and the lowest memory requirements of all the domain-specific software evaluated. We
did not see any significant gain in using the DSRC-best configuration, since it demanded a lot more
computational resources with poor improvement, even running in several threads.

QUIP strategies achieved the third highest compression ratio but with little difference in compar-
ison to the performance of FASTQZ and SCALCE in single-thread execution. Nevertheless its
performance during decompression was 3× worse than DSRC-fast. It was also the third most
memory-demanding tool.

SCALCE compression ratios (both modes) were slightly superior to QUIP, but this difference
would only be worthy in a multi-threaded architecture and if there is priority in fast decompression
times. We also noticed that despite being configured to use only 1 thread, SCALCE (both configu-
rations) tended to execute a second thread occupying 20 -30% of an extra core during compression
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and decompression tasks, so it was evident it did not run purely in a single-thread mode. SCALCE
boosting method had the largest memory demands, occuping more than half the size of the input
files.

Even though FASTQZ-best showed the highest compression ratio, its elevated runtime and mem-
ory requirements make it unusable when such metrics matter. According to our results, usage of
FASTQZ-fast offered no benefit at all.

Regarding general-purpose tools, P7ZIP reached a significantly higher compression ratio than
PBZIP2 and PIGZ, with a high performance during decompression but an extremely low perfor-
mance when compressing. PIGZ tool had the lowest compression ratio and the lowest throughput
during compression, but performed a lot better during decompression. PBZIP2 and PIGZ reflected
a gradual improvement when scaling the number of threads, but PIGZ speedup was more effi-
cient using additional hardware. Both tools were extremely efficient in memory management.
P7ZIP showed an inefficient usage of memory and a poor harnessing of additional threads, scal-
ing poorly during compression and having no improvement at all during decompression. This
could be the main consequence of the complex combination of dynamic programming and Lem-
pel–Ziv–Markov algorithms that P7ZIP implements.

Multi-threaded execution improved general-purpose tools performance up to 13× when compress-
ing and almost 8× when decompressing. DRSC-fast had the best use of additional computing
resources, improving up to 13× during both tasks using 20 threads; being up to 7× faster than
the multi-threaded performance of the best general-purpose tool. However, in both cases this gain
tended to decrease as the number of threads rose; most likely as a consequence of the increased
communication overhead in comparison to the computation costs.

Multi-threading also demanded more memory than sequential runs. This phenomenon may be
caused by the need for replicating data structures such as dictionaries when the (de)compression
task is split among multiple threads. In general, parallelism not only improved overall runtime per-
formance, but also increased memory requirements. In those cases, memory demands went from
tens of MB for the sequential case to hundreds for the multi-threaded case, doubling or tripling the
expected increase in memory-demand. In this context, DSRC-best, P7ZIP and SCALCE managed
memory in a noticeable less efficient way than the rest of tools.

Our results are consistent with those independently reported about sequential performance in
[22, 27, 29, 31, 32, 36, 105] and DSRC parallel performance in [51]. This experience provided a
better understanding of the capabilities of non-referential strategies and stood clear the need of
harnessing HPC resources for accelerating the compression of genomic data. Now, considering
these results, the previous reports about referential genome compression and the theoretical po-
tential of referential compression, the need of applying referential approaches for read sequences
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compression in FASTQ format became clear.

3.2. State of the Art on Referential Compressors

After completing a detailed review on the current state of NGS data compression, it became evi-
dent that, by the time of such evaluation: (1) No referential compressor for FASTQ files had been
presented, and (2) Performance of non-referential compressors was several times below from what
a referential approach could theoretically achieve. Also, restrictions related to input data features
(file size, read size, technology of the sequencing machine), excessive runtime or low compression
ratios, have limited the usage and effectiveness of non-referential compressors. For those reasons
we decided to base the work of this thesis on a referential compression approach. Although ref-
erential algorithms are not useful for compressing new species genomes, because of the need for
a reference DNA sequence, they are still relevant given the envisioned studies that will sequence
a huge amount of genomes of individuals in the near future [11]. Specific strategies must be pro-
posed to solve the reference-selection issue.

Referential compressors for DNA sequences can be divided into different categories. Due to the
scope of this research, we will group them according to the characteristics of the data to be com-
pressed. The first two categories presented next will be discussed briefly, because our interest is
focused on the third category: the referential compression of NGS data in FASTQ format.

As stated in 2.1.1, a whole genome represents processed data in a long sequence that could contain
thousands of millions of bases. Read-sequences correspond to raw data represented in hundreds
of million of short sequences (reads) in the FASTQ file. Both data are very different in size,
redundancy and structure.

3.2.1. Genome Data Compression

Two approaches are considered here: the first one is focused on compressing a unique long se-
quence (a whole genome) [21,23,106–108,108–111]. The second approach involves the compres-
sion of highly similar collections of whole genomes [112–117]. The level of redundancy in data
implies applying different strategies in both cases.
In most of the reviewed works, the authors focused on how to store the differences between the
read sequences and an external reference DNA string, such metadata is commonly called as align-
ment/mapping data. Commonly they consider three kinds of differences: deletes, inserts and mis-
matches. Also, the selection of the reference sequence has a dramatic effect in the performance
of the algorithm, affecting the compression ratio in a range between 24 and hundreds of times for
whole genome compression.
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A very recent approach described in [116] uses a multi-level matching algorithm both in the com-
pressor and the decompressor, achieving very high compression ratios. The authors state that
they reached compression ratios four times greater than any other solution in a large collection of
genomes (about 9200).

3.2.2. Compression of Read Sequences Along with

Alignment/Mapping Information

It refers to compressing file formats that put together reads along with read-to-reference align-
ment data. This approach commonly takes the input from SAM/BAM files [118] and requires a
specific compression approach to target the alignment information. Finally, such file formats as
SAM/BAM have a significant amount of additional fields that should be compressed too. Some
featured tools are: [40, 85, 93, 119–124]. Frequently, encoding techniques (Golomb code, Huff-
man, others) were used to represent the differences in alignment, performing lossless compression
for reads that aligned to a well-studied reference sequence with few differences. In Goby [122],
authors proposed combining multi-tier data organization (based on a referential approach) and a
new file format as an alternative to SAM/BAM format . The tool has several objectives, including
reducing the storage cost of large sequencing datasets. CRAM [40, 123] was also an alternative
format proposed for the European Nucleotide Archive, for the compression of alignment infor-
mation; it is currently part of the SAMTOOLS package [124]. Experiments have shown that the
compression ratio could be twice better than the best traditional general compressor tested, which
nowadays could be comparable to the performance of non-referential compressors [85].

Encoding alignment information is a field of our interest since we will use this approach for the
referential compression. We found a very important antecedent in the work of Kozanitis et al in
2011 [42]; they introduced a set of domain specific referential lossless compression schemes for
reads and alignment data. According to its authors, Slimgene, outperformed traditional compres-
sors by 6× under restricted conditions. Nevertheless, results were promising and extensively cited.
As far as we know, the development did not evolve.

3.2.3. Compression of Next Generation Sequencing Raw Data

In this category, we either find (a) multi-file compressors for large datasets of highly related reads
or (b) single-file compressors for reads. In both cases, this implies handling short raw redundant
sequences, and sometimes the compressor also process the IDs and QSs, although using different
approaches. Examples of such compressors include [41, 45, 125].
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In Kpath [70], authors combined path encoding, De Bruijn graphs and context-dependent arith-
metic coding in order to offer reference-based compression without the need of a previous align-
ment. Authors claimed that a high compression could be achieved even if the reference was poorly
matched to the reads. Reported results showed that the compression ratio was up to twice better
than the best specialized non-referential compressors tested.

Authors of Leon [69] proposed the use of a probabilistic De Bruijn graph based on a Bloom filter,
and then recording the reads and QSs as mapped paths in the graph using arithmetic encoding.
Reported results showed that the compression ratio of the tool crucially depended on the quality
of the reference, which is built from the reads. In overall, that compression ratio was up to 10%
higher than the non-referential methods presented in that report.

Even though compressing the three data streams in FASTQ files (read sequences, IDs and QSs)
is required for a truly lossless compression, few tools offer such capability. The well known non-
referential compressors Quip [22], Fastqz [50] and Fqzcomp [50] are able to compress the whole
FASTQ and are able to work in referential mode. However, the compression ratio achieved by
those methods in the referential configuration, is not better that their own non-referential counter-
parts. Recent versions of Leon, compress all the data in a FASTQ file. In 2015, FQZip [126])
was presented as a reference-based method to compress the whole FASTQ file, and evolved to a
second version of a light-weight mapping model (LWFQZip2 [75]), achieving compression ratios
comparable to those of non-referential programs.

Although some FASTQ referential compressors [69, 75] have been presented reporting good re-
sults when compared to non-referential programs; we have discussed above the theoretical bases
and related application of referential compressors that led us to expect higher compression ratios,
leading us to believe that there is ample room for improvement in the development of referential
compression algorithms for FASTQ files. Naturally, these expectations are limited by the com-
pression of the other two streams in the FASTQ file: the IDs, and most of all, the QSs that span
over a larger alphabet. On the other hand, it is clear that there will be more interest in the de-
velopment and usage of referential compressors for FASTQ files if: (a) the step corresponding to
the selection of an ”appropriate reference” is conceived as part of the program tasks and (b) High
Performance Computing (HPC) resources are used to reduce the running times. Considering these
aforementioned challenges, our research falls within this category of referential compressors for
FASTQ NGS data. Experimental and quantitative comparisons of the software in the state of the
art in this field will be presented later in this document.

Due to the need for identifying the minimum amount of differences between each read and the ref-
erence, read alignment is a useful step in this type of compression. Also, due to the independence
between successive reads, work on improving and parallelizing referential algorithms is pertinent,
to reach a reduction in execution time.
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3.3. Summary

Two trends have dominated the scene of FASTQ files compression: non-referencial and referencial
approaches. In this chapter, we presented a comprehensive review and an experimental quantita-
tive comparison of the non-referential compressors for FASTQ files, bringing a deeper knowledge
about the state of the current publicly available software.

During our performance evaluation, it was clear that high compression ratios and fast performance
are competing goals. The slowest and more memory demanding programs generally produced
smaller compressed files. General-purpose tools, although not optimal, are easy to use alterna-
tives in the absence of specialized software. Domain-specific tools take advantage of the intrinsic
characteristics of the DNA raw data, achieving a more efficient compression, with compression
ratios up to 70 % higher. Despite of the increase in runtime caused by the use of highly specialized
methods, HPC parallel architectures have been leveraged to accelerate the compression and decom-
pression tasks. Another high cost to pay for the benefits, is the large amount of memory consumed.

On the algorithmic side, it became clear that the most successful tools have developed hybrid ap-
proaches, combining different compression techniques. Powerful traditional techniques such as
Huffman coding, dictionary approaches and others, are being combined with more modern tech-
niques such as boosters, adaptive models, context models, Markov models, among other strategies.
The dynamic combination of such techniques has led to the development of specialized software
with a separated treatment for every stream inside a FASTQ file, bringing both higher compression
ratios and faster execution. However, compression ratios achieved by top non-referential compres-
sors were still below from what a referential compressor could theoretically achieve, exhibiting a
great research opportunity. Despite the promising results shown by referential genome compres-
sors (most of them based on alignment), no referential approach for FASTQ files compression had
been presented until the end of 2014.

At the beginning of this chapter, our initial goal was to get a better understanding of the incipi-
ent and barely studied FASTQ compression field. Then, we studied and compared experimentally
the most relevant compressors in the current state of the art, which involved only non-referential
compressors since there were no referential compressors by then. Observing the compression
limitations, we got hints for improvement. Considering the theoretical improvement commonly
achieved by referential methods in general, and the compression observed in referential compres-
sors for genomes, we decided to adopt the referential approach to tackle our main objective: the
FASTQ reads compression. During our review of the referential compressor developed for re-
lated data, it became evident the strong dependency of a such approach in appropriate reference
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to achieve good results, and the corresponding usability problem in the genomic field; since in
bioinformatics an ”appropriate reference” is a matter of discussion. In consequence, we decided
to invest some efforts in the design of a framework to support the referential compression through
automatic selection of the needed reference. Results from such effort are presented in the follow-
ing chapter 4.

The work presented in this chapter has been partially published in:

Guerra A., Isaza S.,and Lotero J. (2016). Performance comparison of sequential and parallel com-
pression applications for DNA raw data. Journal of Supercomputing. Springer US, vol. 72, no.
12. ISSN online:1573-0484, printed: ISSN 0920-8542.

Guerra A., Cabarcas F., Alzate J., and Isaza S.(2015). Herramientas de compresión de propósito
general y especı́fico aplicadas a secuencias genómicas. III Congreso Colombiano de Biologı́a
Computacional y Bioinformática (CCBCOL3). Medellı́n, September 2015.



4. A Workflow for Referential

Compression of FASTQ

Our previous literature review showed that the main cause that has limited the wide adoption of
the reference compressors lies in the need for an ”appropriate reference” on which the whole
compression process would depend. This reference (which usually correspond to a genome or
pseudo-genome of several GB) has been commonly selected by an expert, considering a mostly
biological criteria. However, it may not be available for organisms or species that have not been
previously sequenced, or there may not be consensus in the biology community to define what
can be considered an ”appropriate reference” , even for species with available assembled genomes.
Such reference needs to have the minimum distance with the target data in order to improve the
compression as much as possible. On the other hand, given the high storage cost of the references
they will only be useful if a reference may be appropriate for the compression of multiple different
input files.

In consequence, as a previous step to the development of our referential compressor we have de-
signed a comprehensive workflow that covers the high level algorithm of the operational aspects
of the compression process. In this chapter we present such workflow for FASTQ referential com-
pression, which aims at providing the usability of non-referential compressors while achieving the
potentially higher compression ratios of referential approaches. It includes the automatic selection
of the reference, how the tasks are structured, how they are carried out, their order and synchroniza-
tion, and the respective information flow. Although the whole workflow is partially implemented,
we provide additional discussion about the main issues to be considered for the implementation of
the inner blocks.

4.1. The Workflow Model

The workflow is designed to fill the main gaps found in the state of the art: automated selection of
an appropriate reference and the specialized compression of each of the streams inside of the input
FASTQ file.

The design features multiple stages to fulfil such purposes, as shown in Figure 4-1. The content
of the input FASTQ file is split so every data stream inside is compressed separately, in order to
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provide a specialized compression that harness the different properties. At the end of the process
the resulting compressed data are packed back together along with the metadata associated to the
compression process (address of the respective reference, its length and the read sequences length).

A set of features is calculated from the input file, which are immediately used to select the most
similar reference available in the database, which is passed to the referential compressor along
with all the streams of the input file. The three main blocks are:

• (1) The characterization of the read sequences to detect relevant features,

• (2) the classification process that selects a corresponding reference sequence from the database,
using the features resulting from previous step

• (3) the specialized compression of the three different data streams in the FASTQ file, focus-
ing on the reads referential compression using the reference selected in (2).

Figure 4-1. Referential compression workflow: (1) Characterization of the read sequences through
a features detection algorithm, (2) Classification of features to associate the input to a
reference in the database (3) Multi-technique compression scheme for each stream of
the FASTQ. Gray boxes are yet to be implemented.

Additionally, to decrease the impact of the references storage, we propose building a database of
featured references that allows using them in many different compression processes.

Due to the high degree of specialization required for each of the tasks within the workflow blocks,
in some cases we decided to use third-party software in order to perform the various workflow
components. For the same reason, highly specialized blocks such as the feature detector and
the classifier are only presented in a design stage, leaving their implementation as a future task.
Instead, this thesis presents in chapters 5 and 6 the design and implementation of the core refer-
ential compression algorithm as well as the corresponding performance analysis and optimization
through parallel computing.
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4.2. Sequences Database

The design of the references database is an extensive research work in itself. This database must be
created previous to the software usage, containing a number of representative genomes in FASTA
format, corresponding to a wide set of organisms to increase the possible correspondence with any
different input. FASTA format is a text-based format for representing nucleotide sequences, in
which base pairs are represented using single-letter codes 1. In practice, the user could add at least
one genome entry for every different species he works with. Currently, the creation and storage
of a references database is a matter of research that may include the construction of synthetic ref-
erences through different methods: building pseudo genomes, using different chromosomes from
differet organisms (instead of a whole single genome), and even calculating common sub-strings
for particular species. This is specially important to our research since such strategies could lead
to create better references, with more statiscally common data segments. Also, efficient represen-
tation of the genomes in the database is a topic of interest that has been dealt recently [127]. The
database must also contain the data corresponding to the features calculated for each references,
avoiding its calculation every time they are required by the classifier block.

There are many highly recognized public repositories for genomic data 2 3 4 5 6. We selected the
Sequence Read Archive (SRA) 7 as the main source of data, due to its impact and recognition in
the bioinformatics community.

Since in this document the blocks for automated selection of the references are only presented con-
ceptually, there was no need of an extended database including many references. For that particular
reason, the current references database is highly related to the FASTQ files in our test datasets, ac-
cording to biological criteria (as specified in the SRA). When all stages of the workflow are fully
implemented, this strict biological correspondence between entries and references will not be nec-
essary.

The dataset for tests was built considering plants, bacteria and human genomic FASTQ files ob-
tained with Illumina platforms; along with their corresponding references. A detailed description
of the files in the final dataset will be presented before each test. We selected files with a size
between 1 Gb and 60 Gb, and fixed size reads length from 36 to 151 bases. Every file was down-
loaded along with the corresponding reference, preferring files already used in relevant reports in
the state of the art. A comprehensive documentation of each file was done considering important

1https://zhanglab.ccmb.med.umich.edu/FASTA/
2https://www.ncbi.nlm.nih.gov/genbank/
3http://www.internationalgenome.org/
4https://www.ebi.ac.uk/ega/datasets
5https://www.ebi.ac.uk/ena/
6https://www.ddbj.nig.ac.jp/index-e.html
7https://www.ncbi.nlm.nih.gov/

https://zhanglab.ccmb.med.umich.edu/FASTA/
https://www.ncbi.nlm.nih.gov/genbank/
http://www.internationalgenome.org/
https://www.ebi.ac.uk/ega/datasets
https://www.ebi.ac.uk/ena/
https://www.ddbj.nig.ac.jp/index-e.html
https://www.ncbi.nlm.nih.gov/
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meta-data as: file identifier, experiment identifier, organism, file size, read length, amount of reads,
coverage, among other specialized fields. We developed algorithms to process the files to adapt
them to our entry conditions.

4.3. Packing and Unpacking

The three data streams in a FASTQ file are very different in content, length, alphabet and the level
of similarity among different reads; in consequence, differentiated compression strategies must be
applied in each case. In order to set things up for the separate processing of data streams, two
blocks are placed at the beginning and at the end of the workflow. The unpacking block reads the
FASTQ file and creates three data streams for further processing. The packing block joins and
stores in a single file the three compressed data streams with all the metadata needed for an effec-
tive decompression.

4.4. Sequences Features Detection

To select the most appropriate reference for an input it is necessary to find the minimum distance
between such reads and each of the candidate references in the database. Since both the reads in
the FASTQ input and the references in the database contain large amounts of data, calculating this
similarity is a task that requires lots of computing resources. Therefore, we propose to describe
them through a set of specific features that reduce their size and allow performing an accurate
classification within acceptable execution times.

References have been usually selected based on a biological criteria, but we propose to consider
a mathematical approach that improves the subsequent referential compression. The main goal is
to find the reference with the highest degree of local similarity between the maximum amount of
reads and the reference, according to some mathematical metric.

Previous works have demonstrated how methods that have been traditionally applied for text analy-
sis: k-mers, suffix arrays or FM-index [74,128–131] are useful for DNA features detection. Those
strategies are oriented to reduce computing times and memory usage. A recent approach proposes
self-calculating the reference applying De Bruijn graphs over the input sequences [69].

Features must be selected carefully, since the effectiveness of the classification to be performed in
the next step, and the further compression, will depend on them. The main objectives that must be
considered when selecting the features are:
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• To avoid over-adjustment and redundancy between attributes.

• To reflect the most information underlying in original data.

• To provide effective attributes with the lowest possible computational cost.

• To represent measures directly related to the local distance between reads and reference.

Many methods have been proposed for the features selection in general. Most of them are based
on the comparison of classical statistics as means, variances and standard deviations or other ad-
vanced univariate or multivariate statistical indicators that allow to quantify how one or more
attributes allow to discriminate between two or more classes. This has been the basis of class sep-
aration methods (linear or preferably non-linear) as well as various types of clustering algorithms,
the relief-f (symmetrical Tau) algorithm, and other approaches for the bisection of the feature
space [132–138].

Two main categories of the proposed methods can be recognized in the literature reviewed—methods
based in word frequency, and those that do not require analysing the sequence through fixed word-
length segments. The first are the pattern-based features, which includes procedures based on
metrics defined in coordinate space of word-count vectors, such as the Euclidean distance, Ham-
ming distance, or relative entropy of frequency distributions. On the contrary, the second category
corresponds to techniques that are independent from the resolution of the sequence, i.e. they do
not involve counting segments of fixed length. They include the use of Kolmogorov complexity
theory and scale-independent representation of sequences by iterative maps. These two categories
of methods have distinct theoretical lineages and an unequal amount and variety of techniques ex-
plored in the published reports, far fewer for the latter [139].

Considering the wide range of options, final selected features must represent diverse information
about data. We suggest to select them considering:

a. Features that allows transforming the read sequences into a feature vector.

b. Features that contain distance based information; this may include specific words of interest as
a reduced set of the k most common longest sub-strings.

The challenge of applying pattern-based features selection on symbolic sequences is how to ef-
ficiently search for the features satisfying the criteria. When selecting the final features, special
attention must be paid to a recently proposed structure called FM-index, which allows calculating
efficiently many string based features (such as longest common substring). This structure is very
relevant in this research, due to the fact that its content is used also for other tasks that are part of
the proposed workflow, hence it could be reused as much as needed, without consuming additional
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computational resources. A detailed explanation on the concepts and usage of the FM-Index in
this research will be presented in chapters 5 and 6.

Detailed work on describing and analyzing the state of the art on features detection for DNA anal-
ysis has been reported in [140–146].

4.5. Read Sequences Classification

This block takes the features of the read sequences calculated in the previous step and determines
the most appropriate reference, the one with the highest level of local similarity with the input
reads. Local similarity is a metric calculating the highest amount of reads having the least dif-
ferences with the reference. This is better than an approach of global similarity in which short
sub-strings inside different reads are more similar to the whole DNA string. As we stated before,
we are interested more in mathematical distances than in applying a biological criteria.

It has been widely shown how the use of learning machines and intelligent algorithms has been
applied successfully in tasks of multi-class pairings. Diverse classes of artificial neural networks
and other machines such as support vector machines are currently used for this task. In the case
of DNA classification there have been some relevant works [142, 145, 147–151]. Some general
purpose implementations have showed good performance in a wide range of problems 8.

We propose a combination of two successful sequence classification methods [142]:

(a) Feature based classification, which transforms an input sequence (reads or reference) into a
feature vector (calculated in the previous step of the workflow) and then applies conventional clas-
sification methods; such as decision trees, support vector machines and neural networks, designed
for classifying feature vectors.

(b) Sequence distance based classification. A distance function must be designed, which measures
the similarity between sequences. The idea is to use this second criteria to ponder the quality of
the classification performed in (a).

4.6. Multi-Technique Compression Scheme

Actual compression happens in the multi-technique compression block. The multi-technique fea-
ture means the compressor uses specific algorithms for the different data streams as it will be

8https://www.csie.ntu.edu.tw/~cjlin/libsvm/

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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discussed in this section. The main internal components of this block are shown in Figure 4-2.
This approach allows allows to maximize the use of the specific properties of each of the streams
to be compressed.

Figure 4-2. The multi-technique compression scheme: Referential compressor for reads se-
quences, identifiers (IDs) compressor, quality scores (QSs) compressor. Currently,
black boxes are implemented using third-party software.

QSs play an important role in our strategy for the compression of read sequences and, in conse-
quence, they are also fed to the reads compression block. Also, at the bottom of Figure 4-2 it can
be observed that the compression of IDs and QSs is performed once the sorted positions of all the
reads have been computed. This guarantees an adequate decompression of the reads in the input
data, since the compressor sorts the read sequences before compressing them. Both implementa-
tion issues will be explained in the chapter 5.

4.6.1. Lossless Compression of Read Sequences

At the beginning of this research, the referential compression had been successfully applied for the
compression of whole genomes; the most relevant strategies of referential compression used map-
ping or read-to-reference alignment information [23, 106]. Sequences alignment basically consist
of arranging two strings of characters in a way that the maximum position-to-position similarity is
achieved.

However, in our review of the state of the art we did not find any report of referential compression
of NGS raw data. The closest work was the strategy applied by Kozanitis [42] for the compression
of short sequences, through the available alignment information according to the Illumina export
file format. For that reason we decided to apply an alignment based approach in the FASTQ reads
compressor. Many challenges had to be solved to achieve such goal, due to the differences in size,
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redundancy and structure of NGS data in FASTQ format.

FASTQ read sequences are compressed with UdeACompress, the referential lossless compression
algorithm we developed and the core of the proposed workflow. To describe the development,
implementation and performance evaluation of UdeACompress is the main objective of chapter 5.

4.6.2. Identifiers Compression

IDs have a format that depends completely on the sequencing platform. They use a wider alphabet
and are a few times shorter than the other streams in the FASTQ. This is an example of a FASTQ
indentifier according to recent Illumina platforms:

@SIM:1:FCX:1:15:6329:1045 1:N:0:2

which obeys to the following structure:

@<instrument>:<run number>:<flowcell ID>:<lane>:<tile>:<x-pos>:<y-pos><read>:<is
filtered>:<control number>:<sample number>

In such structure, it can be observed that some fields show little variation between contigous reads
within the same file, which is is usually exploited using delta encoding approaches [152]. Table
4-1 presents the details about the meaning and the usage of each field 9.

In the research priorities we had established that the first objective to be attacked was the referen-
tial compression of the reads sequences, since this had not been done previously. In turn, in the
context of non-referential compressors, good efforts had been made for the compression of IDs.
For that reason, the compression of IDs and QSs was initially meant to be performed using third-
party software. The final decision about such software selection is presented next, along with QSs
compression.

4.6.3. Quality Scores Compression

QSs are more difficult to compress than IDs. They have the same length of the read sequences but
use a much larger alphabet of ASCII values that also depends on the sequencing platform; every
read within the FASTQ file has its own corresponding string of QS values. There is currently re-
search concerned specifically on QSs compression [153, 154].

9http://support.illumina.com/content/dam/illumina-support/help/BaseSpaceHelp_v2/Content/

Vault/Informatics/Sequencing_Analysis/BS/swSEQ_mBS_FASTQFiles.htm

http://support.illumina.com/content/dam/illumina-support/help/BaseSpaceHelp_v2/Content/Vault/Informatics/Sequencing_Analysis/BS/swSEQ_mBS_FASTQFiles.htm
http://support.illumina.com/content/dam/illumina-support/help/BaseSpaceHelp_v2/Content/Vault/Informatics/Sequencing_Analysis/BS/swSEQ_mBS_FASTQFiles.htm
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Table 4-1. Illumina’s identifiers structure
Field Requirements Description

@ @ Each sequence ID line starts with @
<instrument> String: a–z,A–Z,0–9, Instrument ID
<run number> Numerical Run number on instrument
<flowcell ID> String: a–z,A–Z,0–9 Flowcell ID
<lane> Numerical Lane number
<tile> Numerical Tile number
<x pos> Numerical X coordinate of cluster
<y pos> Numerical Y coordinate of cluster
<read> Numerical Read number: single read (1) or paired-end (2).
<is filtered> Y or N Y if the read is filtered (did not pass), N otherwise
<control number> Numerical 0 if no control bits are on, an even number otherwise
<sample number> Numerical Sample number from sample sheet

The QS of each base in the read sequence, also known as a Phred or Q score, is an integer value
representing the estimated probability of an error in an specific base of a read during sequencing,
i.e. that such base is incorrect [46]. If P is the error probability, then it is calculated using the
equation 4-1 [155].

P = 10−
Q
10 (4-1)

QSs are often represented as ASCII characters. The rule for converting an ASCII character to an
integer may vary, it generally is Q = ASCII CODE - ASCII BASE. Here, ASCII CODE is the
ASCII code for the character as found for each base in the FASTQ file; and ASCII BASE is a
constant (commonly 33 or 64, according to the corresponding specific encoding). ASCII BASE
33 is now almost universally used.

The main object inside of the FASTQ file are the reads sequences. Even important, QSs are just
metadata of the same size of reads, but defined over a very different alphabet and with very different
specific properties (i.e redundancy, coding, among others). As mentioned before, an independent
research line has appeared in order to compress them with specialized approaches. In consequence,
we have focused on developing a referential compressor for the read sequences stream. To select
which of the existing software could be useful in the compression of IDs and QSs we evaluated the
performance of two of the most efficient programs in the state of the art for IDs and QSs only.

Programs were chosen considering their approaches for compressing specifically this type of
streams, their efficiency, speed and software dependencies, according to our previous tests. From
all the previously tested software DSRC [51] and Quip [22] matched our requirements for both
compression tasks (IDs and QSs). Details about specific techniques used by each selected pro-
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gram were presented previously, in chapter 3.1.1 of this document. Tests were performed over the
same dataset that will be described in chapter 5.2.1 and including additionally 3 human FASTQ
files. Results are shown in Table 4-2.

Table 4-2. Quip and DSRC compression ratio on FASTQ
identifiers and quality scores

Species QUIP ID DSRC ID QUIP QS DSRC QS
Bacteria 93.7% 92.0% 83.8% 80.8%
Human 98.9% 97.0% 78.3% 72.6%
Plants 93.8% 92.4% 83.1% 79.5%

Compression ratios for IDs and QSs were similar for both tools, with no significant difference.
We also measured running times for compression and decompression of each stream: performance
was very similar for IDs; while for QSs DSRC was at least 30% faster during both tasks. Quip did
not have any library dependency, while DSRC execution depended on the Boost libraries 10.

Considering the results, we decided to use QUIP software version 1.1.8, which is implemented in
ANSI C99. QUIP compresses the IDs using delta encoding and QSs using an order-3 Markovian
models QSs in correlated positions [22].

4.7. Summary

Referential compressors have been successfully used for the compression of genomic sequences.
However, some challenges prevented the usage of such approach for the compression of reads in
FASTQ format. One of the main reasons for the limited usage of such strategies is the need for an
appropriate reference that improves the results of the compression.

In this chapter, the design of a three-stages workflow oriented for the automated selection of an
appropriate reference for each input has been presented. The first stage aims to calculate a set of
features describing the reads in the FASTQ input file, which are subsequently used in the classi-
fication stage to establish correspondence with any of the pre-existing references in the system’s
database. The third and finally stage performs a multi-technique compression over each of the
streams in the input. Since by the time we began this research there were no referential compres-
sors for reads-sequences in FASTQ files, this was the obvious choice to focus the development.

Additionally, we have discussed the general guidelines that must be considered when creating the
reference database and when designing the final structure of the stages I and II of such a workflow.
10https://www.boost.org/

https://www.boost.org/
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Finally, the basic issues related to the compression of IDs and QSs within the FASTQ file have
been presented, tasks which are currently carried out by third-party software.

In the next chapter we will present the details of the design and implementation of the third block
of the proposed workflow, the referential compressor for the read sequences; which has been the
main focus of this thesis.

The work presented in this chapter has been partially published in:

Guerra, A., Lotero, J., Aedo, J., and Isaza, S. (2019). Tackling the challenges of FASTQ referen-
tial compression. Bioinformatics and Biology Insights, volume 13, SAGE.
Lotero, J., Benavides, A., Guerra, A., and Isaza, S. (2018). UdeAlignC: Fast Alignment for the
Compression of DNA Reads. In 2018 IEEE Colombian Conference on Communications and Com-
puting (COLCOM). IEEE.



5. UdeACompress: A Referential

Compressor for FASTQ

The results obtained from the comprehensive analysis of the state of the art led us to identify not
only the need for a workflow to improve the usability of referential compression, but also the rel-
evance of developing new approaches to improve the compression ratios of existing specialized
compressors.

This chapter describes the implementation of the third and main stage of the workflow presented in
chapter 4, a referential compressor for read sequences. The compressor is called UdeACompress,
which is designed to improve the compression ratio through a referential approach based on finely
encoding and compressing the results of a specialized alignment.

Finally we present a set of tests performed using real and simulated data, in order to evaluate and
compare the performance of our compressor under different conditions.

5.1. Read-Sequences Compression with UdeACompress

UdeACompress performs a referential compression of the read sequences as the core of the multi-
technique compression scheme. Such approach is based on the hypothesis that encoding the dif-
ferences in the alignment between each read and the reference is a powerful strategy for referential
compression. The approach aims to increase the quality of the performed alignment according to
specific compression goals, and to improve the encoding and compression efficiency which results
in higher compression capabilities.

UdeACompress first performs a specialized alignment between the input reads and the reference,
and then sorts the reads according to their mapping position. These positions are encoded into a
binary map and the alignment data is binary encoded. Finally, as some reads do not align to the
reference, they are compressed separately using a low level compressor. The inner structure of this
module is presented in Figure 5-1 and explained in detail in the coming sections.
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Figure 5-1. UdeACompress block diagram. (1) Specialized read-to-reference alignment, (2) reads
sorting, (3) reads encoding and (4) low level compression for encoded data and un-
mapped reads. The sorted positions resulting from the sorting step are used for the
compression of identifiers and quality score as well, in order to guarantee a correct
decompression. Currently, black boxes are implemented using third-party software.

5.1.1. Read-to-Reference Alignment

Sequence alignment is the process of arranging two strings of characters in a way that the maxi-
mum position-to-position equivalence is achieved. This procedure may involve splitting and sep-
arating segments of both strings, also denoted as creating gaps, to maximize the number of simi-
larities between the two sequences. The optimum alignment describes the arrangement in which
the least number of changes in the strings are applied to achieve the maximum similarity. The
process of read alignment aims to calculate the least number of differences between a read and
the reference, for its further encoding and compression. Sequence alignment is a core task within
some referential genome compressors.

Read alignment is commonly applied in sequencing pipelines to efficiently map read sequences to
a comparatively large genome, identifying the optimum position in which both sequences match,
keeping track of differences between the reference genome and the sequenced sample in form of
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mismatches, insertions and deletions [156], the latter two operations are also known as gaps. This
process means millions of iterations in the majority of cases.

In UdeACompress, we have conceived an aligner that aims at finding an approximate matching to
maximize a similarity score according to the compression goals. It is based on one of the most
effective strategies when aligning short sequences: the seed-and-extend strategy [157]; which pro-
vides noticeable performance and accurate results. Such alignment is not based on a biological
criteria but on reducing the distance between the aligned sequences, according to an optimality cri-
terion that will be discussed in subsection 5.1.3.2. Multiple substrings are extracted from the read
as potential seeds for the alignment. After an exact match is found through an FM-index [158,159]
that privileges bases with high QSs, an alignment is extended in both left and right directions using
a modified Needleman-Wunsch algorithm [160]. The implementation of UdeAlignC used of the
Succint Data Structure Library (SDSL) [161].The SDSL library is a comprehensive and widely
referenced library which implements a variety of succint data-structures, including suffix arrays
and and FM-index, and as long as a set of methods for storing, traversing and seeking information
inside such structures. Additional details on the implementation and optimization of such aligner
are presented in the research work Jaime Lotero [162, 163] and will not be addressed in this docu-
ment.

The aligner receives the read sequences and QSs in the FASTQ file, along with the reference in
FASTA format; and outputs a set of instructions describing the transformations needed to obtain
the original read from a specific position in the reference. Those transformations (named muta-
tions) are represented with several alphanumeric fields in SAM notation style, commonly used to
express alignments. In such abstract notation, data is distributed among several fields which spans
over a wide alphabet, containing: positions for every mapping, the direction/sense of the matchings
and details about each of the mutations to be performed: offsets (displacement between changes),
the type of operation that must be executed, and the corresponding target base. In certain cases
those fields must be analyzed together to get unambiguous and precise information.

The few reads that cannot be aligned to the reference are passed as they are. We call them un-
mapped reads.

5.1.2. Reads Sorting

Sorting reads is a feature that some applications have applied to increase effectiveness in sequence
compression [29, 53, 74], rearraging reads to take advantage of specific data features (commonly
certain level of simmilarity). Although the original order is lost, it does not affect the later usage
of the uncompressed FASTQ since their originally placement is anyway arbitrary [53].
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After the alignment, UdeACompress must sort the reads (along with the alignment instructions) ac-
cording to their mapping positions, as a pre-requisite for the upcoming encoding. To avoid moving
such big data structures, we assign consecutive indexes to identify each read, and UdeACompress
only sorts such indexes. Sorted indexes are used not only for encoding the alignment instructions,
but also for compressing the IDs and QSs in that exact same order.

Sorting algorithms have been a matter of research per decades and it was not within our focus. We
implemented and compared an optimized recursive quicksort and a LSD radixsort [164], both algo-
rithms are very well know in literature for its efficiency when sorting unsigned integers [165–167].
The latter performed significantly faster (at least 30%). Basic structure of radixsort is presented in
Algorithm 1.

Algorithm 1 Reads Sorter
1: procedure LSD SEQUENTIAL RADIXSORT((unsigned Ind, size n, unsigned MapPos )

. n: number of reads

. Ind: read indexes

. MapPos: Mapping position of each read
2: MaxLength←MaximunDigitLength(Ind)
3: for each Digit j until MaxLength do . According to the number of digits to be evaluated

per iteration
4: Empty Buckets(Buckets)
5: for each Digit j until MaxLength do . Build Histogram
6: Buckets[CurrentDigit(Ind[i], i)]++

7: end for
8: ExclusivePre f ixSum(Buckets) . Exclusive Prefix Sum
9: for each Indi in Ind do . Placing elements in their relative position

10: aux←CurrentDigit(Ind[i], j)]++

11: Bu f f er[Buckets[aux]←MapPos[i]
12: Bu f f er[outIndexes[aux]← Ind[i]
13: end for
14: SwapPointers(MapPos,Bu f f er)
15: SwapPointers(Ind,outIndexes)
16: end for
17: end procedure

The method iterates according to a fixed number of digits to be processed at the time. Then,
it performs three main steps iteratively: building a histogram, exclusive prefixing and placing
indexes into an auxiliary sorting memory location (Buffer) which is swapped at the end to update
the input of the next iteration. The histogram and the placing steps depend on the amount of reads
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in the input (n), and the process is repeated according to the maximum number of digits of the
biggest index (k); which leads us to a complexity of O(n∗k), tending more precisely to O(n). This
method is simple and intrinsically parallel, which is useful for future optimizing goals (see section
6.2.3).

After this process, mapped and unmapped reads are separated, the alignment instructions are bi-
nary encoded and the unmapped reads are compressed in the low level compressor.

5.1.3. Encoding

The encoder in UdeACompress produces a space efficient binary coding of the alignments and was
inspired by the work of Kozanitis [42] in encoding SAM data.

Two data structures form the code: a binary map of the alignment positions and the instructions
array. This approach is conceived for files with fixed length reads, which is becoming a trend in
sequencing machines [29,168]. The code is also designed to be further compressed in the so called
low level compressor block.

The code format is shown in Figure 5-2 and the algorithm designed to produce such encoding is
shown in 2. The next subsections explain the details.

Figure 5-2. Instruction encoding. (I) A single map with as many bits (n) as bases in the reference
to indicate the matching positions. (II) A three fields instruction for each read: (a) a
mandatory 4 bits PRELUDE for describing the matching types, (b) a 10 bits OFFSET
to position each mutation and (c) the description of the MUTATION itself (6 bits).
The OFFSET and MUTATION fields are not required for exact matching types.
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Algorithm 2 Instruction Encoder

1: procedure INSTRUCTION2BINARY(AlignmentInstructions[],n)
. n : number of reads
. output binary arrays: Map: alignment map,Preludes: preludes
. BinInst: encoded offsets and mutations

2: Indexp← 0
3: Index j← 0
4: Indexm← 0
5: for each Readi do
6: U pdateMap(Map,MappingPositionReadi, Indexm)

7: MoreFrags← ((MappingPositionReadi = MappingPositionReadi +1)and(i < n))
8: Preludes[Indexp]← PRELUDE(MoreFrags,AlignmentInstructions[i])
9: Indexp ++

10: for each Mutationk in Readi do
11: BinInst[Index j]← OFFSET (AlignmentInstructions[i],k)
12: Index j ++

13: BinInst[Index j]←MUTAT ION(AlignmentInstructions[i],k)
14: Index j ++

15: end for
16: end for
17: end procedure

5.1.3.1. Map Building

The map, shown in Figure 5-2 with an example reference above, is a binary array with as many
bits as the reference. It only has 1’s in the positions where one or more reads map (the start of an
alignment). This map definition aims to reduce the cost of representing the mapping positions of
the reads in the reference, and is the reason why the reads must be previously sorted. No matter
how many reads there are in the input, the map size only depends on the reference length and is
shared by all reads.

5.1.3.2. Encoding of alignment instructions

It is focused on generating a succinct representation of the alignment instructions in a binary space,
while also producing a uniform distribution of bits in order to benefit more from the low level com-
pression.

The first of the three fields that forms the code of every read is a mandatory and fixed sized PRE-
LUDE as shown in Figure 5-2. It uses four bits for storing the matching information per read and



60 5 UdeACompress: A Referential Compressor for FASTQ

Table 5-1. Matching codes
Code Type Direction
000 Exact Forward: A matching from left to right.
100 Approximate
001 Exact Reverse: The matching string is

inverted.101 Approximate
010 Exact Complement: Forward, with each base

complemented.110 Approximate
011 Exact Reverse Complement: Each base is

complemented in a reverse match.111 Approximate

it is the minimal representation for a read matching in this model. The first bit of the PRELUDE
indicates whether the next sorted read maps to this position as well, or not (MoreR). The next 3
bits encode 8 different kinds of matchings according to Table 5-1 (Match). The basic matchings
(Forward and Reverse) could be exact or approximate (with at least one mutation), for a total of
4 cases. Since exact matchings are the cheapest to store, the strategy to increase its probability of
occurrence was using an extra bit to incorporate two additional types of matchings well known in
bioinformatics, but not commonly used in alignment: complement and reverse complement. This
will also help to increase the amount of mapped reads, which are compressed more efficiently than
the unmapped ones.

In complement matchings, each of the bases in the original sequences must be substituted by its
biological complementary base (see Table 5-2), with N’s not having a complement.

Table 5-2. Bases Complement
Base Complementary Base

A T
T A
C G
G C

The prelude is enough for storing the exact matches, but efficiently storing the mismatches in the
approximate matchings is the tricky part. The other two fields in the instruction coding are used
for that purpose: OFFSET and MUTATION. These two fields only appear in the coding of reads
that present alignment mutations.

The 10 bits OFFSET represents the shift between the last mutation (or the beginning of the read
sequence if there is no previous mutation) and the place where the current mutation starts. The
10 bits reserved for the offset guarantee the capability of UdeACompress to support reads of up
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to 1024 bases. In consequence, this field has the highest storage cost and will perform best when
compressing reads of size 1024.

There is a current trend in sequencing technologies to produce larger reads [169]. Larger reads
increase overlap between reads, and more overlap with your reference sequence. In consequence it
is easier to put (assemble) the sequence back together. The most relevant companies already have
released sequencers able to produce reads with several hundreds of bases (Illumina, Ion, Roche
454)1.

The third field of the instruction is called MUTATION as it describes in detail the type of transfor-
mation required to obtain the read from the reference. We use the first bit of this field to indicate
whether this is the last MUTATION of the read (LastM). The next three bits describe the opera-
tion (Oper) to be applied. We defined 8 different types of operations (see Table 5-3) based on the
mismatches and gaps commonly used in bioinformatics: substitutions, deletions and insertions.
Finally, we use the last two bits to express the base required to perform the operation (Base). Since
we only had two bits to express five possible base values (A, C, G, T, N), we store the distance
(to be precise, the distance - 1) between the base in the reference and the target base in the read,
according to the scheme in Figure 5-3.

Figure 5-3. Circular base distances scheme.

Bases are needed only for single insertions and for substitutions, but in some cases of insertions
the target base may not correspond to a base in the reference (e.g in insertions at the beginning or
at the end of the reference); hence representing base distances is not possible. To overcome this
issue, we separated the regular bases insertions (with target bases: A, C, G, T) from the case of
N insertions (which are more common) as different operations. In this scheme, for regular bases
insertions (from now on, insertions), the number in the base field represents directly the letter of
the target base to be inserted; and for insertions of N (from now on, Ninsertions) both bits can be
omitted or be set to zero.

Clearly, the more mutations per read, the lower the compression ratio. Therefore, we applied the
following strategies:

1https://genohub.com/ngs-instrument-guide/

https://genohub.com/ngs-instrument-guide/
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a) Selecting the least possible number of mutations in the alignment: We influenced the aligner so
that an exact matching is always selected if possible. If there are several different matchings, the
one with least mutations is selected. Additional matchings previously introduced aim to achieve
this goal as well.

Table 5-3. Probability of mutations occurrence
Type of Operation Probability
Single Substitution 0.63

Single Deletion 0.15
Insertion (any base but N) 0.071

Contiguous Deletion 0.065
Ninsertion (N’s only) 0.049

Triple Contiguous Deletion 0.006
Contiguous Repeated Substitution 0.0009
Quadruple Contiguous Deletion 0.0001

b) Reducing the number of instructions required to express consecutive mutations: After statis-
tically analyzing the most common operations in the alignments of the dataset, we defined a set
of additional operations to describe contiguous mutations through a single operation (see Table
5-3). We complemented the 4 operations already considered (substitutions, deletion, insertion and
Ninsertion) with four proposed contiguous operations based on the two most common biological
mutations (substitutions and deletions). The four ”contiguous mutations” most likely to happen
were: Double, Triple and Quadruple Contiguous deletions, and the Contiguous Repeated Substi-
tutions (substitutions in consecutive positions with same target base). Additionally, based on those
probabilities (Table 5-3) we assigned the most efficient binary representation to the most common
operations.

c) Preferring operations that required fewer bits: We defined categories of operations according to
the gain in storage saving, in order to skew the specialized alignment and get optimal results (see
Table 5-4). If there are several alignments with the same amount of mutations for a read, the one
using less bits is chosen.

5.1.3.3. An example of instruction encoding

In Figure 5-4, we present an example of representing three reads using the encoding model.
At the top of the figure we observe the original input reads, and below we see them sorted accord-
ing to the mapping position. The map has 1’s in positions one and three because those are the only
locations where reads map. The first mapping position correspond to Read1, represented in the first
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Table 5-4. Penalty categories
Cat Operation Storage Saving

1 Single Insertion, Single Substitution Each mutation is stored using 16 bits
2 Single Deletion, Ninsertion Allow storing 1 mutation using 14 bits
3 Contiguous Repeated Substitution Allows storing 2 mutations using 16 bits
4 Contiguous Deletion Allows storing 2 mutations using 14 bits
5 Triple Contiguous Deletion Allows storing 3 mutations using 14 bits
6 Quadruple Contiguous Deletion Allows storing 4 mutations using 14 bits

field: in this PRELUDE we see that this is the only read mapping in this position (0XXX) followed
by the code describing an exact reverse matching (001); as the matching is exact the instruction is
completely described through the PRELUDE. The next three fields correspond to Read2: The map
says it matches in position three. The PRELUDE says the next read will map in this same position
(1XXX), and this read matches approximately in forward mode (100). The following position is
the OFFSET: 0000000001 because the mutation is in the second position of the read. In the MU-
TATION field the bits express: this is the last mutation in this read (1), and the operation (Oper) is
a single substitution (000) of distance 5 (4+1, from C to A). Finally, the next field is for Read3: In
the PRELUDE we see that no more reads map in this position and that it matches exactly through
a complement transformation (011).

Figure 5-4. Example of instruction encoding to represent the three reads shown.

5.1.3.4. UdeACompress implementation

UdeACompress was implemented in ANSI C. The map, which could require from tens of thou-
sands to hundreds of millions of bits, is stored as an array of 64 bits integers in order to minimize
memory accesses. For the instructions, we use instead an array of 8 bit integers in order to provide a



64 5 UdeACompress: A Referential Compressor for FASTQ

finer granularity that facilitates future parallel versions of the algorithm. For this reason, we use the
8 bits of the OFFSET field to store the 8 least significant bits (the offset suffix) of the whole offset.
The 2 most significant bits from the third field are used to store the two most significant bits of the
OFFSET (the offset prefix). This division lies in the fact that most of the times the bits of the offset
prefix will be zero so there is no need to use them. This also brings a more uniform bit distribution.

The exact cost of representing an instruction will depend on the implementation approach and the
hardware restrictions. Common hardware forces fixed size definition for data types, but specific
hardware could allow particular sizes for user defined types, with a great impact in the cost of
storage of an instruction.

If the encoder is implemented in a fixed data type size environment, grouping together all the
preludes in the same array allows for storing two preludes in a single byte, and for every OFFSET-
MUTATION pair 16 bits are needed. The implemented strategies were oriented to require the
minimal bits to store each mutation, but in this current implementation saving less than eight bits
in the encoding does not result in a direct reduction of the storage space. However, the resulting
padding zeros will benefit the low level compression.

5.1.4. Low Level Compression

The low level compression block is meant to compress two data streams that still can be reduced
through a low level compression: (1) A small percentage of raw reads that did not match the refer-
ence, and (2) the binary representation for the map and the encoded instructions.

For the unmapped reads, Bzip2 was the clear choice, since it was the best performing general pur-
pose tool according to our previous thorough study [24]. For the compression of the binary streams
we considered the aforementioned traditional compressors (in section 3.1.1.1) and additionally
some other relevant works: Paq806, Paq9, fpaqC, fpaq, flzp 2, szip 3 and plzip 4. The different
algorithms make specific statistical assumptions about the data they would compress best. E.g.
Huffman/arithmetic assume non-uniform symbol distribution, Lempel-Ziv assumes there would
be repeated sequences, Run Length Encoding expects to find symbol repetitions, among others.
Since we did not have much information, except that the binary data had a non-uniform symbol
distribution we decided to benchmark their performance over the dataset. Again, bzip2 showed the
best balance between efficiency and compression capabilities.

Both aforementioned problems are totally different, but we concluded the same approach suited

2http://mattmahoney.net/dc/
3http://www.compressconsult.com/szip/
4https://www.nongnu.org/lzip/plzip.html

http://mattmahoney.net/dc/
http://www.compressconsult.com/szip/
https://www.nongnu.org/lzip/plzip.html


5.2 Performance Evaluation 65

well for both cases. We used the low level interface of the library libbzip2 which is the current
bzip2 API. More details about the implementation of bzip2 were presented in section 3.1.1.1 of
this thesis.

5.2. Performance Evaluation

In this section we present the results of multiple performance tests applied to the implementation
of UdeACompress and its integration with other modules of the workflow. Also, a comparison
between UdeACompress and the most relevant specialized compressors in the state of the art is
performed. In this comparison we included some referential compressors that were presented dur-
ing the development of this research. Due to the requirements of an appropriate reference for such
referential approaches, in these tests we used a publicly available dataset with the corresponding
references. These results were published in the journal Bioinformatics and Biology Insights [170]

Tests were performed on a server with two Intel(R) Xeon(R) CPU E5-2620, 2.10GHz, 15360 KB
cache, for a total of 12 cores and 24 threads, 40 GB of RAM in a shared memory architecture,
a 1 TB SATA disk at 7200 RPM, and using Centos 7 OS (64 bits). Even when this version of
UdeACompress was implemented sequentially, we let the third party software in this comparison
to run in multi-thread mode.

Along with the results, we analyze the performance and efficiency of our proposal, taking into
account advantages and drawbacks of the use of using UdeACompress for the compression of
FASTQ files and read sequences alone.

Finally, as our compressor was developed to compress long read sequences, which are not very
common currently but are expected to become a trend in the near future, we also performed tests
using simulated data in order to measure the compression ratio under more favourable conditions.

5.2.1. Real Datasets Tests

We selected six FASTQ files: three plants and three bacteria; to compare the proposed algorithms
in terms of compression ratio and speed against the best specialized compressors in the state of the
art. Details about each dataset can be found in Table 5-5. This dataset was chosen in order to have
a variety of: species, amount of reads, reads length (Illumina style) and reference file size. We
used the reference indicated for each FASTQ as provided by the Sequence Read Archive 5.

5https://www.ncbi.nlm.nih.gov/sra

https://www.ncbi.nlm.nih.gov/sra
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In some of the files the ID field was originally replicated in the comment field of each read. Then,
we removed it to achieve a more accurate compression ratio results.

Table 5-5. Dataset description
Dataset File Size (MB) No of Reads Read Length Organism

SRR1282409 19119.61 57572520 151 Manihot esculenta (Plant)
SRR3141946 15755.74 67066956 100 Marchantia polymorpha (Plant)
DRR000604 14837.45 51732064 110 Oryza officinalis (Plant)
SRR892505 7040.81 21466082 150 Oxalobacteraceae bacterium
SRR892403 6668.85 28606666 100 Firmicutes bacterium
SRR892407 6104.16 18619528 150 Chitinophagaceae bacterium

5.2.1.1. Tested software

After reviewing tens of algorithms and tools for FASTQ compression and read sequences, we
chose the latest versions of the most prominent software in the state of the art. In Table 5-6 we
summarize relevant information about each program: the approach used for the compression, the
target data and the number of threads used by default. All programs were configured in lossless
compression mode and the remaining configuration parameters were left at their default values.
Even though Quip and FASTQZ allowed enabling a referential compression mode, in our previous
tests it was evident that such option did not improve significantly the compression ratio while in-
creasing the execution time considerably; for that reason we discarded such configuration. In the
following experiments we report the minimum of the execution time of three replicas performed.

All the tested programs, their approach, and the configuration of their default multi-threaded exe-
cutions shown in Table 5-6.

The only program in the literature that is directly comparable to UdeACompress is LWFQZIP2,
since it performs an alignment-based referential compression of FASTQ. It is therefore, the only
possible fair comparison of quantitative results. We present comparisons with the other approaches,
as mere reference points and in order to provide a wider perspective for the reader. Additionally,
we must make clear that ORCOM is not directly comparable to any of the tested programs since
it is a reference free compressor designed for large collections of FASTQ files, instead of com-
pressing a single FASTQ file. However, given its relevance in the state of the art and its impressive
performance we decided to include it here. In the case of Kpath, which generates a file to preserve
the reads original order, this size was excluded of the reported compression ratio. We experienced
some problems executing Assembltrie, which compressed only two of the six files in the dataset.
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Table 5-6. Compression software description
Tool Approach Data Object Used threads

DSRC 2.0 [51] Non-referential FASTQ Maximum available
QUIP [22] Non-referential FASTQ 1-2

SCALCE (+PIGZ) [29] Non-referential FASTQ 4
FASTQZ [50] Non-referential FASTQ 3-4

LEON [69] Referential FASTQ Maximum available
LWFQZIP2 [75] Referential FASTQ 10

KPATH [70] Referential Read sequences 10
ORCOM [74] Non-referential Read sequences 8
HARC [171] Non-referential Read sequences 8

Assembltrie [172] Non-referential Read sequences 8

5.2.1.2. Parallelism estimation

Since the current implementation of UdeACompress runs in single thread mode, we developed
a simple parallel model that allows us to estimate more comparable speed metrics with respect
to the other tools that all support multi-thread execution. In such a model, we only consider the
straightforward parallelization of the most compute intensive tasks that are known to be paralleliz-
able. This analysis would provide the necessary information to prioritize the optimizations to be
performed in the next step of this research (Chapter 6).

Figure 5-5. Profile of the sequential version of UdeACompress. Boxes show the percentage of
time consumed by each function. Black boxes correspond to third-party software.
LLC EMR: is the low level compression of the encoded mapped reads, LLC UR: is
low level compression of unmapped reads, IDs Comp: Identifiers compression, and
QSs Comp: Quality scores compression.

Figure 5-5 shows a simplified block diagram of UdeACompress with profiling information. The
profiling data was obtained as an average of testing all the FASTQ files in the dataset. We used get-
timeofday() which has microsecond precision, observing no significant variation among the replica
tests. Since there are only memory and disk operations in the packing/unpacking steps, we did not
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not include such functions in this profiling. The decompression task was not considered because
the structure of the array of encoded instructions demands that decompression has to be performed
sequentially.

There were three blocks consuming 80% of the total time of UdeACompress: 1) the seed cal-
culation performed during the alignment, 2) the compression of QSs and, 3) the encoding of the
instructions. Since QSs compression was performed by a third-party software, we did not consider
it as an immediate choice for parallelization. Equation 5-1 presents an analytical model to esti-
mate the speedup resulting from parallelizing the seed and the encode processes. In the following
figures of performance, the blue dashed line bar (named UdeACompressP) right next to the UdeA-
Compress blue bar, represents this estimation.

TUdeACP =
TS

N
+TExt +

TEnc

N
+max(TId,TQs,TLLCE ,TLLCU) (5-1)

TUdeACP is the estimated time of the parallel implementation of UdeACompress during compres-
sion, TS is the time corresponding to the sequential execution of the seed phase performed during
alignment, N is the number of available threads in the architecture (24), TExt is the time corre-
sponding to the sequential execution of the extend phase performed during alignment, TEnc is the
time spent in encoding sequentially the alignment instructions, TId is the time spent compressing
the IDs, TQs is the time spent compressing the QSs, TLLCE is the time consumed by the low level
compression of the encoded mapped reads and TLLCU is the time consumed by the low level com-
pression of the unmapped reads. The last four steps can be performed in parallel since there is no
dependency among them.

5.2.1.3. Compression ratio

One of the main goals of this work is to measure and compare the compression capabilities of
UdeACompress. In Figure 5-6) we show the compression ratio, that is, the ratio between the
FASTQ file size and the compressed file size, achieved for the six FASTQ files in the dataset.

Results show UdeACompress achieves similar or better compression ratios than the best state of
the art programs, with an improvement between 4% and 27% respect to the second best program
for three of the input file tests. In the rest of the datasets the maximum difference between UdeA-
Compress and the highest compression ratio is only 14%. In five of the six datasets we achieved
higher compression ratios than the rest of referential FASTQ compressors, and in the case of the
exception the best compressor is only 2% above.

Figure 5-7 shows the compression ratio corresponding to the read sequences only, without taking



5.2 Performance Evaluation 69

Figure 5-6. Compression ratio for FASTQ files.

into account the IDs and QSs. This experiment allows us to evaluate in more detail the capabilities
of the algorithm we developed, given that IDs and QSs are compressed using third-party software.
In such tests, UdeACompress achieved a high compression ratio for two of the largest inputs, for
the rest of cases the performance was lower. Exploring the files content, we found that the main
reason for the good performance of UdeACompress for the third input is that it contains a higher
amount of consecutive N’s, which is effectively harnessed by the encoding scheme.

The inclined lines bar in Figure 5-7 shows the compression ratio of UdeACompress when process-
ing mapped reads only, which naturally reflects a much better performance of our method in such
scenario. Our compressor is significantly affected by the compression of unmapped reads, which
is done using a general purpose compressor (bzip2). The negative impact becomes evident when
comparing both UdeACompress bars. It decreased the compression ratio (in average) up to 50%,
respect to the compression of mapped reads only. The other programs in this experiments use
methods that are not affected by the phenomenon of the so called unmapped reads. The efficient
compression of unmapped reads requires a very different approach that is to be included in future
versions of UdeACompress.

• The amount of unmapped reads,

• Read lengths, since at least two bits in the offset are permanently underused in each mutation
when reads are short,

• The amount of mutations per read,
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Figure 5-7. Compression ratio for the read sequences. The bar filled with inclined lines (UdeA-
Compress MR) represents the compression ratio of UdeACompress discarding the
unmapped reads.

• The fixed sizes for the software data types which limits the benefits of bit encodings that do
not match the established sizes and,

• The referential method used, as it is, does not fully harness possible inter-reads redundancies
since it focuses on reads-to-reference encoding.

It must be noticed that the performance of UdeACompress was always above the performance of
all referential compressors for FASTQ files.

5.2.1.4. Throughput during compression and decompression

It is expected that high compression ratios and fast performance are conflicting goals. Even though
we were focused on compression ratio, we also wanted to compare the execution time considering
that it is a very important usability factor. We present the following results in terms of throughput,
defined as the amount of Megabytes per second (MB/s) processed for each program during the
compression and decompression.

Figure 5-8 shows throughput during compression of the FASTQ files. Although the sequential ver-
sion is outperformed by most of the others, the parallel estimation tell us UdeACompress through-
put would be similar to most of the fastest programs available. Our algorithm is sensitive not only
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Figure 5-8. Throughput during compression of FASTQ files. The dashed line (UdeACompressP)
represents the estimated throughput of a parallel implementation of UdeACompress
using the 24 threads available in our setup.

to the size of the input file (length and number of reads) but also to the size of the reference, in-
creasing significantly the amount of memory and CPU required. On average, our sequential and
parallel algorithms processes data at around 3-4 MB/s and 10-20 MB/s respectively.

Figure 5-9 shows the results of compressing the read sequences only. UdeACompress was faster
than Kpath but slower than the other applications tested, at a variable rate. This is explained
mainly by the fact that, as the input and the references increase their size, the alignment process
takes longer and UdeACompress speed decreases significantly. Furthermore, the main goal of this
version of UdeACompress was to achieve high compression ratios.

In the two compression scenarios presented, a parallel version put us in a competitive position with
the fastest programs available. Limitations in the performance improvement of UdeACompressP
in Figure 5-9, show the impact of the low level compression which is also performed sequentially
since there is no parallel version for the bzip2 API yet.

Decompression results corresponding to all the streams inside the FASTQ file are presented in Fig-
ure 5-10. UdeACompress shows an average throughput of 11.5 MBs, being faster than the other
alignment-based compressor (LWFQZIP2).

Throughput during decompression of the read sequences only is in Figure 5-11. UdeACompress
behaves consistently, with no big variation at an approximate rate of around 11 MB/s, in overall
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Figure 5-9. Throughput during compression of the read sequences. The dashed line (UdeACom-
pressP) represents the estimated throughput of a parallel implementation of UdeA-
Compress using the 24 threads available in our setup.

Figure 5-10. Throughput during decompression of FASTQ files.
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5× faster than Kpath and below the other applications.

Figure 5-11. Throughput during decompression of the read sequences.

5.2.1.5. Peak memory usage

Although not part of our main goals, we present here experiments to measure the memory con-
sumption of UdeACompress and the other applications for the sake of completeness. Table 5-7 is
presented as part of the analyzes commonly carried out in this field.

To measure the peak memory consumption (in MB), all programs were executed using their default
configuration, both during compression and decompression.

In terms of memory usage, UdeACompress is not as thrifty as the other compressors for the whole
FASTQ file. However, in the field of read sequences compression it is common to expect much
higher memory requirements, due to the complexity of the techniques and data structures involved.
Both during compression and decompression, UdeACompress could be classified among the most
memory demanding tools, along with Kpath and Assembltrie

The amount of memory required by UdeACompress during compression is almost proportional to
the input of the FASTQ file. In overall, during decompression UdeACompress demanded around
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Table 5-7. Peak memory consumption during compression and decompression (MB). Below each
dataset we show the total size of the full FASTQ input file and the size of the read sequences only.

SRR1282409 SRR3141946 DRR000604 SRR892505 SRR892403 SRR892407
FASTQ (19119 MB) (15755 MB) (14837 MB) (7040 MB) (6668 MB) (6104 MB)
Reads only (8346 MB) (6459 MB) (5477 MB) (3092 MB) (2756 MB) (2682 MB)

Com Dec Com Dec Com Dec Com Dec Com Dec Com Dec
FASTQ Compressors

Non-referential
Quip 384 383 385 383 392 391 384 369 384 369 384 369
SCALCE 5226 1036 5242 1038 5319 1037 5220 1036 5220 1036 5220 1036
DSRC 2.0 229 1107 239 1104 226 1028 238 1122 225 1128 237 969
Fastqz 1528 1528 1528 1528 1528 1528 1460 1460 1460 1460 1460 1460

Referential
UdeAC 10639 9691 7578 7030 7162 7098 3449 3680 3414 3791 3328 3419
LWFQZIP2 1847 1843 1835 1835 1956 1956 662 662 678 678 1729 1728
Leon 5625 2839 5361 2875 5191 2895 5654 2713 4901 2197 5673 2713

Read sequences compressors
Kpath 30886 14975 25412 12981 - - 11345 6611 13058 9443 9830 5745
ORCOM 9416 2345 9365 2312 7296 1631 6573 1345 2440 639 5871 1631
UdeAC 10639 9691 7578 7030 7162 7098 3449 3680 3414 3791 3328 3419
HARC 2890 1257 3269 1465 2554 2547 1159 95 1378 224 2985 99
Assembltrie - - - - - - - - 16201 4193 9286 3629

25% less memory. One of the issues to be tackled in future versions of UdeACompress is find-
ing efficient ways of handling the data structures related to the alignment and the reads encoding,
where the most memory is consumed. Particularly, the biggest data structures are required dur-
ing the seeding and extend phase of the alignment, and in the process of encoding the alignment
data to generate the binary instructions. Despite exhibiting high memory usage compared to other
tools, the absolute values measured are within the memory capacity of high performance machines
commonly available to bioinformatics research centers.

5.2.2. Simulated Datasets Tests

Since UdeACompress encoding scheme is designed to be more efficient when handling longer
reads than what is commonly found today in public databases (a few hundred bases), we decided
to analyze its compression potential over inputs with longer reads and varying the amount of muta-
tions per read. Since these experiments are only related to changes in the read sequences properties,
we only report the compression ratio of the read sequences, and we only compare to the applica-
tions compressing such stream only.

Subsequently, a set of simulated data files was created to test the performance of UdeACompress
under different scenarios. The goal of these experiments was to test compression capabilities of
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UdeACompress measuring: (1) the effect of the read lengths variation, since this was the main
factor considered in the instruction design, (2) the effect of the number of mutations per read, as
the instruction sizes grow when the number of mutations increases; and (3) The effect of the re-
dundancy among different reads, expressed as the coverage parameter.

For such dataset, we built files with up to 6 GB of read sequences only; generated from a human
reference in order to expand the range of species included in this evaluation.

5.2.2.1. Experimental setup

We built a tool using ANSI C to create simulated FASTQ files in Illumina style, considering a set
of relevant parameters: read length and maximum number of mutations per read (see Table 5-8).
Also, we defined probability functions to calculate the matchings, mutations, bases, offsets and to
calculate the maximum number of mutations per read. Outputs include the required IDs and QSs,
but we used empirical values for the generation of such fields since they are meant to be discarded
by all the compressors in these tests. To make a fairer comparison, only classical matchings (for-
ward and reverse) were used to generate the simulated data files and not skew the results to our
benefit. All the datasets were built using a human reference, the Homo sapiens chromosome 6,
GRCh38.p12, primary assembly 6, downloaded on June 14, 2018.

Table 5-8. Simulated tests configuration
Parameter Variation
Reference Homo sapiens GRCh38, chromosome 6

Read Length 128, 256, 512, 1024; default 1024
Amount of reads 6000000

Coverage [25× ,250×]; default 70×
Maximum percentage of mutations per read [0%, 10%],25% ; default: 10%

Number of mutations distribution Exponential
Offsets distribution Uniform

Mutation probabilities According to Table 5-3
Matching probabilities Uniform for: Forward and Reverse

Base probabilities (substitutions) Uniform for: A, C, T, G; for N=0.08
Base probabilities (Insertions) Uniform for: A, C, T, G

Mutations were adjusted to an exponential distribution [42]. After a previous statistical analysis
of FASTQ files, we found that a typical upper bound for the quantity of mutations per read is
below 10% of the read size, so we generated a maximum number of mutations between 0% and
approximately 10% of the read length; to test the performance of UdeACompress in situations of

6https://www.ncbi.nlm.nih.gov/nuccore/NC_000006.12?report=fasta

https://www.ncbi.nlm.nih.gov/nuccore/NC_000006.12?report=fasta
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non-optimal alignment between the reads and the reference. Probabilities of occurrences for bases
and mutations were established according to the values presented in Table 5-3.

By default, the maximum of number of mutations per read was set to 10% of the read length; reads
length was set by default to 1024 bases, and the calculated coverage of the simulated data was
approximately 70×, according to recommendations 7 [173]. Unmapped reads were not considered
in these tests since their processing corresponds to a third-party software.

Although, we intended to test the same compressors for read sequences presented in section Com-
pression ratio, preliminary tests revealed that ORCOM was not able to compress any of the files
with large reads. On the other hand, the documentation of HARC and Assembltrie states they
cannot handle large reads either. Only Kpath matched the requirements to compress the simulated
data, which highlights the contribution of our approach.

5.2.2.2. Read lengths effect

The first factor to impact UdeACompress performance is the read length. Its effect on the com-
pression ratio was measured while varying the maximum number of mutations per read, as shown
in Table reftab:ArtTConf. The maximum percentage of mutations was restricted considering only
10% and 25% mutations per read. Results are presented in Figure 5-13.

The compression capability of UdeACompress significantly increases as the reads get longer and
the percentage of mutations decreases. This is expected since with longer reads the instructions
encode more information using the same amount of bits, and the impact of storing the map is
reduced because the same structure is used to represent more data.
Figure 5-13 also shows a scenario where shorter reads (128, 256) have a very high percentage
of mutations (25%), which impacts negatively our referential compression. Even in such cases,
the performance UdeACompress is still acceptable compared to the other evaluated application.
Considering a significantly high maximum percentage of mutations (as 25%) and reads of length
equal or superior to 512, UdeACompress achieved a compression ratio between 36× and 44×,
while all but one of the applications in the state of the art cannot even process reads of such length.

5.2.2.3. Effect of the maximum number of mutations

For this test, we generated reads with a maximum amount of mutations between 0% and 25%.
It must be noticed that, because of the exponential distribution, the percentage of reads with ex-
act matchings (zero mutations) is always higher than any other number of mutations probability.
Also, since contiguous mutations are represented as single mutations in the instruction design, the

7https://www.illumina.com/science/education/sequencing-coverage.html

https://www.illumina.com/science/education/sequencing-coverage.html
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Figure 5-12. Compression ratio of the read sequences through the variation of the read length and
the percentage of mutations per read.

exact amount of mutations in each read could be a few mutations more than what the percentage
expresses. Figure 5-13 shows the behavior of UdeAcompress compression ratio as the maximum
amount of mutations per read is increased.

As expected, the best performance is achieved with fewer mutations per read. The difference be-
tween both compressors tends to decrease as the number of mutations is increased. A very small
percentage of mutations [0% - 2%] could be considered unrealistic in practice, since it refers to
almost exacts alignments which are not likely to happen when handling reads of length 1024. But,
even in the very unfavourable scenario of a maximum 25% of mutations per read, UdeACompress
compresses over 6× more than Kpath. Finally, it can be noticed that the range of the compression
ratio for a 70× coverage and typical percentages of mutations (8% to 10%), can be estimated be-
tween 70× and 100×.

In a scenario that included unmapped reads, UdeACompress would still compress better than the
rest of available software.

When sequencing technologies for longer reads arrive, it must be studied the real impact that longer
reads could have in the amount distribution of mutations.
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Figure 5-13. Compression ratio of the read sequences through the variation of the maximum per-
centage of mutations per read.

5.2.2.4. Effect of coverage

Coverage (C) is an important measure of redundancy usually considered in the case of the com-
pression of genomic data. It was estimated using equation5-28:

C =
L∗N

G
(5-2)

where L is the length of the reads, N is the number of reads in the file and G is the reference length.
Figure 5-14 shows the results of experimenting with different coverage values for UdeACompress
and Kpath. A slight increase in compression ratio can be observed for UdeACompress as coverage
grows due to the increased redundancy. UdeACompress’ limitation to harness all the available
redundancy among reads is evident as the compression ratio increases less than 15% (from 67×
to 81×), while the coverage has increased 10×. This fact is the consequence of an approach that
focuses on exploiting the read-to-reference redundancy rather than the similarities among reads
(read-to-read). The small gain observed in Figure 5-14 is a consequence of the shared map in our
design, which allows to take a little advantage of the existing redundancy among the reads. Ap-
plying strategies in the style of delta encoding over the encoder output, and before the low level
compression, could help improving the final compression ratio.

8https://www.illumina.com/documents/products/technotes/technote_coverage_calculation.pdf

https://www.illumina.com/documents/products/technotes/technote_coverage_calculation.pdf
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Figure 5-14. Compression ratio of the read sequences with varying coverage values.

Nevertheless, UdeACompress performance was consistently above Kpath, exhibiting a compres-
sion ratio at least 6× higher. On the other hand, Kpath also showed limitations to exploit the
redundancy in the reads introduced by the increased coverage, exhibiting a constant behavior.

5.3. Summary

In this chapter we have presented the implementation of UdeACompress, a FASTQ read compres-
sor and the core of the multi-technique compression block of the workflow for FASTQ referential
compression presented in the previous chapter.

UdeACompress consists of a set of internal blocks responsible for performing the main tasks:
specialized alignment between the reads and the reference, sorting the reads according to their
mapping position, the encoding of the alignment data through a map and a set of instructions, and
the compression of such encoded information using compression algorithms based on the BWT
transform. Some blocks of third party software were used to test it, allowing to perform compre-
hensive experiments of FASTQ and read sequences compression.

Several performance metrics related to compression capabilities and execution speed were mea-
sured during tests, to evaluate and compare our proposal against the top specialized compressors
in the state of the art. When compared to the other alignment-based referential compressor avail-
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able, UdeACompress had similar or better compression ratios, producing files 14% smaller and
decompressing 1.3× faster, on average. During compression, throughput was shown to be similar
to most other programs when including the parallel estimation, and lower than the average for
the sequential case. During decompression the running times were always in the average range.
The additional mutations and matchings introduced in UdeACompress seemed to have a positive
impact in the compression, but this still needs to be studied as well using multivariate statistics.
In summary, results have shown that UdeACompress performance is competitive when compared
to the most relevant tools in the state of the art for FASTQ compression, at the expense of extra
memory consumption.

As UdeACompress was envisioned thinking in the future scenario of longer reads, simulated data
was generated to measure the real capabilities of UdeACOmpress when compressing reads se-
quences only, exploring deeply the effect of the multiple variables involved. The compression
ratio of UdeACompress was significantly increased when processing longer reads, being always
above its only competitor, since most of the state of the art software is not ready to handle long
reads. A decline in the compression ratio was observed as the maximum number of mutations
increased, but in typical cases this value was around 60×. However, experiments showed that the
proposed compressor can still be improved, to achieve a better harnessing of the redundancy in the
input data. In future versions, it should be explored the results of combining the inner low level
compressor with strategies as delta encoding or Markovian models that could exploit better the
similarities among the read sequences.

The algorithm runtime is sensitive not only to the length and number of reads in the FASTQ input
file, but also to the size of the reference, increasing the amount of CPU and memory required,
especially for the alignment. Even though the execution times of UdeACompress were acceptable
in comparison to relevant software in the state of the art, the estimation model allowed us to pre-
dict a noticeable superior performance if the seeding and encoding blocks of UdeACompress were
parallelized.

Compression of QSs and unmapped reads had a great impact in the compression ratio of a FASTQ
file so specialized strategies for their compression need to be developed for this task. Also, dif-
ferent strategies for compressing the IDs must be tested, since the re-arrangement of the reads
performed by UdeACompress could handicap the delta encoding that was used to compress them.

Finally, UdeACompress stands out as an effective alternative for compressing not only a FASTQ
file, but also the genomic alignment data. However, after evaluating the results the obvious priority
was to accelerate the main bottlenecks found in the profiling of UdeACompress, in order to make
the runtime more competitive.

The work presented in this chapter has been partially published in:
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Guerra, A., Lotero, J., Aedo, J., and Isaza, S. (2019). Tackling the challenges of FASTQ referen-
tial compression. Bioinformatics and Biology Insights, volume 13, SAGE.
Lotero, J., Benavides, A., Guerra, A., and Isaza, S. (2018). UdeAlignC: Fast Alignment for the
Compression of DNA Reads. In 2018 IEEE Colombian Conference on Communications and Com-
puting (COLCOM). IEEE.



6. Improving the Execution Speed

Through Parallelism

Although running times of UdeACompress were acceptable compared to its competitors, the ab-
solute runtime was still high. From the user’s point of view, any performance improvement would
have a positive effect. According to our previous profiling (in section 5.2.1.2), there was space
for an important speed-up through harnessing the features of HPC hardware, which are commonly
available in bioinformatics centers. In consequence, a parallelization strategy was applied to ac-
celerate the main bottleneck in the proposed compressor.

The profile of UdeACompress showed the blocks most susceptible to be accelerated: The seeding
phase of the aligner (55%) and the encoding stage (10%). Even the QS compression consumed
a higher percentage of the runtime (15%) compared to the encoder time, this was not a feasible
choice since this was done with third-party software.

Our efforts to accelerate UdeACompress, focused on harnessing the SIMD capabilities of today’s
high-end processors. Furthermore, we also explored the use of multi-threading to exploit multicore
architectures. This chapter describes the basic concepts, the methodology, and the results along
with the corresponding scalability analysis.

6.1. Accelerating the Alignment Algorithm

The alignment of reads to a reference genome allows the compressor to know the region in the ref-
erence genome where a particular read best matches. Once such a place is found, the compressor
can proceed to encode the differences. Because of the large sizes of genomes and the amount of
reads to be compressed, the alignment process in itself is highly demanding in terms of comput-
ing time. Hence, the implementation of our referential compressor can greatly benefit from using
faster aligning algorithms.

The UdeAcompress aligner, presented in [163], employs the well known Seed and Extend strategy
[174–176]. As shown in Figure 5-5 more than 50% of the running time of our compressor was
spent in the seeding phase; in consequence, it became our acceleration goal.
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6.1.1. Profiling the Seed Algorithm

Seeding consists of extracting a small substring or seed from the read and searching across the ref-
erence to find an exact coincidence; the algorithm admits no mismatches but allows fast searching.
If such coincidence is found, the whole read is then aligned to the reported position in the reference
at the extend phase, where an algorithm that supports mismatches, insertions and deletions is used.
Figure 6-1 provides a visual outline of the the seeding process, explained as follows.

CCACACCCGCCGCTATTAGGGGTGCACCTAACTATGGCGAATCTAGCTCGGGCA
CAGGCACAAGTGTTTGTAGTTTAAGCTAATCGTCTAGTCTTGGGCCGCAGGAGGT
AGGTAGAGTAGGGTCTGATTGAATGTATCTATTCTGACTCGCTTCCTTACCAGAGT
GAGAATCATAGTCAGCCAACCAATGTCTTCCACAAGCCAGCCGCCAACGTGGCAT
TTGTCCCTCGCTACATAATAAAAAGAACGCAACCTAGAACAATGGGCGGACTGTC
GAAATAGAGATTGTATTTGCCTGGCTAACCAGTCGTGCGACTTGTAGTGGATTCG
GCGCCAGGGGATACGCAATGTATTGGCCGTATTTTACCGTTGCGGACTTTGCCGG
CGACCTCAATCAATTACTTGGGATTAGTCCCACATAAGTTTACATGAATTCAAACAA
GGGATCTAACTTGCAGCTTCGGAGTTCCAGGATTTGTGTGTGTGTGCCGCCGTGA
AAGGGAAGTGCATCCGCGCACCTCTCACCCCCTGCGGC...

1 $ G

2 A T

3 A A

4 A A

5 A G

6 A G

7 A $

8 A T

9 A G

10 A A

...
...

...

Reference

FM-index

Burrows-Wheeler Transform

(a) A FM-index structure is created from the reference
genome. This stage needs to be executed only one
time, since results can be saved for future align-
ments.
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2 A T

3 A A

4 A A

5 A G
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7 A $

8 A T

9 A G

10 A A

...
...

...

FM-index

GAAACTGACTCCTGGGCGTGCATATCGTAGTGGTAGTCG

Read

(b) A subsequence or seed is extracted from the read
and sought within the index.

Figure 6-1. Stages of the seeding phase [163].

The seeding phase is implemented using an FM-index. FM-index algorithm generates a com-
pressed representation of the Burrows-Wheeler transform (BWT) [28] from the reference in a pre-
liminary step, as a way to create an index to quickly look for short seed sequences [177] using the
first and last column of the BWT. The Burrows-Wheeler transform is obtained after a lexicographi-
cal sorting of all possible permutations of all the bases in the reference, which takes a considerable
amount of time [159]. However, this task needs to be executed only once per reference and stored
for later uses. On the other hand, it must be calculated for each of the FASTQ files in the input.
In a deeper profiling and analysis of the inner structure of the seeding algorithm we found out that
more than 80% of the runtime was invested in building the FM-index, which will be presented next.
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6.1.1.1. FM-Index

In 2000, Ferragina and Manzini proposed a data structure to combine the best of Burrows Wheeler
Transformation and suffix arrays, called the FM-index (”Full-text index in Minute space”). Bur-
rows Wheeler Transformation and suffix arrays will be explained in detail in the subsections 6.1.1.2
and 6.1.1.3.
FM-Index aims at achieving a space-efficient representation of the input data, to provide fast in-
dexing and searching; complementing the Burrows-Wheeler Transform (BWT) representation with
auxiliary data structures and emulating the functionality of a suffix array (SA) [178] . E.g. While
the SA of a typical human genome (3 billion bases) needs 14 GB, the corresponding FM-index
could take only 1.5 GB.

With an FM-Index, a reference sequence can be kept compressed, and there is no need to decom-
press the whole sequence for pattern searching. Patterns can be searched in a large reference by
only decompressing a small part of it, which results in a significant reduction in storage and access
costs [159]. This can be done through LF-mapping techniques and backward searching as shown
by [177], using a defined set of operations (find, locate, rank, access, extract) which allow to query
(over the BWT) in constant time and without the original text. The look-up in the generated index
is completed in O(p) time, where p is the seed length. As it will be explained next, we focused or
efforts in parallelizing the Sufiix Arrays Construction inside the FM-Index , so we invite the reader
to review the literature [159, 177] to get a detailed explanation of such processes. The construc-
tion of the FM-Index is computationally intensive, in a former profiling using gprof (as shown in
Figure 6-2), more than 90 % of the cost of building an FM-Index was spent in calculating the BWT.

6.1.1.2. Burrows Wheeler Transform

The Burrows Wheeler algorithm [28] transforms a string S of N characters by forming the N rota-
tions (cyclic shifts) of S, sorting them lexicographically, and extracting the last character of each
of the rotations. A string L is formed from these characters, where the ith character of L is the last
character of the ith sorted rotation.

In addition to L, the algorithm computes an index I of the original string S in the sorted list of
rotations. Along with BWT, the authors also proposed an efficient algorithm to compute the orig-
inal string S given only L and I. The BWT has been widely applied in DNA compression nowa-
days [179] [28].

In practice, the BWT output string results from building the Burrows Wheeler Matrix (BWM). The
BWM is a matrix with all the rotations of the input stacked vertically, whose rows are sorted lexi-
cographically. Figure 6-3 shows an example of calculating the BWM(T) for the input T= ”attcatg”.
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Figure 6-2. Succinct call-graph of the process of building the FM-Index.

The last column of the BWM, read from top to bottom, is the resulting BWT(T): gc$tttaa. This
procedure is very convenient since it is reversible and the transformed string can be compressed
more efficiently than the original. The Burrows-Wheeler Matrix is constructed based on the SA
of T (SA(T)). Both processes involve the sorting of strings, in the first case we sort rotations and
in the second we sort suffixes. In fact, both concepts represent the same information; as it can be
seen in Figure 6-4.

In consequence, a traditional way of generating the BWT(T) is via the suffix array SA(T), as shown
in the equation 6-1. In such cases, the SA construction represents the most consuming task in the
generation of the BWT, taking around 90% of the runtime (as shown in Figure 6-2).

BWT [i] =

{
T [SA [i]−1] if SA [i]> 0

$ if SA [i] = 0
(6-1)

6.1.1.3. Suffix Array Construction (SAC)

SAs are lexicographically sorted data structures that contain all the suffixes of a given input. SA
were introduced by Manber and Myers [180] as a space efficient alternative to suffix trees, in or-
der to allow fast searches of patterns on very large texts (e.g. genomes). Since the SA is sorted,
binary search can be used to look up which is commonly O(mlog(n)), where m is the seed length
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Figure 6-3. Example of calculating the BWM(T). In the left side all the permutations of T are
shown. In the right side, the result of sorting lexicographically such permutations
(Index I).

Figure 6-4. Comparison of the BWM(T) and the SA corresponding to that same input.

and n is the length of the whole input string [181]. SAs are widely used in full text indices, data
compression algorithms, example-based machine translation, among many other applications.

There are three main classes of algorithms for SAC described in the literature: prefix doubling,
recursive, and induced copying (sorting) algorithms. [178, 182]. Conceptually, all of them are fo-
cused on generating a set or sub-set of suffixes and then sorting them with different approaches.
When applying SAC algorithms to genomic information, the huge amount of data involved and the
dependences between them are the main challenges. In any case, the computational core and the
most demanding task of the SAC is the suffix sorting (as shown in Figure 6-2). Figure 6-5 presents
a simple example of the process of SAC.
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Figure 6-5. Process of the suffix array construction for the input ”attcatg”. The suffixes are gener-
ated applying all the possible rotations of the input (left), and then those suffixes are
lexicographically sorted using some specific algorithm (right).

Due to the reasons presented above, our acceleration efforts focused on the SAC, which has the
most intensive computational work among the tasks inside the seed phase (Figure 6-2), the main
bottleneck in UdeACompress (as showed in previous sections). Accelerating the SAC is particu-
larly important to our research, not only because of the impact it has on the seeding phase, but also
because the accelerated algorithms are also important in other parts of the workflow proposed in
Chapter 4: (1) the Burrows Wheeler Transform which is carried out in the low level compression
block (Figure 5.1.4), (2) the efficient characterization of the references in the database (performed
off-line as explained in subsection 4.5) and the reads in the input (performed on-line), (3) the
sorting of the reads prior to the encoding step inside UdeACompress, since a sorting algorithm is
involved in the SA construction.

6.1.2. Assessing the Parallelization Feasibility in SAC

Sorting is the core, and the most time consuming part of SAC (Figure 6-2). The main problem of
parallelizing many sorting algorithms is the high dependency among the operations. In the case of
SAC there is an additional critical task: generating the suffixes from the original input (which we
call Input Chars Generation). Only a single character per suffix is required on each iteration, so
the input chars generation is executed sequentially at the expense of an extra computational cost;
but providing a more memory efficient solution [182]. As we mentioned in section 2.3, we were
interested in using a SIMD approach to accelerate the main bottlenecks in our algorithms, so in the
next sections we will describe the process of developing a suffix array constructor.
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It is well known that control structures in programs affect an efficient SIMD execution. Ad-
ditionally, approaches of comparison-based sorting involve a high level of data dependencies,
since each element has to be compared with many others. To avoid the effect of both factors,
we selected a non-comparative method for the sorting of the large amount of suffixes involved.
The state of the art on parallel sorting algorithms shows many works applying fine grain paral-
lelism [131, 183, 184, 184–193]. We found interesting the work of Timothy Hayes in 2016 [79]
since he compared the SIMD implementations of three different well known integer sorting algo-
rithms: bitonic mergesort, recursive quicksort and LSD radixsort. This radixsort (named VSRsort)
not only outperformed the rest of competitors in such comparison, but also scaled very well in
different tests due to its hardware enhancements.

Nevertheless, there was an important limitation in VSRsort as its design was based on the use of
two hardware instructions proposed by the author and not present on any commercial processor
today: Vector Prior Instances (VPI) and Vector Last Unique (VLU). Hayes provided a simulated
performance evaluation and description of his proposal [79], useful for any follow-up work.

As explained in section 5.1.1, UdeACompress uses the SDSL library [161] to build the FM-index
required by the aligner. However, in this chapter, and based on the above analysis of the state of the
art, we present our own design and implementation of a SIMD SAC that uses sorting approaches
better better suited for SIMD programming.

Even though the interfaces of our SIMD SACs algorithms are compatible with the rest of the code
in UdeACompress aligner, integrating them would also require to integrate the SIMD algorithms
with the SDSL library. That involves a significant development and testing effort, which would not
contribute significantly to our analysis. No negative impact on the results is expected because no
significant overload would result from the aforementioned integration. Therefore, the algorithms
presented in the coming section along with their experimental results correspond to isolated exe-
cutions, in a stand alone setup.

6.1.3. SIMD SAC Design

In this section we explain the design and implementation of the SIMD SAC. First, we briefly dis-
cuss the main features of the selected architecture’s ISA: The Intel AVX-512. Then we present
the design details of our approach followed by the description of the algorithms implemented.
This includes presenting two versions of our SIMD SAC algorithm: a naive implementation which
incorporates basic optimizations and a version with more complex improvements. Finally, we dis-
cuss the issues related to the combination of SIMD and multi-threaded programming strategies to
determine the feasibility of combining both approaches in the SAC algorithm.
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Based upon the analysis presented in the Section 6.1.2, we set the following steps in order to
achieved a SIMD-based parallelization of SAC:

• Design software alternatives for the VLU and VPI operations proposed by Hayes, using the
instructions available in Intel AVX-512.

• Develop a SIMD Input Chars Generator useful for further SAC construction.

• Implement a fine grain LSD Radixsort SIMD for positive integers.

• Integrate the previous codes to build a SIMD SAC algorithm.

• Evaluate the performance of the naive SIMD SAC in order to implement an optimized ver-
sion.

• Compare the performance of both SAC methods.

• Determine the suitability of Intel AVX-512 for the efficient implementation of tasks associ-
ated with the construction of a SA.

6.1.3.1. Design of the SIMD SAC algorithms

As stated before, our proposal for a SAC consisted in implementing two major task blocks: The
first block generates the set of input characters to be used for the sorting in each iteration, one for
each suffix. The second block performs a partial indirect integer sorting of the involved suffixes,
according to the previously generated characters. This sorting is called indirect because we only
sort the indexes instead of the suffixes, and it is called partial because it produces a partial sorting
considering only the input characters corresponding to the current iteration; as such input changes
iteratively, the final sorting is produced. Both of the blocks are combined under a ”most significant
character” approach, which processes each character from left to right. Three main steps describe
our sorting process (presented in Figure 6-6):

• 1) Perform a 1st character regular suffix sort, using the first character of each suffix and
performing the partial radixsort according to the ASCII value.

• 2) Define sub-groups of the previously unsorted suffixes which starts with the same letter.
Update the input characters calculating the next most significant character for each suffix,

• 3) Separately, for each of the sub-groups with a cardinality greater than one found in (2),
repeat the steps (1) and (2) until there are no sub-sets with a cardinality greater than 1.

One of the main challenges of our SIMD approach, was the sorting that needs to be performed
continuously over the input characters. As mentioned in Section 6.1.2, after reviewing the state of
the art we found that VSRsort for integer data suited well the sorting goals of our SAC, since the
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(a) Suffixes generated from the input string
”CANSONACAS”.

(b) Identified sub-groups with the corresponding
input characters for next iteration sorting

Figure 6-6. Example of the multi-level parallel Suffix Array Construction. First, all the suffixes
generated from the input string are sorted considering the first character only. Then:
(1) considering the characters sorted previously (currently in the 1st column), the suf-
fixes are separated in subgroups starting with the same letter; (2) Each sub-group is
sorted separately, considering the next right character of each suffix. The process is re-
peated moving to the next right character until there is no sub-group with a cardinality
greater than one.

characters in the suffixes are associated to integer values according to the ASCII table.

In [80] Hayes presented a general description of VSRsort for sorting positive integers, with a com-
plexity of O(k ∗n), where k is an integer parameter that depends on the number of passes needed
to iterate over all the digits of the longest integer in the input data and n is related to the amount of
suffixes to sort. His proposal also included non-existing low level instructions to achieve a more
efficient processing: VLU and VPI, both aiming at avoiding memory collisions in the algorithms.
Based on the high level description of VSRsort we developed our own SIMD radix-sort for char-
acters instead of integers and using native Intel AVX-512 instructions to emulate the VLU and VPI
instructions. We named it PartialGroupSort because it sorts a specific group of suffixes partially,
considering only the value of characters selected specifically for the current iteration. As seen in
Figure 6-7, the overall idea is simple; it performs four steps sequentially. As discussed below, the
SIMD PartialGroupSort is executed iteratively (as many times as the input size) over the different
calculated groups to construct the final SA.

The first step (1) is selecting the corresponding input characters, one character per suffix. Let us
assume the input array [C,A,B,A] as shown in Figure 6-7. In step (2) using the input ASCII values,
a histogram is generated (characters counting). In the example shown: two A, one B and one C. In
step(3) an exclusive prefix sum is calculated by adding all the previous elements for every position
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Figure 6-7. Flowchart of the PartialGroupSort. In the right side, you can follow a simple example
of each step , for the input array [C,A,B,A].

in the histogram (prefixing except for the current element). Finally, (4) using the VLI and VPU
operations combined with the Exclusive Prefix sum, a sorting position is calculated for every input;
which produces the partial sort.

The new Intel’s AVX-512 Conflict Detection Instructions were specially interesting to us, since
they allows to detect elements with previous conflicts in a vector of indexes, generating a mask
with a subset of elements that are guaranteed to be conflict free (non-repeated). A computation
loop can be re-executed, and iterating over subsets of the remaining non-repeated elements until all
the indexes have been operated will avoid access conflicts. Since we had the AVX-512 technology
available, we used these instructions to design and implement the VLU and VPI operations.

6.1.3.2. Implementation of the SIMD SAC algorithm

In Figure 6-8 we show the complete process to efficiently construct the SA iteratively. The overall
process consists of iteratively producing partial sorting per group of suffixes. In the first iteration
all the suffixes form a single big group. Since at this point there is only one group, then we compute
bounds among the groups produced by the recently performed partial sorting. After the bounds
have been calculated we verify if there is any group with more than two suffixes, that is with a car-
dinality greater than one. The process is iteratively repeated: the inner cycle goes until all of the
groups in the current iteration have been sorted, and the outer cycle when all the suffixes belong to
a different group. In other words, the algorithm ends when all the groups have a cardinality equal
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to one, which means that every suffix has been sorted.

Figure 6-8. Flowchart of the SIMD Suffix Array Construction Algorithm.

Groups bounds are calculated by the ComputeBounds function, which is responsible for calculating
the different groups after the partial sort of every group through the iterations. Bounds are com-
puted from the results of the last partial sort, separating in different groups those suffixes whose
current input character is different. Once a suffix has been sorted, it stays in such position until
the end of the process and it does not take part in any future relative sorting. SIMD improvements
could not be incorporated to the implementation of ComputeBounds, since the SIMD approach did
not suite the data dependencies and the flow of actions in it.

PartialGroupSort is responsible for the partial sort of every particular group, which happens se-
quentially through a series of steps analogous to VSRsort design. The input characters are calcu-
lated for the current selection of suffixes part of this group. Then a histogram is calculated over
such input characters, and the result is used to compute the exclusive prefix sum. Then the partial
radixsort is performed. Finally the memory positions are swapped so the indexes of the recently
sorted array are updated. Then the execution continues in the main algorithm, building the groups
to be sorted in the next iteration.
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Next, we will present the details of implementation of the inner components of the partial group
sorting. The specification of the low level data types and the instructions used in the following
algorithms can be consulted in the Intel intrinsics guide.

Input Chars Generator
Input Chars Generator calculates the specific subset of characters that will be part of each current
partial group sorting, one character per suffix. This is a consequence of not storing explicitly all the
suffixes in an auxiliary table, in order to handle memory efficiently. This task requires considering
three facts: (a) As seen in Figure 6-6, the set of suffixes to be sorted through the iterations process
becomes smaller, (b) the suffixes change their positions continuously through different iterations
as a consequence of each partial sorting and (c) the suffixes are not stored anywhere, instead they
must be calculated and extracted from the original input. Our SIMD version of the input chars
generator is presented in Algorithm 31 .

Algorithm 3 Input Chars Generator
1: procedure INPUTCHARSGENERATOR(int Size, int *InputText, int currentIter, int *Indexes,

int *OutInt)
2: Displace← CalculateDisplacement(Size, CurrentIteration)
3: auxSuf← *Indexes+Displace
4: Displ← mm512 set1 epi32(Displace)
5: for It←0;It<Size;It←It+16 do
6: Suffix← mm512 load epi32 ((*auxSuf+It))
7: TextIndex← mm512 add epi32(Suffix, Displ)
8: Chars← mm512 i32gather epi32 (TextIndex, InputText, 4)
9: mm512 store epi32 (*Output+It,Chars)

10: end for
11: end procedure

It starts calculating the displacement that must be applied to the original input to calculate the suf-
fixes (based on the current iteration and the suffix position). An iterative process loads the input
string, upon which the displacement is added, then the respective characters are gathered from the
input string and finally stored in the output array.

Histogram
Many alternatives for implementing SIMD histograms have been proposed in the state of the
art [194–200]. Hayes suggested in [80] that it was possible to calculate a histogram efficiently
using the two non-existing instructions proposed in his research: VPI and VLU.

1The mnemonics used to express the instructions in the algorithms, as well as the respective description, can be found
in http://software.intel.com/sites/landingpage/IntrinsicsGuide/

http://software.intel.com/sites/landingpage/IntrinsicsGuide/
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In our implementation, the input is loaded into a register, then the number of appearances of each
element is calculated (using VLU and VPI) to generate a local histogram for such register. Finally,
the affected positions are gathered from the global histogram, which is updated adding the current
appearances for each value. A mask built based on the VLU is used to avoid collisions when scat-
tering data.

A detailed description of VPI and VLU, along with our approach to implement such functions is
presented next.

Vector Last Unique and Vector Prior Instances
One of the greatest challenges of Hayes proposal was the fact that it was based on two non-existing
hardware instructions: VLU and VPI, both essential to build the integer radixsort. For that reason
the priority was to implement both instructions using the instructions available in AVX-512 ISA.

The VLU instruction takes an integer vector in the input and produces a vector mask as a result.
The idea is to mark the last instance of any particular value found. A bit in the output mask register
is set only if the corresponding value in the input vector is not seen afterwards. On the other hand,
VPI uses a single vector register as input, processes it serially and outputs another vector register
as a result. Each element of the output asserts exactly how many instances of a value in the corre-
sponding element of the input register have been seen before (excluding the current appearance).
In both cases the elements in the input vector are processed from left to right [80].

After analzying such instructions to find possible implementation choices in the AVX-512 ISA,
we found that the recently released conflict detection instruction mm512 conflict epi32 provided
useful information to calculate VLU and VPI. Such instruction is barely documented, so useful
information as the number of cycles to execute is unknown. The mm512 conflict epi32 basically
takes a register of sixteen 32 bits integers and returns a register of sixteen integers. Looking at a
specific position in this output it is possible to know if the element in such position appears (are
repeated) in a previous position of the input. Such information was useful to calculate both needed
values: the last appearance of each element in the register and the previous appearances of the
element in every input position.

Our implementation of VLU is presented in the Algorithm 42. It takes the result of the conflict
detection over the input and compresses it building a mask resulting from a bitwise disjunction
among the integers in each position of the register. Then we calculate the bitwise exclusive OR
between that mask and a constant 0xFFFF mask.

2The mnemonics used to express the instructions in the algorithms, as well as the respective description, can be found
in http://software.intel.com/sites/landingpage/IntrinsicsGuide/

http://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Algorithm 4 Vector Last Unique
1: function VLU( m512i Conf)

. Pre : Conf = mm512 conflict epi32(data)
2: return( ( mmask16) mm512 reduce or epi32(Conf) xor 0xFFFF )
3: end function

Considering the output of the mm512 conflict epi32 instruction, our design for the VPI function
was basically a pop-count over such register. By the time we implemented the VPI (see Algorithm
53), the AVX-512 ISA did not have instructions for calculating the pop-count over a whole regis-
ter. Our version for an efficient pop count was based in a lookup table to directly access the count
value for each four bits integer. Input was separated into four registers, each filled only with four
bits integers from original data, then the lookup table was used to get the number of ones in each
case, which were added to get the final result. The look up table was built specifically to match our
purpose and accessed using shuffle instructions. Even Intel has released recently a vector popula-
tion count instruction (VPOPCOUNTDQ), it has been introduced only in the Knights Mill and Ice
Lake architectures, which we had not available.

Algorithm 5 Vector Prior Instances
1: function VPI( m512i Conf)

. Pre : Conf = mm512 conflict epi32(data)
2: V0 3← mm512 and si512 (Conf, 0xF)
3: V4 7← mm512 and si512 ( mm512 srli epi32 (Conf, 4 ), 0xF)
4: V8 11← mm512 and si512 ( mm512 srli epi32 (Conf, 8 ), 0xF)
5: V12 15← mm512 and si512 ( mm512 srli epi32 (Conf, 12 ), 0xF)

6: cnt1← mm512 shuffle epi8 (lookup, V0 3)
7: cnt2← mm512 shuffle epi8 (lookup, V4 7)
8: cnt3← mm512 shuffle epi8 (lookup, V8 11)
9: cnt4← mm512 shuffle epi8 (lookup, V12 15)

10: return( mm512 add epi32 ( mm512 add epi32 ( cnt1, cnt2), mm512 add epi32 ( cnt3,
cnt4)) )

11: end function

As explained before, the new mm512 conflict epi32 was essential for implementing VLU and
VPU. Nevertheless, it was designed to receive as input only registers of sixteen 32 bits integers;

3The mnemonics used to express the instructions in the algorithms, as well as the respective description, can be found
in http://software.intel.com/sites/landingpage/IntrinsicsGuide/

http://software.intel.com/sites/landingpage/IntrinsicsGuide/
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which had an important impact in the overall performance of the radixsort. In the case of SAC,
the optimal performance can be achieved if sixty four 8 bits integers can be processed at the time.
This was the greatest bottleneck of our SIMD program, limiting the performance of the rest of our
algorithm by up to 4×. Additionally, this required that, at the beginning of our algorithm each
character in the original input had to be expanded from 8 to 32 bits, with the respective overhead.

Exclusive Prefix Sum
Our method for calculating the exclusive prefix-sum iterates over the whole histogram: loading
every 16 elements into a register, calculating the local exclusive prefix sum over such register and
updating the exclusive prefix sum array. The last element in the local exclusive prefix sum register
of the current iteration is carried to update the values of the next one. The local prefix sum is
calculated combining cumulative additions and shifting operations a fixed distance: 1, 2, 4, 8; in
the form of a tree. The shifting separates the integers in the input until we have four arrays with
four bit elements in each. The number of bits of each element is directly obtained from a look-up
table and then totalized to obtain the final value.

Partial Radixsort
Our partial radixsort (Algorithm 64) performs an indirect sorting, which means the suffix indexes
are sorted instead of the suffixes themselves. The partial radixsort iterates over registers with 16
input characters performing the following steps: first VPI and VLU are re-calculated, then the VPI
is incremented in one (to update the offset of the current element). The exclusive prefix sum is
gathered from the input, and this register is added to the VPI value in order to obtain the exact off-
set to be place each element to produce the partial final sorting. Then, the corresponding suffixes
are loaded to scatter them according to the previously calculated offsets. Finally, the exclusive
prefix sum array is updated for future iterations.

6.1.3.3. Optimizing SIMD Suffix Array Construction

In the first version of the SIMD SAC code, named SIMD Naive, we applied some strategies ori-
ented to optimize performance:

• Minimizing scalar operations for a maximum harnessing of the SIMD architecture,

• Inlining all functions to reduce execution overhead,

• Padding input data to avoid scalar processing, when the amount of data was below registers
length,

4The mnemonics used to express the instructions in the algorithms, as well as the respective description, can be found
in http://software.intel.com/sites/landingpage/IntrinsicsGuide/

http://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Algorithm 6 Partial Radixsort
1: procedure PARTIALRADIXSORT( (int *InputChars, int Size, int *ExPsum, int *Indexes, int

*SortedIndex) )
2: for x←0;x<Size;x←x+16 do
3: data← mm512 load epi32 (*InputChars+x)
4: outConf← mm512 conflict epi32(data)
5: VPI← VPI(outConf)
6: mymask← VLU(outConf)
7: auxPSum← mm512 i32gather epi32 (data, ExPsum, 4)
8: offsets← mm512 add epi32 (auxPSum, VPI)
9: updatePSum← mm512 add epi32 (offsets, Reg One AVX512))

10: suff Indexes← mm512 load epi32( *Indexes+x)
11: mm512 i32scatter epi32 ( SortedIndex, offsets,suff Indexes, 4)
12: mm512 mask i32scatter epi32 (ExPsum, mymask, data, updatePSum, 4)
13: end for
14: end procedure

• Carefully implementing VLU and VPI instructions, using the minimal amount of native
instructions.

However, we also report the results of applying additional optimizations to overcome important
drawbacks identified in the first version of the SIMD SAC. The ones with greater impact in the
performance were:

• The impact of the conflict detection instruction. Not only because of the complexity of such
instruction per-se (the number of cycles required by the instruction was not documented by
then), but also because of its interface. The instruction was designed to process strictly 32
or 64 bits integers, while we would rather process sixty four 8 bits integer to harness all
the hardware capabilities. In consequence, performance could be around 4× lower than ex-
pected. Additionally, this issue required to expand the input data before processing it, in
order to convert it from 8 bits to 32 bits, causing an additional overhead. Our strategy to
tackle this problem was packing two characters into a single 32 bit integer. Even though
this clearly would help to improve performance since the SAC could save up to half of the
iterations, it would also introduce more overhead since the expand task needed to be more
complex, involving extra bits displacement and adding operations. This strategy could also
have a negative impact since the histogram and the exclusive prefix sum will have to handle
bigger structures, leading to a greater number of cache misses when continually performing
the mostly sparse data access involved to calculate the histogram, the exclusive prefix sum
and the partial sorting.
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• The problem of indirect sorting. SIMD approach performs much better when processing
contiguous data. But performance may decrease significantly when sorting dispersed ele-
ments due to the amount of cache misses. It is difficult to efficiently implement an indirect
sorting approach using SIMD instructions because the indexes to be sorted are associated to
data that is not stored contiguously in memory; in consequence costly gather/scatter opera-
tions to load the keys into the vector registers had to be used. Such overhead could offset
the benefits we gain from the usage of SIMD instructions. To reduce the impact of this
issue, we implemented two different versions of each function: apart from the previously
discussed regular versions (used in the iterative process), we created specific versions to per-
form contiguous memory access (instead of dispersed) when possible, specifically in the first
iteration. In the first iteration all the functions manipulate the greatest amount of data since
the input corresponds to the whole input, while in the rest of iterations each function ma-
nipulates the data of each sub-group (clearly with less elements). Also, with this change we
avoided invoking the input chars generator the first time (they correspond directly through
initial consecutive indexes), and a high cost memcpy operation which was replaced by a
pointer swapping over the sorted indexes data.

• In our SAC we calculated the VLU and VPI instruction twice over the same input: once
during the histogram and a second time when performing the partial radixsort. This was op-
timized by storing both values after they are calculated in the histogram, and loading them
at the beginning of the partial radixsort; at the expense of higher memory costs.

• During comprehensive testing we realized that groups size decreased quickly, and an im-
portant percentage of the time was spent in the scalar sorting of small groups. This issue is
commonly tackled through padding, but in our case the application of padding was limited
because the groups data was processed independently but stored contiguously, leaving no
space for padding. In consequence, groups with only two suffixes are sorted directly using
scalar comparisons only.

From now on, we refer to the algorithm implementing the aforementioned optimizations as SIMD OPT
.

6.2. Performance Evaluation

In this section we present the performance tests of the three SAC versions developed:

• Scalar: A purely scalar SAC algorithm to be used as a baseline. Scalar is also used as a
reference to calculate the speedup of the respective parallel implementations. The sorting
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kernel in scalar implements an efficient radixsort as presented by [201]. When less than 120
elements are to be sorted, Scalar uses an optimized insertion sort algorithm instead, which is
more efficient (according to our former experiments).

• SIMD Naive: The initial version of the SIMD SAC, incorporating basic optimizations as
explained in the previous section.

• SIMD OPT: The final optimized version of the SIMD SAC, incorporating elaborated opti-
mizations as explained in the previous section.

The three SAC versions have a complexity O(n2). We did not modify in the strategies of such
methods oriented to change their complexity, since our main interest in this phase was to explore
the effects of SIMD parallelism in the final runtime. In consequence, the computational complex-
ity across the three versions does not change.

Tests were performed using DNA data extracted from the genome hg195. Such input was prepro-
cessed to fit into the alphabet (A, C, G , T , N). We had the hypothesis that our SAC algorithm was
not affected by the characters distribution, because it does not consider any relative pre-existing
order in the input. However, to evaluate the effect of the input distribution in our method we used
different chromosomes in hg19 to create different input files. As the performance variation was
statistically non-significant, it was clear that none of the developed method was affected by the
bases distributions in the different inputs,. As this behaviour was consistently exhibited through
all the experiments, the rest of our analysis is made considering the first input only.

Tests were performed on a server with two Intel(R) Xeon(R) CPU 6152, 2.10GHz, 30 MB cache,
192 GB of RAM DDR4 in a shared memory architecture, with a 4 TB SATA 3.5” Hard Drive at
5400 RPM, and using Ubuntu 16.04 OS (64 bits). We report the minimum time of three replicas
executed, measured with chrono::high resolution clock. All codes were written in C and compiled
with Intel C++ compiler version 18.0.2. using optimization flag -O3.

6.2.1. SIMD SAC Performance

Figure 6-9 shows the runtime comparison of both SIMD versions against our baseline.
Both of our SIMD versions were consistently faster than the scalar baseline. For small inputs (4
million characters or less), the SIMD Naive version was up to 3× faster than SIMD OPT. We
hypothesize that since the data structures size grew along with the input size, this generated in a
higher probability of cache misses due to memory access that are made more frequently and more
scattered. This cumulative effect resulted in SIMD Naive being less efficient as input size grew.
The general greater performance of SIMD OPT was also because of the data packing optimization
applied, which reduced by half the number of iterations in the inner cycle.

5http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/chromFa.tar.gz

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/chromFa.tar.gz
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Figure 6-9. SAC execution time with different input sizes from hg19. Vertical axis is log10 and
the horizontal is log2

For very large input sizes (more than 224 characters), SIMD OPT was between 2× and 3× faster
than SIMD Naive. For small inputs (222 or less characters), the SIMD Naive performed better
than the SIMD OPT version. In the test with the largest number of characters, corresponding to
bases 230, the difference between the baseline and the SIMD OPT was approximately one order of
magnitude.

It was very important to measure the impact of every function inside our algorithms in the global
performance of our SIMD SAC. This way we could observe the effect of the implemented opti-
mizations and identify other optimization objectives for the future. The profiling results for the
larger input sizes are shown in Figure 6-10.

In SIMD Naive the tasks that dominate the performance are evident: mainly partial radixsort,
and with significant less importance the histogram computation, ComputeBounds and the memcpy.
Meanwhile, in the SIMD OPT version we observe the effect of additional tasks that now become
important as the time required by the most expensive functions is reduced. The dark green block
in the SIMD OPT profile, which did not appear in the naive implementation, represents mostly the
functions that only perform contiguous memory access (non gather/scatter) which are executed in
the first iteration, along with the cost of the scalar direct sorting of groups with only two suffixes.
According to additional experiments, functions that only performed contiguous memory access
were at least 2× faster than the counterpart gather/scatter based functions.
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(a) SIMD Naive SAC algorithm.

(b) SIMD OPT SAC algorithm

Figure 6-10. Profiling of both versions of the SIMD SAC algorithm.

The second optimization included was storing the VPI and VLU (instead of just recalculating it),
whose effect is observed when comparing the histogram block of both figures (in gray). The gray
blocks in the profile of SIMD Naive tend to be smaller than in the SIMD OPT, where more time
is consumed due to the additional store instructions that are performed. This also contributed to
reducing the runtime of the Partial Radix. This difference was more evident when the input sizes
increased. This also reduced the runtime of the partial radixsort since it now does not calculate the
VLU and VPI.
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The effect of the packing strategy is observed in partial radix blocks, which consumes less percent-
age of the total runtime in the optimized version. Packing also reduced the number of iterations
of the inner cycle, which also resulted in less time spent in the memcpy instructions. This positive
effect might be offset in the case of the histogram block because of the overhead introduced to
store the VLU and VPI arrays. Also, both the histogram and the exclusive prefix sum are nega-
tively impacted since now they must handle much larger data structures (more buckets are needed),
increasing the probability of cache misses in both tasks. Additionally, the cost of the expanding
function became significant in the SIMD OPT version, because in this version the expanding pro-
cess involves more complex operations; and because of the general impact of some other func-
tions had been reduced significantly due to the packing itself. Due to this runtime decrease, the
non-SIMD portion of the code (mostly the scalar direct sorting and ComputeBounds), exhibited a
greater impact in the overall performance. Finally, the observed reduction in the execution time of
the partial radixsort is also a consequence of the scalar direct sorting of groups of size 2, which had
a higher impact for small inputs. These findings also explain the variation in runtime time shown
in Figure 6-9.

Finally we calculated the performance gain of both of the SAC algorithms, which is presented in
Figure 6-11. Considering the Intel AVX-512 architecture used, the ideal parallelism should cor-
respond to a speedup of 16× for 32-bit element arrays. Figure 6-11 shows that, on one hand,
SIMD Naive achieved a speedup of up to 6× for small inputs, which decreased as the input size
increased. On the other hand, SIMD OPT exhibited a speedup that grows with the input, up to
7× faster than the reference, for the experiments presented. Such speedup can be considered as
significant taking into consideration the overhead and implementation issues related to SIMD pro-
gramming.

Although one of the optimizations applied was to pack two characters into one array element, we
decided not to try for a denser packing strategy. We think that by doing so, it would also result in
a negative impact in the final performance, since with bigger integers the histogram and the exclu-
sive prefix sum would need much more buckets. This is translated into much higher probability of
cache misses, with an important cumulative effect because of all the scattered accesses. The most
convenient solution for this issue would be having a more versatile conflict˙detection instruction
that would allow processing more elements (of less size) per AVX-512 register.

6.2.2. Considerations for Instruction-set Extensions

Based on the presented experiments, we identified some potential instructions that can be consid-
ered by processor designers in future ISA extensions. Such instructions would help improving
performance, not only for problems such as the SAC presented here, but also in tasks related to
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Figure 6-11. Speedup of SIMD Naive and SIMD OPT against Scalar.

sorting, multimedia processing and signal processing, among others types of applications. Beyond
the VLU and VPI instructions proposed by Hayes we also propose the following:

• VPopCnt: Vector Pop Count. As we have mentioned, Intel released instructions for vector
population count (VPOPCNTDQ extension), they have been introduced only in the Knights
Mill (2017) and Ice Lake (2019) architectures, but they were not incorporated to the other
processors like the Cannon Lake released in 2018.

• VPrefixSUM: Vector Prefix Sum, an instruction to compute the prefix sum of the input reg-
ister.

• VHistogram: Vector Histogram, an instruction to compute the histogram of the input register.

• ConflictDetection 32x16: specific version of the conflict detection instruction, but designed
to process 32 x 16 bits integers.

• ConflictDetection 64x8: specific version of the conflict detection instruction, but designed
to process 64 x 8 bits integers (signed and unsigned).

• Shuffle RegToReg epi32 ( mm512i in, mm512i out, mm128i pos): This instruction rep-
resents a friendly version of the intrinsic to shuffle 32 bits integer on a AVX-512 register
(in) to specific positions (pos) in another AVX-512 register (out). Even though this type of
task is currently possibly using shuffle or permute intrinsics, their usage can be very tricky
requiring the programmer to handle many low level details.
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Nevertheless, the hardware cost of such instructions needs to be determined in order to decided the
viability of including them into commercial processors.

6.2.3. Introducing Thread Level Paralellism into the SIMD Approach

After achieving a successful acceleration our implementation of SIMD SAC, we were interested in
testing the effects of combining the SIMD strategy with TLP, in order to determine the suitability
of combining both approaches in our proposal for SAC. Two additional versions of SAC were
developed:

• An OpenMP parallelization of the scalar version (non-SIMD).

• AN OpenMP parallelization of the SIMD OPT version.

OpenMP directives to produce parallel threads were inserted into the partial groups sorting, this
is, inside of the input chars generator and inside of each of the process corresponding to the group
sorting (Histogram calculation, and partial radixsort). Other minor SIMD tasks (expand and suffix
initialization) were also parallelized using OpenMP threads. The suffixes inside each group were
sorted using threads, but the different groups were sorted sequentially in this approach.

From the firsts experiments of both versions, we observed that the scalability was poor. Profiling
both performances we found that most of the running time was spent in system processes. Threads
were executed in a very small percentage of total runtime. After researching, we identified a
problem of non-uniform memory access. Considering that OpenMP is not NUMA aware (during
runtime the threads are just dispatched to any available CPU), we tried executing the program
modifying the openMP affinity through the KMP˙AFFINITY flag, in order to see the effect in per-
formance. We observed a little gain in performance oscillating between 5% and 7% in overall per-
formance when setting the affinity parameter to ”compact”, which causes the threads to be placed
as close as possible. We also configured the OpenMP environment variable OMP˙PROC˙BIND to
control binding of OpenMP threads, so that the OpenMP execution environment would not switch
threads among processors. Performance did not change significantly.

A hypothesis we propose is that the inner design of our SIMD SAC is not cache friendly. One of
the main reasons is that we perform an indirect sorting instead of a direct sorting. Because of this,
very large data structures are accessed and modified through gather and scatter operations. This is
the only way of avoiding the comparisons required to perform data sorting. Such data structures
(histogram, exclusive prefix sum, indexes and input characters) are constantly updated during the
most time consuming functions in our algorithms. This NUMA became significantly evident in the
multi-threaded implementation, showing a bigger impact in runtime. As the number of threads was
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increased and the memory accesses became even more scattered, the benefits of multi-threading
were not enough. In such scenario, many threads could update contiguous memory positions be-
longing to the same block, invalidating cache content of the other threads. Then, keeping the cache
coherence becomes more complex, generating much more traffic, and resulting in more cache
misses. To tackle this issue we would have to implement the multi-threaded parallelism at groups
level, which means each group is sorted with a single thread and using SIMD OPT only; since this
would reduce significantly the memory sharing between different threads.

6.3. Summary

In this chapter we presented the strategies implemented to accelerate the execution of UdeACom-
press. Considering the results of a profiling discussed in chapter 5, we implemented parallel algo-
rithms that accelerate the most consuming task in UdeaACompress performance: The SA construc-
tion. Such task, essential for the seeding phase of the alignment, was accelerated through DLP. The
optimization was done in isolation and not incorporated inside the original code of UdeACompress.

The AVX-512 ISA was extensively studied to select the proper instructions to implement a SIMD
SA Constructor. VPI and VLU operations proposed in a previous work were implemented with
the latest instructions available in Intel AVX-512.

Two versions of SIMD SAC were developed: a naive implementation with some basic optimiza-
tions, and a more elaborated version with further low level optimizations. The optimized version
achieved up to 7× of speedup against the scalar version when processing larger inputs.

The non-comparative sorting approach suited very well the DLP parallelism avoiding multiple
comparisons and excessive control flow. However, this approach presented some important issues.
It does not harness any relative pre-existing order in input data; leading to unnecessary data move-
ment. Also, it is not very cache friendly because of the constant scattered memory accesses to
large data structures. Both negative effects were exacerbated because of the indirect sorting strat-
egy applied.

Although, the use of the conflict detection instruction to emulate the VLU and VPI instructions
worked out well, the available element sizes limited the achievable performance.

A set of useful ISA instructions was proposed for the acceleration of SAC.

Finally, two multi-threaded versions of SAC were developed with preliminary results showing
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negative performance results. The gather-scatter memory access patterns to large data structures
created a very inefficient use of cache when involving multiple cores and threads. This issue is left
as open for future research.

The work presented in this chapter is to be partially published in:

Guerra, A., Quintero, J., and Isaza, S. (2018). Efficient SIMD Parallelism for Suffix Array Con-
struction. Manuscript to be submitted to ”Parallel Computing”, Elsevier.



7. Conclusions and Further Research

Advances in sequencing technologies in the last years have caused a dramatical reduction of the
costs related to genome sequencing, leading to a continued exponential growth of the genomic
data available. Even though specialized compression strategies have arisen as useful alternatives
to tackle this issue, they are not mature yet and exhibit great computational challenges as well. As
an answer, in this dissertation we presented a contribution to the field of compression algorithms
for Next Generation Sequencing data in FASTQ format.

First we introduced the most important concepts related to bioinformatics and high performance
computing architectures as a necessary background for understanding the rest of this document.
Then, we presented a comprehensive review and performance evaluation of the state of the art in
DNA compression algorithms, highlighting the most important weaknesses found and discussing
the opportunities for improvement. In the following chapters we presented the design of a work-
flow for FASTQ referential compression, the implementation and evaluation of the workflow’s core
(a multi-technique compression scheme which implements a referential compressor for reads), and
the efforts made to accelerate the execution of the proposed algorithms through parallel program-
ming.

In this chapter we summarize the work done and present the respective conclusions. Last, we pro-
pose possible directions for future work.

State of the art

A literature review of FASTQ compression algorithms led us to notice a significant body of works
on non-referential strategies. In Chapter 3 we made a comprehensive review and an experimen-
tal quantitative comparison the related works, allowing us to identify the big challenges and op-
portunities in the field. The detailed evaluation included relevant metrics as compression ratio,
compression and decompression throughput, parallel scalability, and peak and average memory
consumption. We found many interesting facts:

• The higher compression ratios achieved through specialized algorithms, taking advantage of
the specific properties of genomic data; at expense of a slower and more memory consuming
performance.

• Despite exhibiting lower compression capabilities, general purpose compressors were com-
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monly used for genomic data; do to their ease of use and compatibility with different file
formats.

• The top specialized compressors combined simultaneously different strategies, and treated
separately each stream of the FASTQ file.

• The use of HPC in specialized compressors was incipient, absent in some cases or showing
a poor scalability in others.

• By the moment of such evaluation (2014), we did not find reports of referential compression
for FASTQ files in the literature.

At the end of Chapter 3, we also presented a review of the state of the art of referential compressors
for other different types of genomic data. We found that the performance of the top non-referential
compressors was far below from what a referential compressor could theoretically achieve. How-
ever, the application of the referential approach had been limited by the need of an appropriate
reference and by the high computational cost of the involved tasks.

The comprehensive study presented in this chapter allowed us to characterize the problem, iden-
tifying the need of algorithms for efficient referential compression of FASTQ files. In order to
increase the usability of such algorithm two issues had to be addressed: proposing solutions for
the selection of an appropriate reference and the harnessing of HPC resources to accelerate the
execution.

Referential compression workflow

We realized that referential compressors had been successfully used for the compression of genomes.
However, some challenges limited the application of that approach for the compression of FASTQ
reads. To overcome the problem of the reference selection, in Chapter 4 we presented the design
of a compression workflow for the automated selection of an appropriate reference. Each block
was specified in detail, as well as the data-flow among the different tasks involved.

The workflow was intended to find the minimum mathematical distance between inputs and each
reference, through two basic stages previous to the compression: input features detection and then
classifying such input into a set of stored references. This would benefit not only the usability of
the compressor, but also the compression itself. In a third stage, the compression is performed in
the multi-technique compression scheme, where the different streams inside the FASTQ file are
processed through very specialized strategies. The core of such scheme was the referential reads
compression, based on a read-to-reference alignment combined with reads reordering and an elab-
orate binary encoding mechanism.
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Even though in this thesis we did not present the full implementation of the proposed workflow,
we did contribute theoretical evidence of the feasibility of implementing them successfully. For
feature detection the features text analysis based on the FM-Index was not only accurate and effi-
cient, but also associated with other tasks executed in the others workflow’s blocks. On the other
side, relevant ideas of machine learning showed to fit the requirements of sequences classification.
Additionally, we introduced the guidelines to be considered when creating the references database.
Finally, the basic issues related to the compression of identifiers and quality scores were discussed,
tasks which were carried out by third-party software.

As a result of this design, the most complex and relevant tasks of the workflow became our main
objective. We concentrated the efforts on the development of the blocks inside the multi-technique
compression scheme; specially on the referential compressor for FASTQ read sequences, as the
main objective of this thesis.

FASTQ referential compression

In Chapter 5 we presented the implementation of UdeACompress: a FASTQ referential compressor
and the core of the multi-technique compression scheme presented in the previous chapter. UdeA-
Compress consists of a set of blocks responsible for: specialized alignment between the reads and
the reference, sorting the reads according to their mapping position, the encoding of the alignment
data through a map and a set of instructions, and the low level compression of such encoded in-
formation. Among the strategies applied to maximize the encoding efficiency, new matchings and
mutations were introduced, as well as an assignment of the instruction codes based on the proba-
bility of occurrence of each transformation in real datasets.

During the development of this thesis, the first referential compressors for FASTQ began to appear,
demonstrating the importance of the research topic. We studied an run experiments to compare
those works with our own, along with other top specialized non-referential compressors. Several
performance metrics were taken from tests on real datasets, where our proposal achieved results
at the same level of the state of the art compressors, in terms of compression capabilities and de-
compression speed (the most important for usability reasons). Although compression times and
memory consumption of UdeACompress were high, they were competitive in comparison to the
other applications and acceptable considering the architectures commonly available in bioinfor-
matics facilities. Finally, a simple model resulting from profiling UdeACompress allowed us to
estimate a noticeable reduction in compression runtime in a parallel execution scenario.

Some weaknesses were identified in the compressor: the aligner was still unable to map a signifi-
cant percentage of reads, decreasing the efficiency of the compression. This is also related to the
compression capabilities of the unmapped reads, which were poor compared to the performance of
the referential compressor. Also, the compression of quality scores exhibited an important impact
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in the compression ratio of the whole FASTQ file content, requiring finer approaches if higher
compression ratios are to be achieved.

As UdeACompress was envisioned thinking in an efficient compression of long reads, simulated
data was generated to measure the compression capabilities of long read sequences. In tests with
different coverages, read lengths and number of mutations per read; UdeACompress compression
was always superior to the any algorithm in the state of the art.

Improving execution time

After evaluating the performance results, we set to accelerate the main bottleneck found in the pro-
filing of UdeACompress, the aligner, taking advantage of today’s high end processors. In Chapter
6 we presented a detailed analysis of the tasks inside the seed block of the aligner, which led us
to identify the construction of a Suffix Array as the main bottleneck. Furthermore, accelerating
the Suffix Array Construction was considered important not only because of the alignment; but
also because of its use in other parts of the proposed workflow: the low level BTW compression,
feature detections (on genomes and reads) and reads sorting.

The SAC algorithm was designed based on an indirect sorting approach, and implemented using
the Intel AVX-512 instruction set extensions. We achieved a speedup of up to 7× in the SAC,
which could lead to an important reduction of the overall execution time in UdeACompress. Since
the SIMD implementation is tied to the instructions provided by the ISA, finding the appropriate
instructions to implement each task was one of the greatest challenges, in order to achieve accept-
able levels of speedup. Although considerably high speedup were achieved, some of the limitations
we found were: the great amount of scattered memory access in our approach and the interface
limitations in some of the low level instructions required.

Profiling different versions of the SIMD SAC algorithm, we measured the impact of different
manual optimizations. Such optimizations tended to be tricky, demanding important programming
abilities and developing time in order to handle low-level details. The most relevant were: avoiding
control flow, avoiding memory collisions, maximum reduction of scalar instructions, data packing,
and preferring contiguous memory access.

Intel’s recently released conflict detection instruction was a very convenient choice to calculate the
repeated elements in a register, which we used to avoid memory collisions. Nonetheless, its pro-
gramming interface restrictions for value sizes imposed limitations on the achievable performance.
Anyway, the conflict detection instruction was found very useful and we consider it will contribute
to accelerate a large range of problems of high computational complexity.

The implementation of the SIMD SAC algorithm also required the emulation of essential opera-
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tions that were only simulated in the previous work we were based on, and that were not present
in today’s Intel AVX-512. After our experience with the manual low level implementation of the
algorithm, we also proposed further instruction set extensions.

Finally, preliminary tests of the combination of coarse (thread level) and fine grain (SIMD) paral-
lelism were performed. Such experiments did not sow satisfactory results, exhibiting poor scala-
bility. The impact of the main drawbacks in our approach, which was barely observed in the SIMD
implementation, was exacerbated by the non-uniform memory access during the multi-threading
processing, leaving some work for future research.

We believe that the detailed review and comparative analysis of the state of the art, the design of
the workflow for referential compression of FASTQ files, the compressor that has been discussed
and implemented, and the achievements and learning from the SIMD developments; represent an
important contribution to the clarification and solution of the most important challenges of effi-
ciently storing NGS raw data, which will allow the development of better solutions in the future.

Future Work

In spite of the development efforts, encouraging results and insights provided by this thesis, there
is still ample work to be done in order to achieve maturity in compression of FASTQ files. This
very last section discusses the possible research directions to complement this thesis.

To improve the compression capabilities of UdeACompress three main issues should be addressed.
It is necessary to refine the design of the aligner in order to increase the amount of mapped reads.
An additional set of matchings could be statistically evaluated and incorporated in the search pro-
cess, as well as heuristics to direct the search closer to the optimal alignment. Another interesting
development would be to apply statistical techniques for the construction of pseudo-genomes.
They could be built based on common sub-strings extracted from each species of interest for the
reference database. Doing so could help improving significantly the similarity between reads and
reference.

The second issue is to boost the capabilities of the low level compressor (used for encoded data and
unmapped reads), implementing specialized strategies for each case. In both cases, delta encoding
and Markovian predictive models could help enhance the current algorithms. Also, approaches
based in k-mers features (e.g. overlapping reads, graphs) could also have a positive impact for
the compression of unmapped reads. Finally, implementing the two first stages of the workflow
(feature detection and classification) may lead to the selection of references of higher similarity,
even beyond phylogenetic relationships. However, solving such issues will result in more intensive
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computation.

The compression speed of UdeACompress was acceptable in comparison to the state-of-the-art,
but with an important space for optimization. Two important enhancements remain to be applied:
the SIMD SAC algorithm (presented in Chapter 6) should be integrated in the aligner. Also, the
encoder block should be parallelized too. As shown in 5, this work could reduce the compression
runtime of our UdeACompress around 3×-4×. Heterogeneous hardware could be considered in
both cases.

Compression of quality scores had an important impact in the compression ratio. Current highly
specialized approaches should be considered for such task if higher compression ratios are to be
achieved.

Finally, regarding the SIMD SAC algorithm, a higher degree of array element packing should be
tested to see if it improves performance. Also, it should be investigated if major changes in the
design of the sorting algorithm could make it more suitable to be efficiently combined with thread
level parallelism. An important experiment is to compare if the drawbacks of a comparison based
SIMD sorting (e.g. Quicksort or Mergesort) are hidden by the gain in performance that multi-
threaded programming can bring.
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