7,211 research outputs found

    Recognition of Mixture Control Chart Pattern Using Multiclass Support Vector Machine and Genetic Algorithm Based on Statistical and Shape Features

    Get PDF
    Control charts have been widely utilized for monitoring process variation in numerous applications. Abnormal patterns exhibited by control charts imply certain potentially assignable causes that may deteriorate the process performance. Most of the previous studies are concerned with the recognition of single abnormal control chart patterns (CCPs). This paper introduces an intelligent hybrid model for recognizing the mixture CCPs that includes three main aspects: feature extraction, classifier, and parameters optimization. In the feature extraction, statistical and shape features of observation data are used in the data input to get the effective data for the classifier. A multiclass support vector machine (MSVM) applies for recognizing the mixture CCPs. Finally, genetic algorithm (GA) is utilized to optimize the MSVM classifier by searching the best values of the parameters of MSVM and kernel function. The performance of the hybrid approach is evaluated by simulation experiments, and simulation results demonstrate that the proposed approach is able to effectively recognize mixture CCPs

    Recognition of Process Disturbances for an SPC/EPC Stochastic System Using Support Vector Machine and Artificial Neural Network Approaches

    Get PDF
    Because of the excellent performance on monitoring and controlling an autocorrelated process, the integration of statistical process control (SPC) and engineering process control (EPC) has drawn considerable attention in recent years. Both theoretical and empirical findings have suggested that the integration of SPC and EPC can be an effective way to improve the quality of a process, especially when the underlying process is autocorrelated. However, because EPC compensates for the effects of underlying disturbances, the disturbance patterns are embedded and hard to be recognized. Effective recognition of disturbance patterns is a very important issue for process improvement since disturbance patterns would be associated with certain assignable causes which affect the process. In practical situations, after compensating by EPC, the underlying disturbance patterns could be of any mixture types which are totally different from the original patterns. This study proposes the integration of support vector machine (SVM) and artificial neural network (ANN) approaches to recognize the disturbance patterns of the underlying disturbances. Experimental results revealed that the proposed schemes are able to effectively recognize various disturbance patterns of an SPC/EPC system

    Automatic artifacts removal from epileptic EEG using a hybrid algorithm

    Get PDF
    Electroencephalogram (EEG) examination plays a very important role in the diagnosis of disorders related to epilepsy in clinic. However, epileptic EEG is often contaminated with lots of artifacts such as electrocardiogram (ECG), electromyogram (EMG) and electrooculogram (EOG). These artifacts confuse EEG interpretation, while rejecting EEG segments containing artifacts probably results in a substantial data loss and it is very time-consuming. The purpose of this study is to develop a novel algorithm for removing artifacts from epileptic EEG automatically. The collected multi-channel EEG data are decomposed into statistically independent components with Independent Component Analysis (ICA). Then temporal and spectral features of each independent component, including Hurst exponent, skewness, kurtosis, largest Lyapunov exponent and frequency-band energy extracted with wavelet packet decomposition, are calculated to quantify the characteristics of different artifact components. These features are imported into trained support vector machine to determine whether the independent components represent EEG activity or artifactual signals. Finally artifact-free EEGs are obtained by reconstructing the signal with artifact-free components. The method is evaluated with EEG recordings acquired from 15 epilepsy patients. Compared with previous work, the proposed method can remove artifacts such as baseline drift, ECG, EMG, EOG, and power frequency interference automatically and efficiently, while retaining important features for epilepsy diagnosis such as interictal spikes and ictal segments

    A Review on Facial Expression Recognition Techniques

    Get PDF
    Facial expression is in the topic of active research over the past few decades. Recognition and extracting various emotions and validating those emotions from the facial expression become very important in human computer interaction. Interpreting such human expression remains and much of the research is required about the way they relate to human affect. Apart from H-I interfaces other applications include awareness system, medical diagnosis, surveillance, law enforcement, automated tutoring system and many more. In the recent year different technique have been put forward for developing automated facial expression recognition system. This paper present quick survey on some of the facial expression recognition techniques. A comparative study is carried out using various feature extraction techniques. We define taxonomy of the field and cover all the steps from face detection to facial expression classification

    Quality 4.0 in action: Smart hybrid fault diagnosis system in plaster production

    Get PDF
    UIDB/00066/2020Industry 4.0 (I4.0) represents the Fourth Industrial Revolution in manufacturing, expressing the digital transformation of industrial companies employing emerging technologies. Factories of the future will enjoy hybrid solutions, while quality is the heart of all manufacturing systems regardless of the type of production and products. Quality 4.0 is a branch of I4.0 with the aim of boosting quality by employing smart solutions and intelligent algorithms. There are many conceptual frameworks and models, while the main challenge is to have the experience of Quality 4.0 in action at the workshop level. In this paper, a hybrid model based on a neural network (NN) and expert system (ES) is proposed for dealing with control chart patterns (CCPs). The idea is to have, instead of a passive descriptive model, a smart predictive model to recommend corrective actions. A construction plaster-producing company was used to present and evaluate the advantages of this novel approach, while the result shows the competency and eligibility of Quality 4.0 in action.publishersversionpublishe

    Recognizing complex faces and gaits via novel probabilistic models

    Get PDF
    In the field of computer vision, developing automated systems to recognize people under unconstrained scenarios is a partially solved problem. In unconstrained sce- narios a number of common variations and complexities such as occlusion, illumi- nation, cluttered background and so on impose vast uncertainty to the recognition process. Among the various biometrics that have been emerging recently, this dissertation focus on two of them namely face and gait recognition. Firstly we address the problem of recognizing faces with major occlusions amidst other variations such as pose, scale, expression and illumination using a novel PRObabilistic Component based Interpretation Model (PROCIM) inspired by key psychophysical principles that are closely related to reasoning under uncertainty. The model basically employs Bayesian Networks to establish, learn, interpret and exploit intrinsic similarity mappings from the face domain. Then, by incorporating e cient inference strategies, robust decisions are made for successfully recognizing faces under uncertainty. PROCIM reports improved recognition rates over recent approaches. Secondly we address the newly upcoming gait recognition problem and show that PROCIM can be easily adapted to the gait domain as well. We scienti cally de ne and formulate sub-gaits and propose a novel modular training scheme to e ciently learn subtle sub-gait characteristics from the gait domain. Our results show that the proposed model is robust to several uncertainties and yields sig- ni cant recognition performance. Apart from PROCIM, nally we show how a simple component based gait reasoning can be coherently modeled using the re- cently prominent Markov Logic Networks (MLNs) by intuitively fusing imaging, logic and graphs. We have discovered that face and gait domains exhibit interesting similarity map- pings between object entities and their components. We have proposed intuitive probabilistic methods to model these mappings to perform recognition under vari- ous uncertainty elements. Extensive experimental validations justi es the robust- ness of the proposed methods over the state-of-the-art techniques.

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Evaluation of face recognition algorithms under noise

    Get PDF
    One of the major applications of computer vision and image processing is face recognition, where a computerized algorithm automatically identifies a person’s face from a large image dataset or even from a live video. This thesis addresses facial recognition, a topic that has been widely studied due to its importance in many applications in both civilian and military domains. The application of face recognition systems has expanded from security purposes to social networking sites, managing fraud, and improving user experience. Numerous algorithms have been designed to perform face recognition with good accuracy. This problem is challenging due to the dynamic nature of the human face and the different poses that it can take. Regardless of the algorithm, facial recognition accuracy can be heavily affected by the presence of noise. This thesis presents a comparison of traditional and deep learning face recognition algorithms under the presence of noise. For this purpose, Gaussian and salt-andpepper noises are applied to the face images drawn from the ORL Dataset. The image recognition is performed using each of the following eight algorithms: principal component analysis (PCA), two-dimensional PCA (2D-PCA), linear discriminant analysis (LDA), independent component analysis (ICA), discrete cosine transform (DCT), support vector machine (SVM), convolution neural network (CNN) and Alex Net. The ORL dataset was used in the experiments to calculate the evaluation accuracy for each of the investigated algorithms. Each algorithm is evaluated with two experiments; in the first experiment only one image per person is used for training, whereas in the second experiment, five images per person are used for training. The investigated traditional algorithms are implemented with MATLAB and the deep learning algorithms approaches are implemented with Python. The results show that the best performance was obtained using the DCT algorithm with 92% dominant eigenvalues and 95.25 % accuracy, whereas for deep learning, the best performance was using a CNN with accuracy of 97.95%, which makes it the best choice under noisy conditions

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience
    corecore