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Abstract. Electroencephalogram (EEG) examination plays a very important role in the 
diagnosis of disorders related to epilepsy in clinic. However, epileptic EEG is often 
contaminated with lots of artifacts such as electrocardiogram (ECG), electromyogram (EMG) 
and electrooculogram (EOG). These artifacts confuse EEG interpretation, while rejecting EEG 
segments containing artifacts probably results in a substantial data loss and it is very time-
consuming. The purpose of this study is to develop a novel algorithm for removing artifacts 
from epileptic EEG automatically. The collected multi-channel EEG data are decomposed into 
statistically independent components with Independent Component Analysis (ICA). Then 
temporal and spectral features of each independent component, including Hurst exponent, 
skewness, kurtosis, largest Lyapunov exponent and frequency-band energy extracted with 
wavelet packet decomposition, are calculated to quantify the characteristics of different artifact 
components. These features are imported into trained support vector machine to determine 
whether the independent components represent EEG activity or artifactual signals. Finally 
artifact-free EEGs are obtained by reconstructing the signal with artifact-free components. The 
method is evaluated with EEG recordings acquired from 15 epilepsy patients. Compared with 
previous work, the proposed method can remove artifacts such as baseline drift, ECG, EMG, 
EOG, and power frequency interference automatically and efficiently, while retaining important 
features for epilepsy diagnosis such as interictal spikes and ictal segments. 
Keywords: epilepsy, electroencephalogram (EEG), automatic artifacts removal, independent 
component analysis (ICA), support vector machine (SVM), wavelet packet decomposition. 

1. Introduction 

Epilepsy is one of the most common neurological disorders and affects almost 60 million 
people worldwide. In clinic, the presence of epileptiform events in the epileptic EEGs, such as 
interictal spikes and sharps, spike and slow rhythm, confirms the diagnosis of epilepsy or 
localizes the epileptic areas [1]. Standard EEG recordings often contain some large and 
distracting artifacts, such as muscle noise (EMG), eye movement and blink (EOG), cardiac 
signals (ECG) and line noise, etc. The existence of these artifacts leads to serious problem for 
the interpretation and analysis of EEGs [2]. Rejecting EEG segments with artifacts larger than a 
preset threshold is a commonly used method for dealing with artifacts. However the data loss to 
artifact rejection may be unacceptable in case that epileptic events and artifacts occur at 
approximately the same time [3]. In the past decades artifact removal has been a fundamental 
issue in EEG processing and many researchers are involved in it. 

Majority of previous attempts are mainly focused on the removal of ocular artifacts. Typical 
methods are based on independent component analysis (ICA) [4-9]. It can separate the observed 
EEG into statistically independent sources including ECG, EOG, EMG and EEG, etc. One major 
problem of ICA is the necessity to manually identify each component as artifactual or not. As a 
result, artifact removal methods based on single ICA are semiautomatic. Several attempts have 
been made to develop new methods which can eliminate artifacts automatically [4-7]. Boudet 
proposed methods that identify ICA sources by comparing variance between rest instant and 
artifact instant [5]. The main drawback of the methods is that they require a learning step to get 
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the distribution of artifactual activity.  
In this paper we present a new method that can automatically remove a wide variety of 

artifacts in epileptic EEG based on ICA and support vector machine. The content of this study is 
laid out in 4 sections with this section as the introduction. In section 2, the detailed algorithm for 
automatic artifact removal is explored. The acquired EEG signals are first decomposed into 
statistically independent components using ICA. Each independent component is then 
partitioned into 5 s epochs. Eight quantitative features are extracted to describe the 
characteristics of different artifact components. The extracted features are input into support 
vector machine to identify the artifact components and the EEG data is reconstructed by 
eliminating the artifact components. The validity of the method is evaluated with clinical 
epileptic EEG in section 3. Finally, discussion and conclusion are given in section 4. 

2. Materials and methods 

2.1. Data set 

Scalp EEG recordings were collected from Zhejiang Provincial People's Hospital, China. The 
patients (12 females and 19 males, age: 32.8 7.7) acquired EEG inspection for diagnosis of 
epilepsy. Data acquisition system is Phoenix Unique Ambulatory EEG of EMS Handelsges.mbh 
Company, Austria. EEG signals are amplified with bandpass filter of 0.15–60 Hz and the 
sampling rate is set to 256 Hz. Exploring cup electrodes were fixed to the scalp at Fp1, Fp2, F3, 
F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5 and T6 according to the International 10–20 
System, and the reference electrodes are located on the ipsilateral ear electrodes. Video 
recordings are acquired synchronously with EEG, by which artifacts such as EOG (e.g. eye 
blinks) and EMG (e.g. chewing) can be identified. All the subjects give informed consent. 

2.2. Methods 

The fundamental procedure of artifact removal in EEG using ICA-based algorithm consists 
of three steps: (1) decompose the raw EEG into statistically independent components; 
(2) identify the artifact components; (3) eliminate the artifact components and reconstruct the 
signal with the remaining components. The key problem in automatic removal of artifacts is to 
identify the artifact components automatically. Here statistical features of the components in 
time and frequency domain are extracted and input into support vector machine to achieve the 
goal. The flow chart of automatic artifacts removal algorithm is shown in Fig. 1. 

 
Fig. 1. Block diagram of automatic artifacts removal with ICA and support vector machine 
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2.2.1. ICA 

ICA [10] is a signal processing technique which aims at expressing a set of random variables 
as linear combinations of statistically component variables. It was originally proposed by 
Comon [11] to solve the BSS problem. The architecture of the problem is illustrated in Fig. 2, 
where  is the unknown source signal and  is the observed signal collected with  sensors.  is 
the approximation of the unknown sources acquired with the de-mixing matrix  and the 
observed signal . 

 
Fig. 2. Architecture of BSS problem 

In this paper we apply FastICA algorithm [12] to decompose the acquired EEG data into 
statistically independent components, using EEGLAB platform [13] running on MATLAB (The 
Mathworks, Natick, Massachusetts). It works on a non-overlapping window with length of 30 s, 
which contains sufficient samples to reliably separate the artifact from real EEG activities 
[8, 14]. The number of extracted independent components is equal to the number of recording 
electrodes [8]. Some independent components are probably a mixture of EEG and artifactual 
activities and extracting the features using the entire component may obscure the artifact 
segments. Thus we partition each 30 s component into six 5 s epochs. 

2.2.2. Feature extraction 

With ICA, artifacts and EEGs are separated into different independent components. 
Traditionally the identification of artifact components is achieved manually by observing the 
scalp maps and the fuzzy characteristics (in time and frequency domain) of the components. In 
order to identify the artifact segments automatically, we need to define quantitative features that 
can discriminate the artifact components from the EEG components. Here features in time and 
frequency domain, including Hurst exponent, skewness, Kurtosis, largest Lyapunov exponent 
and frequency-band energy, are selected. 

Hurst exponent. Hurst exponent was first proposed by Hurst in 1965 [15]. It is used to 
evaluate the long-range dependence of a time series. Hurst exponent is usually calculated by the 
recurrent method [9] and ranges from 0 to 1.  corresponds to a standard Brownian 
movement, and  indicates the anti-persistent behavior, while  describes 
a temporally persistent or trend reinforcing time series. Obviously linear electrode artifact (e.g. 
baseline drift) has higher Hurst exponent than that of EEGs because of longer persistence. 
Furthermore extensive computer experiments show that artifacts such as eye blinking and heart 
beats have lower Hurst exponent than that of EEGs [9]. 

Skewness. Skewness corresponds to the third-order statistic of the data. An EEG recording 
that contains eye blink or baseline drift typically has a positive or negative skewness since the 
eye blinking artifact or the baseline drift artifact increases locally the asymmetry of the signal 
[16]. Here we take the absolute value of the skewness. As a result, the eye blink and baseline 
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drift have larger skewness than that of normal EEGs, which are approximately symmetrically 
distributed. 

Kurtosis. Kurtosis is the 4th cumulant of a time series, which quantifies how outlier-prone a 
distribution is [4]. Highly positive kurtosis indicates that the distribution of the signal is peak 
and sparse, and the identified activity is probably to be an artifact such as eye movements or 
ECG. The kurtosis of the normal distribution is 3, while the kurtosis of a periodical series is 
negative and the kurtosis of Gaussian noise is close to 0. 

Largest Lyapunov exponent. Lyapunov exponent is a quantitative measure of the sensitive 
dependence on the initial conditions, which defines the average exponential rate of the 
divergence or convergence of the nearby orbits in the phase space. Specifically LLE is very 
useful in recognizing some basic rhythms that exist periodically in normal EEGs, as well as 
rhythmic seizure onsets in epileptic EEGs. When calculating LLE of EEG signals, an embedding 
dimension between 5 to 20 and a delay of 1 are proper [17]. In this paper we set the embedding 
dimension to 10 and delay to 1. 

Frequency-band energy. Besides the above mentioned features in time domain, features in 
frequency domain are also useful, i.e. some of the artifacts have unique frequencies. Here we 
employ sub-band energy based on wavelet packet decomposition as features in frequency 
domain. 

First each epoch is filtered between 0.3 and 60 Hz with a 10th order digital Butterworth. 
Then Wavelet Packet Decomposition (WPD) is applied to split the epoch into two orthonormal 
subspaces  and , where  and  include low and high frequency information of the original 
epoch, respectively. With multi-level decomposition, WPD leads to a complete wavelet packet 
tree, shown in Fig. 3. Thereinto,  is the th (  is the frequency factor, ) 
subspace of wavelet packet at thj  scale, and  indicates the 
corresponding orthonormal basis (k is the shift factor), which satisfies with: 

(1) 

where ,  and  are a couple of quadruple mirror filters 
(QMF) which are irrelevant to scales and satisfy with: 

(2) 

The coefficient of WPD at th level and th sample can be calculated with: 

(3) 

When we decompose the signal to th level, the frequency ranges of all the subspaces are 
 where  is 

the sampling frequency. For a selected sub-band, its energy can be obtained by: 

(4) 
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Fig. 3. Wavelet packet decomposition tree 

Previous researchers show that significant power at low frequencies might suggest the 
presence of ocular or movement artifacts, while the power in the high-frequency band would 
indicate EMG contamination [8]. Furthermore some basic rhythms in EEG have specific 
frequency ranges and can be identified with frequency-band energy. In this paper we select 
Daubechies Wavelet (db4) [18-19] to decompose each 5 s epoch to 4-level wavelet packet and 
calculate the sub-band energy of 0~3.75 Hz, 3.75~15 Hz, 15~30 Hz, 30~60 Hz, namely, 

 as the features in the frequency domain. 

2.2.3. Classification using support vector machine 

Support vector machine is an efficient tool for solving supervised classification problems due 
to its generalization performance and established empirical performance. The basic idea of 
classification with SVM is to project the sample space into a high-dimensional eigenspace and 
find an optimal separating hyperplane (OSH) for a given feature set, which maximizes the 
margin between the training data and the decision boundary. The subsets of the patterns that are 
closest to the decision boundary are called support vectors. The construction of OSH can be 
posted as the following quadratic optimization problem: 

(5) 

where  represents the ths desired output,  is the ths input sample of the 
training data set    containing eight features:            

       and S  is the number of training vectors. ,  and  stand for 
Hurst exponent, skewness and kurtosis, respectively. In practice the OSH probably does not 
exist. Hence the slack parameters       are introduced. The optimization 
problem now becomes:

(6) 

where  stands for the misclassification penalty term and can be considered as the regularization 
parameter. A larger  indicates higher penalty to the training errors. By introducing Lagrange 
multipliers , the OSH is computed as a decision surface: 

(7) 
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where ,  are support vectors and  is the kernel function. A kernel for a 
nonlinear support vector machine projects the samples to a feature space of higher dimension via 
a nonlinear mapping function. Here we employ the radial-based function (RBF) defined as: 

(8) 

where  is the adjustable parameter that governs the variance of the kernel function. 

3. Results 

16 patients are selected to train the algorithm, while the remaining 15 patients are used as 
validation set. Each patient has 10 min recordings with 16 electrodes. 

3.1. Training the algorithm 

The acquired EEG signals are first decomposed into independent components using ICA. 
Each independent component is partitioned into six 5 s epochs. Features including Hurst 
exponent, skewness, kurtosis, largest Lyapunov exponent and frequency-band energy, are then 
calculated and input into support vector machine for classification. Altogether we have 
16×16×10×2 = 5120 independent components (or 16×16×10×2×6 = 30720 5 s epochs) to train 
the support vector machine. 15360 epochs are selected as training set while others are test set. In 
the training set there are 6324 epochs containing different types of artifacts and 9036 free of 
artifact. The artifact epochs include 72 power frequency interference, 1266 EOG, 4481 EMG, 
116 ECG and 389 baseline drift. In the test set 5100 epochs containing artifacts and 10260 free 
of artifacts are involved. The artifact epochs contain 31 power frequency interference, 932 EOG, 
3938 EMG, 60 ECG and 139 baseline drift.  

The average error of the support vector machine is estimated as follows. Firstly 1280 
independent components (7680 epochs) of the training set are randomly selected as training 
samples and 1280 independent components (7680 epochs) of the test set are randomly decided 
as test samples. Two experienced clinicians are asked to review all the independent components 
to decide whether it is artifact or not. Feature vectors of the training samples are then calculated 
to train the support vector machine and the support vectors of the support vector machine are 
obtained. After that feature vectors of the test samples are calculated and input into the trained 
support vector machine for classification. The sum of epochs representing artifacts is then used 
to determine whether to reject or preserve each independent component. A threshold  is 
chosen to get minimum classification error. If the threshold is too high, some artifacts are 
probably preserved. If the threshold goes too low, lots of normal EEGs will be lost [8]. Besides 
the threshold, two important parameters in support vector machine,  and , have a decisive 
effect on the classification accuracy [16]. In order to find the optimal , C  and , we calculate 
the average of classification error with a predefined range of these parameters. The above 
process is performed ten times to yield average of the classification error. The optimal ,  and 

, which correspond to the lowest classification error, are found to be 4, 500 and 7, respectively. 
With the optimized parameters we obtain an average training error of 4.91 % and the average 
number of support vectors is 13.2 % of the training data set size. 

3.2. Testing the algorithm 

We apply the algorithm with optimal parameters to the validation set (15 patients). After ICA 
we obtain 15×16×10×2 = 4800 independent components with duration of 30 s. First a typical 
performance of the proposed method on normal EEG is shown in Figure 4. Since 30 s window is 
too compressed to depict low-frequency information of the EEG data as well as the independent 
components, we only draw 1/3 in length, i.e. 10 s. In Fig. 4(a) 10 s EEG is contaminated by 
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artifacts in numerous channels. Four eye blinks occur at 0.5 s, 2.8 s, 6.2 s and 8 s on Fp1 and 
Fp2, respectively (see the square boxes). Besides obvious EMG artifacts can be found at 4.8 s on 
F8, 5.6 s on F7 and T3, 4.8 s and 5.6 s on T4, respectively (see the ellipses). P3, P4, O1 and O2 
are also slightly contaminated by EMG artifacts. Fig. 4(b) shows the decomposed independent 
components. We can find eye blink features on IC1, which is also demonstrated in the scalp map. 
Obvious EMG artifacts exist on IC2, IC3, IC5, IC7, IC11, IC12 and IC13. For example, scalp 
maps show that IC2 includes movement artifact on the left hemisphere, while IC13 indicates 
chewing artifact on the right. Besides IC8, IC15 and IC16 are also identified as artifact 
components by our algorithm. The signals are reconstructed with the remaining independent 
components, i.e. IC4, IC6, IC9, IC10 and IC14, shown in Fig. 4(c). We can still find very few 
chewing artifacts at 4.8 s and 5.6 s on F8, T3, T4 and T6. Previous studies also show that it is 
rather difficult to remove chewing artifacts completely since they spread in numerous channels 
with large amplitude. Note the scale difference between Fig. 4(a), (b) and (c). 

Next we apply the proposed method to ictal EEG, shown in Fig. 5. Ictal events on O1 and O2 
(see the big square box) shown in Fig. 5(a) and simultaneous video recordings confirm an 
occipital seizure. Epileptic spike waves are also presented at 28.5 s on Fp1 and F8 (see the small 
square boxes). EMG artifacts exist on T4 throughout the 10 s window (see the ellipse). The 
decomposed independent components are shown in Fig. 5(b). IC13 is composed of muscle 
artifacts. With the scalp map it can be concluded as movement artifacts on the right hemisphere. 
In addition, with the scalp map as well as the waveform of IC1, we believe IC1 is a rhythmic 
activity on occipital area, which is also to be confirmed by calculating the LLE  of IC1  
(–0.2235). Reconstructed EEGs are shown in Fig. 5(c). EMG artifacts on T4 are removed 
completely, while ictal events on O1 and O2 are fully retained. Meanwhile epileptic spike waves 
on Fp1 and F8 are preserved and a spike wave on T5 which is not marked in Fig. 5(a) is also 
detected. 

The performance of the algorithm on the validation set is shown in Table 1 and the results 
are justified by two clinicians at Zhejiang Provincial People's Hospital. The global average 
classification error is 10.54 %. As stated before, in the training process, the training and testing 
samples are randomly selected from 16 patients. Though the two samples are non-overlapping, 
part of them are probably from the same patients, which indicates that they have similar 
characteristics. However, in the validation process, the validation set is from other 15 patients 
and independent from the training and testing samples. This is why the average testing error 
(10.54 %) is much higher than the average training error (4.91 %). Even so, it shows that the 
proposed method has promising generalization ability. 

Besides the global classification error, we also measure the classification error of epileptic 
EEG components, which indicates the number of epileptic components that are removed. 
Thereinto, no epileptic components are removed in 3 out of 15 patients (patient #1, #9, #10). In 
patient #3, 10 out of 87 epileptic components are classified as artifacts. We explored the EEG 
recordings and found that these epileptic components are severely contaminated by heavy 
muscle artifacts during epileptic seizures. Further we scanned all the misclassified epileptic 
components for the remaining 11 patients and obtained similar results. Relatively, nearly all the 
epileptic components during interictal period are correctly classified. In general over 95 % 
epileptic components are retained, which demonstrates that the proposed method is an efficient 
tool in removing artifacts from epileptic EEGs. 
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Fig. 4. Performance of the algorithm on interictal EEG 
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Fig. 5. Performance of the algorithm on ictal EEG 
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4. Discussion and conclusion 

4.1. Discussion 

A very important issue is the partition of independent components. In the proposed method 
feature vectors are calculated based on the partitioned epochs of independent components (30 s). 
This is very important because some independent components are a mixture of EEG and artifacts. 
Extracting the features using the entire independent component may obscure the artifact 
segments. On the other hand, the length of partitioned epoch is a key issue. If the partitioned 
epoch is too short, the computational load will increase substantially. Meanwhile this will also 
lead to the high probability of partitioning low-frequency artifacts into different epochs, which 
obscures the artifact features and eventually affects the classification accuracy [8]. After 
exploring the common artifacts in EEG, we decide that 5 s epoch is enough to describe the 
characteristics of the artifacts. 

4.2. Conclusion 

In this paper we have presented a robust method for removing artifacts from epileptic EEG 
based on ICA and SVM. ICA is used to decompose the acquired EEG data into independent 
components. Each independent component is then partitioned into 5 s epochs. With the 
predefined eight features in time and frequency domain, including Hurst exponent, skewness, 
kurtosis, largest Lyapunov exponent and frequency-band energy, the artifact epochs can be 
automatically identified with the trained support vector machine. The sum of epochs 
representing artifacts is then used to determine whether to reject or preserve each independent 
component. Artifact-free EEGs are reconstructed with the remaining independent components. 
Results show that the proposed algorithm can identify and remove a variety of artifacts in 
interictal and ictal EEGs, such as baseline drift, ECG, EMG, EOG and power frequency 
interference. Compared with traditional automatic artifact removal methods [7, 20], the proposed 
algorithm in this paper does not require reference channels (e.g. ECG, EOG), which would be 
more appropriate for clinical EEG data. 

Table 1. Performance of the algorithm on the validation set 

Number Independent 
components 

Artifact 
components 

EEG 
components 

Epileptic 
EEG 

components 

Global 
classification 

error 

Classification 
error of epileptic 
EEG components 

1 320 145 175 28 9.38 % 0 % 
2 320 185 135 26 8.44 % 3.85 % 
3 320 99 221 87 6.25 % 11.49 % 
4 320 213 107 30 12.50 % 3.33 % 
5 320 126 194 85 11.56 % 5.88 % 
6 320 160 160 62 15.31 % 3.23 % 
7 320 143 177 39 12.81 % 7.69 % 
8 320 138 182 69 9.38 % 5.80 % 
9 320 111 209 23 10.31 % 0 % 

10 320 192 128 28 8.75 % 0 % 
11 320 73 247 77 10.63 % 7.79 % 
12 320 155 165 52 16.56 % 3.85 % 
13 320 142 178 15 13.44 % 6.67 % 
14 320 159 161 35 7.50 % 5.71 % 
15 320 163 157 27 5.31 % 3.70 % 

Total 4800 2204 2596 683 10.54 % 4.60 % 
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