994 research outputs found

    Home-based physical therapy with an interactive computer vision system

    Full text link
    In this paper, we present ExerciseCheck. ExerciseCheck is an interactive computer vision system that is sufficiently modular to work with different sources of human pose estimates, i.e., estimates from deep or traditional models that interpret RGB or RGB-D camera input. In a pilot study, we first compare the pose estimates produced by four deep models based on RGB input with those of the MS Kinect based on RGB-D data. The results indicate a performance gap that required us to choose the MS Kinect when we tested ExerciseCheck with Parkinson’s disease patients in their homes. ExerciseCheck is capable of customizing exercises, capturing exercise information, evaluating patient performance, providing therapeutic feedback to the patient and the therapist, checking the progress of the user over the course of the physical therapy, and supporting the patient throughout this period. We conclude that ExerciseCheck is a user-friendly computer vision application that can assist patients by providing motivation and guidance to ensure correct execution of the required exercises. Our results also suggest that while there has been considerable progress in the field of pose estimation using deep learning, current deep learning models are not fully ready to replace RGB-D sensors, especially when the exercises involved are complex, and the patient population being accounted for has to be carefully tracked for its “active range of motion.”Published versio

    MolecularRift, a Gesture Based Interaction Tool for Controlling Molecules in 3-D

    Get PDF
    Visualization of molecular models is a vital part in modern drug design. Improved visualization methods increases the conceptual understanding and enables faster and better decision making. The introduction of virtual reality goggles such as Oculus Rift has introduced new opportunities for the capabilities of such visualisations. A new interactive visualization tool (MolecularRift), which lets the user experience molecular models in a virtual reality environment, was developed in collaboration with AstraZeneca. In an attempt to create a more natural way to interact with the tool, users can steer and control molecules through hand gestures. The gestures are recorded using depth data from a Mircosoft Kinect v2 sensor and interpreted using per pixel algorithms, which only focus on the captured frames thus freeing the user from additional devices such as cursor, keyboard, touchpad or even piezoresistive gloves. MolecularRift was developed from a usability perspective using an iterative developing process and test group evaluations. The iterations allowed an agile process where features easily could be evaluated to monitor behavior and performance, resulting in a user-optimized tool. We conclude with reflections on virtual reality's capabilities in chemistry and possibilities for future projects.Virtual reality Ă€r framtiden. Nya tekniker utvecklas konstant och parallellt med att datakapaciteten förbĂ€ttras finner vi nya sĂ€tt att anvĂ€nda dem ihop. Vi har utvecklat ett nytt interaktivt visualiserings verktyg (Molecular Rift) som lĂ„ter anvĂ€ndaren uppleva molekylĂ€ra modeller i en virtuell verklighet. I dagens medicinindustri Ă€r man i stĂ€ndigt behov av nya metoder för att visualisera potentiella lĂ€kemedel i 3-D. Det finns flera verktyg idag som anvĂ€nds för att visualisera molekyler i 3-D stereo. VĂ„ra nyframtagna tekniker inom virtuell verklighet presenterar möjligheter för medicinutvecklare att ”gĂ„ in” i de molekylĂ€ra strukturerna och uppleva dem pĂ„ ett helt nytt sĂ€tt

    Data analytics for image visual complexity and kinect-based videos of rehabilitation exercises

    Full text link
    With the recent advances in computer vision and pattern recognition, methods from these fields are successfully applied to solve problems in various domains, including health care and social sciences. In this thesis, two such problems, from different domains, are discussed. First, an application of computer vision and broader pattern recognition in physical therapy is presented. Home-based physical therapy is an essential part of the recovery process in which the patient is prescribed specific exercises in order to improve symptoms and daily functioning of the body. However, poor adherence to the prescribed exercises is a common problem. In our work, we explore methods for improving home-based physical therapy experience. We begin by proposing DyAd, a dynamically difficulty adjustment system which captures the trajectory of the hand movement, evaluates the user's performance quantitatively and adjusts the difficulty level for the next trial of the exercise based on the performance measurements. Next, we introduce ExerciseCheck, a remote monitoring and evaluation platform for home-based physical therapy. ExerciseCheck is capable of capturing exercise information, evaluating the performance, providing therapeutic feedback to the patient and the therapist, checking the progress of the user over the course of the physical therapy, and supporting the patient throughout this period. In our experiments, Parkinson patients have tested our system at a clinic and in their homes during their physical therapy period. Our results suggests that ExerciseCheck is a user-friendly application and can assist patients by providing motivation, and guidance to ensure correct execution of the required exercises. As the second application, and within computer vision paradigm, we focus on visual complexity, an image attribute that humans can subjectively evaluate based on the level of details in the image. Visual complexity has been studied in psychophysics, cognitive science, and, more recently, computer vision, for the purposes of product design, web design, advertising, etc. We first introduce a diverse visual complexity dataset which compromises of seven image categories. We collect the ground-truth scores by comparing the pairwise relationship of images and then convert the pairwise scores to absolute scores using mathematical methods. Furthermore, we propose a method to measure the visual complexity that uses unsupervised information extraction from intermediate convolutional layers of deep neural networks. We derive an activation energy metric that combines convolutional layer activations to quantify visual complexity. The high correlations between ground-truth labels and computed energy scores in our experiments show superiority of our method compared to the previous works. Finally, as an example of the relationship between visual complexity and other image attributes, we demonstrate that, within the context of a category, visually more complex images are more memorable to human observers

    A smart home environment to support safety and risk monitoring for the elderly living independently

    Get PDF
    The elderly prefer to live independently despite vulnerability to age-related challenges. Constant monitoring is required in cases where the elderly are living alone. The home environment can be a dangerous environment for the elderly living independently due to adverse events that can occur at any time. The potential risks for the elderly living independently can be categorised as injury in the home, home environmental risks and inactivity due to unconsciousness. The main research objective was to develop a Smart Home Environment (SHE) that can support risk and safety monitoring for the elderly living independently. An unobtrusive and low cost SHE solution that uses a Raspberry Pi 3 model B, a Microsoft Kinect Sensor and an Aeotec 4-in-1 Multisensor was implemented. The Aeotec Multisensor was used to measure temperature, motion, lighting, and humidity in the home. Data from the multisensor was collected using OpenHAB as the Smart Home Operating System. The information was processed using the Raspberry Pi 3 and push notifications were sent when risk situations were detected. An experimental evaluation was conducted to determine the accuracy with which the prototype SHE detected abnormal events. Evaluation scripts were each evaluated five times. The results show that the prototype has an average accuracy, sensitivity and specificity of 94%, 96.92% and 88.93% respectively. The sensitivity shows that the chance of the prototype missing a risk situation is 3.08%, and the specificity shows that the chance of incorrectly classifying a non-risk situation is 11.07%. The prototype does not require any interaction on the part of the elderly. Relatives and caregivers can remotely monitor the elderly person living independently via the mobile application or a web portal. The total cost of the equipment used was below R3000

    Gesture Recognition Using Hidden Markov Models Augmented with Active Difference Signatures

    Get PDF
    With the recent invention of depth sensors, human gesture recognition has gained significant interest in the fields of computer vision and human computer interaction. Robust gesture recognition is a difficult problem because of the spatiotemporal variations in gesture formation, subject size, subject location, image fidelity, and subject occlusion. Gesture boundary detection, or the automatic detection of the onset and offset of a gesture in a sequence of gestures, is critical toward achieving robust gesture recognition. Existing gesture recognition methods perform the task of gesture segmentation either using resting frames in a gesture sequence or by using additional information such as audio, depth images, or RGB images. This ancillary information introduces high latency in gesture segmentation and recognition, thus making it inappropriate for real time applications. This thesis proposes a novel method to recognize time-varying human gestures from continuous video streams. The proposed method passes skeleton joint information into a Hidden Markov Model augmented with active difference signatures to achieve state-of-the-art gesture segmentation and recognition. Active body parts are used to calculate the likelihood of previously unseen data to facilitate gesture segmentation. Active difference signatures are used to describe temporal motion as well as static differences from a canonical resting position. Geometric features, such as joint angles, and joint topological distances are used along with active difference signatures as salient feature descriptors. These feature descriptors serve as unique signatures which identify hidden states in a Hidden Markov Model. The Hidden Markov Model is able to identify gestures in a robust fashion which is tolerant to spatiotemporal and human-to-human variation in gesture articulation. The proposed method is evaluated on both isolated and continuous datasets. An accuracy of 80.7% is achieved on the isolated MSR3D dataset and a mean Jaccard index of 0.58 is achieved on the continuous ChaLearn dataset. Results improve upon existing gesture recognition methods, which achieve a Jaccard index of 0.43 on the ChaLearn dataset. Comprehensive experiments investigate the feature selection, parameter optimization, and algorithmic methods to help understand the contributions of the proposed method

    Using Motion Controllers in Virtual Conferencing

    Get PDF
    At the end of 2010 Microsoft released a new controller for the Xbox 360 called Kinect. Unlike ordinary video game controllers, the Kinect works by detecting the positions and movements of a user’s entire body using the data from a sophisticated camera that is able to detect the distance between itself and each of the points on the image it is capturing. The Kinect device is essentially a low-cost, widely available motion capture system. Because of this, almost immediately many individuals put the device to use in a wide variety applications beyond video games. This thesis investigates one such use; specifically the area of virtual meetings. Virtual meetings are a means of holding a meeting between multiple individuals in multiple locations using the internet, akin to teleconferencing or video conferencing. The defining factor of virtual meetings is that they take place in a virtual world rendered with 3D graphics; with each participant in a meeting controlling a virtual representation of them self called an avatar. Previous research into virtual reality in general has shown that there is the potential for people to feel highly immersed in virtual reality, experiencing a feeling of really ‘being there’. However, previous work looking at virtual meetings has found that existing interfaces for users to interact with virtual meeting software can interfere with this experience of ‘being there’. The same research has also identified other short comings with existing virtual meeting solutions. This thesis investigates how the Kinect device can be used to overcome the limitations of exiting virtual meeting software and interfaces. It includes a detailed description of the design and development of a piece of software that was created to demonstrate the possible uses of the Kinect in this area. It also includes discussion of the results of real world testing using that software, evaluating the usefulness of the Kinect when applied to virtual meetings

    Proceedings, MSVSCC 2013

    Get PDF
    Proceedings of the 7th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 11, 2013 at VMASC in Suffolk, Virginia

    A Person-Centric Design Framework for At-Home Motor Learning in Serious Games

    Get PDF
    abstract: In motor learning, real-time multi-modal feedback is a critical element in guided training. Serious games have been introduced as a platform for at-home motor training due to their highly interactive and multi-modal nature. This dissertation explores the design of a multimodal environment for at-home training in which an autonomous system observes and guides the user in the place of a live trainer, providing real-time assessment, feedback and difficulty adaptation as the subject masters a motor skill. After an in-depth review of the latest solutions in this field, this dissertation proposes a person-centric approach to the design of this environment, in contrast to the standard techniques implemented in related work, to address many of the limitations of these approaches. The unique advantages and restrictions of this approach are presented in the form of a case study in which a system entitled the "Autonomous Training Assistant" consisting of both hardware and software for guided at-home motor learning is designed and adapted for a specific individual and trainer. In this work, the design of an autonomous motor learning environment is approached from three areas: motor assessment, multimodal feedback, and serious game design. For motor assessment, a 3-dimensional assessment framework is proposed which comprises of 2 spatial (posture, progression) and 1 temporal (pacing) domains of real-time motor assessment. For multimodal feedback, a rod-shaped device called the "Intelligent Stick" is combined with an audio-visual interface to provide feedback to the subject in three domains (audio, visual, haptic). Feedback domains are mapped to modalities and feedback is provided whenever the user's performance deviates from the ideal performance level by an adaptive threshold. Approaches for multi-modal integration and feedback fading are discussed. Finally, a novel approach for stealth adaptation in serious game design is presented. This approach allows serious games to incorporate motor tasks in a more natural way, facilitating self-assessment by the subject. An evaluation of three different stealth adaptation approaches are presented and evaluated using the flow-state ratio metric. The dissertation concludes with directions for future work in the integration of stealth adaptation techniques across the field of exergames.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • 

    corecore