
 
 
 

http://researchcommons.waikato.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the 

Act and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right 

to be identified as the author of the thesis, and due acknowledgement will be 

made to the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://researchcommons.waikato.ac.nz/


 

 

 

 

 

Using Motion Controllers in Virtual 

Conferencing 

Jesse Dean 

 

 

This thesis is submitted in partial fulfilment of the requirements for the Degree of 

Master of Science at the University of Waikato 

 

March 2012 

© 2012 Jesse Dean 





i 

 

Abstract 

At the end of 2010 Microsoft released a new controller for the Xbox 360 called 

Kinect. Unlike ordinary video game controllers, the Kinect works by detecting the 

positions and movements of a user’s entire body using the data from a 

sophisticated camera that is able to detect the distance between itself and each of 

the points on the image it is capturing. The Kinect device is essentially a low-cost, 

widely available motion capture system. Because of this, almost immediately 

many individuals put the device to use in a wide variety applications beyond 

video games. 

This thesis investigates one such use; specifically the area of virtual meetings. 

Virtual meetings are a means of holding a meeting between multiple individuals 

in multiple locations using the internet, akin to teleconferencing or video 

conferencing. The defining factor of virtual meetings is that they take place in a 

virtual world rendered with 3D graphics; with each participant in a meeting 

controlling a virtual representation of them self called an avatar. 

Previous research into virtual reality in general has shown that there is the 

potential for people to feel highly immersed in virtual reality, experiencing a 

feeling of really ‘being there’. However, previous work looking at virtual 

meetings has found that existing interfaces for users to interact with virtual 

meeting software can interfere with this experience of ‘being there’. The same 

research has also identified other short comings with existing virtual meeting 

solutions. 

This thesis investigates how the Kinect device can be used to overcome the 

limitations of exiting virtual meeting software and interfaces. It includes a detailed 

description of the design and development of a piece of software that was created 

to demonstrate the possible uses of the Kinect in this area. It also includes 

discussion of the results of real world testing using that software, evaluating the 

usefulness of the Kinect when applied to virtual meetings.



ii 

 

  



iii 

 

Acknowledgements 

It would not have been possible to undertake and complete this project without the 

support and assistance of many individuals. 

I would like to thank Bill Rogers and Mark Apperley who formulated the idea for 

the project, and whose input and assistance were invaluable over its course. 

I would also like to thank my family and friends who supported me in countless 

ways over the course of this project. 

Finally I would like to thank the University of Waikato for providing me with the 

opportunity to undertake this research. 



iv 

 

  



v 

 

Contents 

Abstract .................................................................................................................... i 

Acknowledgements ................................................................................................ iii 

List of Figures ........................................................................................................ ix 

List of Equations .................................................................................................... xi 

List of Tables ....................................................................................................... xiii 

 

Chapter 1 : Introduction .......................................................................................... 1 

 

Chapter 2 : Literature Review ................................................................................. 7 

2.1 Motion Controller History ............................................................................. 7 

2.2 Virtual Worlds as Meeting Places ............................................................... 10 

2.2.1 The Advantages of Virtual Meetings .................................................... 11 

2.2.2 Experimental Meetings ......................................................................... 12 

2.2.3 Outcomes .............................................................................................. 14 

2.3 Video Conferences ...................................................................................... 16 

2.3.1 Kinected Conference ............................................................................ 16 

2.4 Gesture Detection ........................................................................................ 19 

2.5 Summary ..................................................................................................... 21 

 

Chapter 3 : Project Design .................................................................................... 23 

3.1 Project Outline ............................................................................................. 23 

3.2 Kinect’s Capabilities ................................................................................... 24 

3.3 Potential Enhancements............................................................................... 25 

3.3.1 Avatar Control ...................................................................................... 25 

3.3.2 Facial Expression .................................................................................. 25 

3.3.3 Head Orientation ................................................................................... 26 

3.3.4 Presentations and the Display Screen ................................................... 27 

3.3.5 Gesture Controls and Simulated Touch Screen .................................... 27 

3.3.6 Automatic Camera Positioning ............................................................. 28 

3.3.7 The Advantages of Virtual Reality ....................................................... 28 

 

 



vi 

 

 

3.4 Building the Software .................................................................................. 29 

3.4.1 Early Investigations ............................................................................... 29 

3.4.2 Ogre ....................................................................................................... 30 

3.4.3 The Kinect SDK .................................................................................... 31 

3.4.4 XNA ...................................................................................................... 32 

3.4.5 Networking ............................................................................................ 32 

3.4.6 Audio ..................................................................................................... 33 

3.4.7 Real and Virtual Environments ............................................................. 34 

3.5 User Testing ................................................................................................. 37 

 

Chapter 4 : Underlying Systems ............................................................................ 41 

4.1 XNA ............................................................................................................. 41 

4.1.1 XNA Core ............................................................................................. 43 

4.1.2 XNA Input ............................................................................................. 44 

4.1.3 XNA Graphics ....................................................................................... 46 

4.2 The Kinect SDK ........................................................................................... 51 

4.2.1 Image Data Streams .............................................................................. 52 

4.2.2 Skeleton Tracking ................................................................................. 54 

4.2.3 Coordinate Systems ............................................................................... 56 

4.2.4 SDK Structure ....................................................................................... 60 

 

Chapter 5 : Development & Implementation ........................................................ 65 

5.1 VMX Structure............................................................................................. 66 

5.2 Kinect ........................................................................................................... 68 

5.2.1 Initialisation ........................................................................................... 68 

5.2.2 The Video Frame Ready Event ............................................................. 70 

5.2.3 The Depth Frame Ready Event ............................................................. 71 

5.2.4 The Skeleton Frame Ready Event ......................................................... 73 

5.3 Graphics ....................................................................................................... 75 

5.3.1 The Geometry Class, Geometry Builder, and Drawable ....................... 76 

5.3.2 The VMXModel Class .......................................................................... 77 

5.3.3 The Core Graphics System .................................................................... 79 



vii 

 

 

5.4 User Avatars ................................................................................................ 83 

5.4.1 Overview ............................................................................................... 83 

5.4.2 Geometry .............................................................................................. 84 

5.4.3 Local Avatar Data ................................................................................. 90 

5.4.4 Advanced Positioning and Movement .................................................. 92 

5.4.5 Remote and Dummy Avatars ................................................................ 99 

5.4.6 Colourisation ....................................................................................... 100 

5.4.7 Head Size ............................................................................................ 101 

5.5 Gesture Recognition .................................................................................. 103 

5.5.1 Hand Gestures ..................................................................................... 103 

5.5.2 Finger Gestures ................................................................................... 107 

5.6 The Display Screen.................................................................................... 110 

5.6.1 The VirtualScreen Object ................................................................... 110 

5.6.2 The Real World Screen ....................................................................... 112 

5.6.3 Laser Pointer ....................................................................................... 127 

5.6.4 Interactive Whiteboard ....................................................................... 129 

5.7 Camera Controls ........................................................................................ 130 

5.7.1 The Manual Camera ........................................................................... 131 

5.7.2 The Automatic Camera ....................................................................... 134 

5.7.3 The AutoCam Class ............................................................................ 137 

5.8 Network Communication .......................................................................... 140 

5.8.1 Network Structure ............................................................................... 141 

5.8.2 Packet Structure .................................................................................. 142 

5.8.3 RemoteCom ........................................................................................ 145 

5.8.4 ClientData ........................................................................................... 147 

5.8.5 VMXClient ......................................................................................... 151 

5.8.6 Server .................................................................................................. 152 

5.8.7 Client ................................................................................................... 159 

 

 

 

 

 



viii 

 

 

Chapter 6 : Usability Trial ................................................................................... 163 

6.1 Experiment Design .................................................................................... 163 

6.2 Outcomes ................................................................................................... 166 

6.2.1 The Avatars ......................................................................................... 166 

6.2.2 Virtual Screen ...................................................................................... 170 

6.2.3 Camera Controls .................................................................................. 173 

6.2.4 Comparison to Other Types of Meetings ............................................ 174 

 

Chapter 7 : Conclusion ........................................................................................ 177 

 

Chapter 8 : Future Work ...................................................................................... 185 

8.1 Screen Depth .............................................................................................. 185 

8.2 Avatar Improvements ................................................................................ 186 

8.2.1 Avatar Hands ....................................................................................... 186 

8.2.2 Avatar Heads ....................................................................................... 186 

8.3 Further Exploitation of Virtual Reality ...................................................... 187 

8.3.1 Personal Display Screens .................................................................... 187 

8.3.2 Always Visible Faces .......................................................................... 188 

8.3.3 Meeting Table Shape ........................................................................... 188 

8.4 Audio ......................................................................................................... 191 

8.5 Large Conferences ..................................................................................... 191 

8.6 Interactive Objects in the Virtual Environment ......................................... 192 

 

Appendix I ........................................................................................................... 197 

Appendix II .......................................................................................................... 201 

References ........................................................................................................... 205 

 

  



ix 

 

List of Figures 

Figure 1:  The Kinect Device ................................................................................ 1 

Figure 2:  Virtual environment design ................................................................ 35 

Figure 3:  Real world user environment ............................................................. 36 

Figure 4:  Real world presenter environment ..................................................... 37 

Figure 5:  Resolving conflicts between libraries ................................................ 42 

Figure 6:  Skeleton Space coordinate orientation(Microsoft, 2011) ................... 56 

Figure 7:  Depth space measurements (Microsoft, 2011) ................................... 58 

Figure 8:  VMX program structure, with respect to the core class. .................... 67 

Figure 9:  Kinect Class Structure ........................................................................ 68 

Figure 10:  Kinect class structure ......................................................................... 68 

Figure 11:  Code for converting image data from a 1D array into a 2D array. .... 70 

Figure 12:  Byte structure of depth pixel data. ..................................................... 72 

Figure 13:  Depth data extraction ......................................................................... 72 

Figure 14:  A processed depth image frame ......................................................... 73 

Figure 15:  Graphics Engine Class Structure, not including avatar classes .......... 76 

Figure 16:  Geometry class structure .................................................................... 76 

Figure 17:  Drawable class structure .................................................................... 77 

Figure 18:  VMXModel class structure ................................................................ 77 

Figure 19:  The full read out HUD ....................................................................... 82 

Figure 20:  User Avatar classes within the graphics system................................. 83 

Figure 21:  Kinect skeleton joint diagram. (Microsoft, 2011) .............................. 84 

Figure 22:  Illustration of the face capture algorithm ........................................... 86 

Figure 23:  Development history of the VMX avatar. .......................................... 88 

Figure 24:  Avatars sitting down. Left: A user sitting with legs in view of  

the Kinect; Centre: A user sitting with legs obscured from the  

Kinect; Right: Same as the centre image, but the avatar’s legs  

are forced into a sitting position. ........................................................ 93 

Figure 25:  Dummy avatars showing colourisation. ........................................... 100 

Figure 26:  Varying avatar head sizes ................................................................. 103 

Figure 27:  Diagram of finger point searching algorithm. .................................. 109 

Figure 28:  Depth image showing the finger search algorithm in action ............ 109 

Figure 30:  Calculation of VirtualScreen texture coordinates. ........................... 111 

file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195444
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195450
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195451
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195452
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195462


x 

 

Figure 29:  VirtualScreen class structure. ........................................................... 111 

Figure 31:  The bottom image is the TV screen as seen by the Kinect's  

depth camera, the top images is the same scene as seen by  

the Kinect’s colour camera. .............................................................. 115 

Figure 32:  The spatial relationship between the Kinect device and the  

real world display screen .................................................................. 117 

Figure 33:  A user partially obstructing the display screen ................................. 118 

Figure 34:  Recovering if the location of the edge of the screen  

was misidentified. ............................................................................. 121 

Figure 35:  Screen Detection Markers ................................................................ 126 

Figure 36:  Small Display Screen ........................................................................ 127 

Figure 37:  Laser pointer. .................................................................................... 129 

Figure 38:  The AutoCam class ........................................................................... 138 

Figure 39:  Network Class Structure ................................................................... 141 

Figure 40:  Server Packet Structure .................................................................... 144 

Figure 41:  Client Packet Structure ..................................................................... 144 

Figure 42:  The packet structure of the data for one client. ................................ 145 

Figure 43:  RemoteCom class structure .............................................................. 146 

Figure 44:  ClientData class structure ................................................................. 147 

Figure 45:  VMXClient class structure ............................................................... 151 

Figure 46:  RemoteServer class structure. ........................................................... 152 

Figure 47:  RemoteClient class structure. ........................................................... 159 

Figure 48:  The meeting in progress. .................................................................. 166 

Figure 49:  The presentation in progress. ............................................................ 167 

Figure 50:  Presenter's experiment setup. ............................................................ 168 

Figure 51:  Real vs. Virtual Environment ........................................................... 171 

Figure 52:  Current meeting table shape ............................................................. 189 

Figure 53:  Circular table design ......................................................................... 190 

Figure 54:  Spilt table design .............................................................................. 190 

 

  

file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195464
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195472
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195477
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195478
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195479
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195480
file:///C:/Users/Jesse/Desktop/Thesis%20Final%20Draft.docx%23_Toc320195481


xi 

 

List of Equations 

Equation 1:  Equation for a plane in 3D space .................................................... 57 

Equation 2:  Converting depth space coordinates from float to int ..................... 60 

Equation 3:  Calculation of the final world transformation  

for a piece of Geometry. ................................................................ 79 

Equation 4:  Vector subtraction ........................................................................... 88 

Equation 5:  Cylinder scale factor ....................................................................... 89 

Equation 6:  Determining the angle between a vector and the Z axis. ................ 89 

Equation 7:  Determining an appropriate rotation axis. ...................................... 90 

Equation 8:  Calculating a World Transformation. ............................................. 90 

Equation 9:  Determining the angle between to vectors. ..................................... 95 

Equation 10:  Calculating the new Y-coordinate of a scaled head. ..................... 102 

Equation 11:  Conversion of real world screen coordinates  

to virtual screen coordinates. ....................................................... 128 

Equation 12:  Acquiring the texture coordinates of the point  

on the display screen a user is pointing at. .................................. 130 

Equation 13:  Smoothing camera movement. ...................................................... 137 

Equation 14:  Finding the angle between a pair of two dimensional vectors ...... 140 

 

  



xii 

 

  



xiii 

 

List of Tables 

Table 1:  Potential cases when searching for the top left corner ....................... 123 

Table 2:   The order in which directions are checked when searching   

for different corners of the display screen. ......................................... 125 

Table 3:  Data contained within the ClientData class ........................................ 149 

 

  



xiv 

 

  



1 

 

Chapter 1: Introduction 

Using Motion Controllers in Virtual Conferencing is a research project that’s 

purpose was exploring how 3D cameras with the capability to recognise and track 

the movements of human bodies could be used to enhance meeting in a virtual 

world. The project came about in response to the release of the Kinect by 

Microsoft. The Kinect is a device equipped with components that give it the 

ability to capture video of a person, identify that person’s body, and track the 

movements of their body in 3D space.  

 

Figure 1: The Kinect Device 

The Kinect was produced by Microsoft and first announced under the code name 

“Project Natal” at the Electronic Entertainment Expo (E3) in June 2009. The 

device and its associated software have several features, including: full 3D human 

body tracking, a microphone array backed by sophisticated voice recognition 

technology, and facial recognition technology. It was designed to allow a person 

to control a Microsoft Xbox 360 game console using nothing but their body 

movements and voice (Microsoft, 2009). To achieve all of this, the device is 

equipped with several sensors. 

The first is a colour video camera. It can be seen on the device (see Figure 1) as 

the central lens on the front. It is capable of capturing video with a resolution of 

640 x 480 pixels at 30 frames per second. Aside from providing a video stream for 

general use, the camera is used as part of the facial recognition system. 

The second is a pair of devices that work is tandem: an infrared laser projector 

(the lens visible on the far left of Figure 1) and an infrared camera (on the right). 



2 

 

The projector emits a particular light pattern across the area in front of the device. 

This pattern is recognised by the infrared camera, and is used to determine the 

distance to all of the objects within the camera’s field of view. This distance data 

is then used to separate users from the background in the Kinect’s field of view 

and determine the locations and body positions of those users. 

The final sensing device is an array of four microphones to pick up sound. This 

array can be used to accurately determine the direction from which a sound is 

coming.  

The sensing devices are all mounted across the long bar section of the Kinect. 

This section is mounted on the Kinect’s stand via a motorised joint which is 

capable of tilting the bar to direct its field of view up and down. This can be used 

to properly align the camera to get the best view of the scene in front of the 

device. 

This kind of technology has existed for some time; however the Kinect is the first 

example of this technology that has been mass produced as an affordable 

consumer device (Zafrulla, Brashear, Starner, Hamilton, & Presti, 2001). It was 

originally intended to be used exclusively a controller for the Xbox 360, but later 

its use was expanded to applications on personal computers. It is the new found 

accessibility of this technology to the general population that has made it desirable 

to explore its potential applications in various aspects of everyday life. 

There are many solutions available for interacting with the Kinect device using a 

computer. Along with Microsoft’s official Kinect for Windows SDK there are a 

host of unofficial third party systems, most of which were developed before the 

release of Microsoft’s SDK. Of these third party solutions, the most widely used 

is a system called the OpenNI framework (Hinchman, 2011). OpenNI was created 

by a company called PrimeSense who were involved in the development of the 

3D sensing technology that is used by the Kinect (Gohring, 2010).  

The potential application for the technology that was identified for this project is 

in the area of virtual meetings. Virtual meetings are a way of holding a meeting 

with multiple participants, all of whom may be in different locations around the 

world connected using the Internet. A virtual meeting differs from other forms of 



3 

 

remote group communication such as a video conference or teleconference in that 

it takes place in a virtual environment rendered with 3D graphics, much like a 

computer game. In a virtual meeting each person present in the meeting is 

represented by a 3D rendered avatar that exists as part of the virtual environment. 

The avatar will generally take the shape of a person, and will frequently have its 

appearance customised by the user that it represents. 

When participating in a virtual meeting, a user will control their avatar, issuing 

commands that will cause the avatar to perform actions in the virtual environment. 

These actions could be anything from performing a gesture to indicate some 

reaction from the user (e.g. clapping or laughing) to having the avatar move to a 

particular location within the virtual world. Typically a user will have no 

representation to the other participants in the meeting besides their avatar. That is 

to say, there generally won’t be an image or video feed of a user available to other 

participants in the meeting. 

When a user wishes to communicate with other participants in a virtual meeting 

they will typically do so in one of two ways. One is, as mentioned above, to give 

their avatar an instruction to exhibit some kind of body language. The other way 

is through more direct communication either using text chat within the software 

that manages the meeting or (more likely) through voice chat. 

Previous work has been done at the University of Waikato that investigated the 

advantages and drawbacks of existing virtual meeting software (in particular a 

program called Second Life (Linden Labs, 2003)). This research found that there 

were several problems with virtual meetings in Second Life. Of particular note 

were limitations with the user avatars; these included clumsy and unintuitive 

controls for avatars and the generally limited range of expression that the 

provided. Despite these issues the research showed that there was also a wide 

array of potential advantages of virtual meetings over other kinds of remote 

meeting; these advantages will be discussed in detail in Chapter 2. This made it 

desirable to seek ways to overcome the limitations, so that the advantages could 

be fully realised. 

The purpose of the project completed for this thesis was to build on findings of 

this previous work and investigate how a motion controller (in the form of the 



4 

 

Kinect) could be applied to both further enhance the existing advantages of virtual 

meetings, and to reduce or negate the drawbacks. To do this it was envisioned that 

the project would involve the creation of a platform upon which various new 

motion controller based features could be built and tested by users. 

Over the course of the project such a platform has been developed as a standalone 

piece of software (named VMX) that utilises the technology provided by the 

Kinect to enable virtual meetings to be carried out using a variety of new motion 

control dependant features. Chapter 5 will explain in detail what these features 

are, and how they work. 

When using VMX users normally sit at their desks, in front of their computers. 

However the software also supports a user standing up in front of a display screen 

near their computer in order to perform a presentation, using the screen to display 

visual aids (the content on the screen is captured and shown in the virtual 

environment). 

As with ordinary virtual meeting software, VMX renders a virtual meeting room 

with 3D graphics. Within the virtual environment users are represented by avatars. 

VMX also includes a networking system, which allows users on multiple 

computers to connect together and join a single meeting. Each user is able to see 

each other user’s avatar positioned somewhere in the virtual environment. Unlike 

ordinary virtual meeting software, VMX uses the Kinect to detect the user’s body 

position; this information is used to pose the user’s avatar.  

The software makes use of the data provided by the Kinect in other ways as well. 

Through a process of experimentation several other features were developed and 

refined. Users are able to use a variety of hand gestures to interact with elements 

in the virtual world. Additionally, the body position data is used in tandem with 

the video feed from the Kinect’s colour camera to capture an image of each user’s 

face, which can be used as the face of their avatar. Another use of the Kinect is to 

allow the user to control their view of the virtual environment by their body 

position alone; this allows hands free operation of the software, and frees the 

keyboard and mouse for other uses. 



5 

 

VMX also includes the facility for users to give presentations to other users. The 

core of this functionality is a large display screen in the virtual environment on to 

which a user may put any image they wish. This display screen was enhanced 

(again through a process of experimentation) with Kinect based features that 

allow the user who is presenting to use a real world screen as a counter-part to the 

virtual display screen. This real world screen can be used as a reference for the 

user, giving them a clear idea of what is currently displayed on the virtual screen, 

and allowing them to precisely control where on the screen their avatar is 

pointing. 

Over the course of the project the individual features of VMX were refined by 

informal experimentation. In order to gain more informative feedback on the 

software, in the final stages of the project VMX was put to use in a usability trial 

designed to test the new Kinect based features in a real world situation. The 

experiments involved putting the software in the hands of people who had a need 

to conduct a meeting. The people involved held a meeting and afterwards gave 

feedback on their experiences using the software. This feedback was used to 

evaluate the value of the features that were implemented in VMX, and to suggest 

future paths of exploration for applying motion tracking technology in this area. 

The remainder of this thesis is arranged into seven chapters. 

Chapter 2 looks into previous work on the main elements of this project. It 

includes a brief look at the history of motion controllers. It also reviews another 

project which was similar to this one; it involved the application of Kinect 

technology to improve the experience of video conferencing. The chapter also 

looks at previous work that has been done in the realm of virtual meetings. This 

includes information about the original work that inspired this project, looking 

into their advantages and limitations. It also briefly looks at some work done in 

hand gesture recognition, a feature that was investigated in this project. 

Chapter 3 discusses how this project developed and evolved. It looks at the key 

goal of the project, lays out the steps taken to achieve that goal, and discusses 

each step in turn. An overview of the purpose of each step is given, along with a 

description of the way it was carried out over the course of the project. Also 



6 

 

discussed are the different approaches that were considered for completing each 

step, and an explanation of why each approach was either adopted or rejected. 

Chapter 4 takes a look at the underlying software technology that supports the 

main software that was created for this project. This chapter outlines the aspects 

of that technology that were used in the development of the software. The primary 

purpose of this chapter is to give a platform upon which Chapter 5 can discuss the 

main software made in this project. 

Chapter 5 gives the details of the implementation of VMX. It discusses in detail 

the way in which each element of the software is built and how it functions. 

Alongside the technical details, this chapter also talks about the history of the 

development of each feature of the software, looking at key technical hurdles that 

were encountered in their development and how those hurdles were overcome. 

This chapter gives detailed descriptions of all of the algorithms and systems 

within VMX. 

Chapter 6 talks about the user testing phase for VMX. It outlines the goals of user 

testing and discusses how user testing was approached in this project. This chapter 

details the experiment that was designed for user testing. After this, the chapter 

goes on to give the results that were gathered from running this experiment and 

discusses those results. This discussion looks at what can be learned from the 

results and how the software might be improved in response to them. 

Chapter 7 is the conclusion of this document. It looks back at what was done and 

discusses the outcomes of the project. It also evaluates the final result in terms of 

the original goal of the project.  

Chapter 8 considers future paths of research that might arise from this project. It 

discusses future possibilities for features that could be added to the software to 

further enhance the process of holding and participating in a virtual meeting. The 

areas for future work discussed arise from both what was learned from the user 

testing that was done as part of this project, and from other areas of interest that 

come as natural progressions on the current software. The rationale for each 

feature is considered along with problems that might arise along the course of 

their development and potential solutions to those problems.  



7 

 

Chapter 2: Literature Review 

This chapter investigates the background of this project. The chapter starts with a 

brief look at the history of motion controller technology. It then moves on to give 

an overview of previous research that was done in the area of virtual meetings in a 

project called “Virtual Worlds as Meeting Places” from which this project arose. 

This includes discussion of the advantages and disadvantages of virtual meetings 

over other ways that people use to hold meetings remotely. The chapter then 

moves on to look at a project that was undertaken by a group of students at 

another university that had a similar intention to this project. In that project, a 

piece of software was developed that aimed to enhance the process of holding a 

meeting by video conference using the technology provided by the Kinect. Then, 

the chapter looks at an advanced use of the Kinect’s data in gesture recognition. 

Finally the chapter will look back at all of this previous work in terms of what it 

means for this project. 

2.1 Motion Controller History 

Motion controller technology has existed for several decades. It began with simple 

systems that analysed ordinary video data to detect and analyse motion. Later very 

complex systems demonstrated ways to accurately detect movements of a human 

body using sophisticated sensor arrays and systems. Later still, technology for 

detecting human movements began to simplify and become more accessible to a 

wider range of people. 

Early work on motion tracking tended to involve simple systems where ordinary 

cameras would be used and analysis would be performed to detect the motion of 

objects within the camera’s field of view. “Motion Tracking with an Active 

Camera” (Murray & Basu, 1994) described two common approaches to motion 

tracking in the early developmental stages of the technology: motion-based 

tracking and recognition-based tracking. Motion-based tracking works by 

detecting motion in a camera’s field of view, it is able to detect any kind of object 

and infer its motion. Recognition-based tracking is more complex. It works by 

recognising specific objects in the each image frame from the camera. By 

detecting the same object over multiple frames, its motion can be inferred. This 



8 

 

kind of system has an advantage over motion-based systems in that the orientation 

of the object can be inferred in addition to its position. Recognition-based tracking 

may also have the capability of tracking motion in three dimensions. The main 

disadvantages of recognition-based systems are that they are only capable of 

detecting the motion of recognisable objects, and that they are computationally 

expensive compared to motion-based systems. The recognition-based systems 

have the most in common with the modern system used by the Kinect. 

Historically systems for tracking the motion of people with high accuracy have 

been large, complex, and expensive. They often required controlled environments 

where the tracked user was alone in an empty, predefined space. One such system, 

called “Constellation” (Foxlin, Harrington, & Pfeifer, 1998) was demonstrated in 

1998. The sole purpose of the system was to track the position and orientation of a 

user’s head (for the purpose of orienting the camera in a virtual environment for a 

head mounted display the user was wearing).  

The system was very complex, involving multiple different sensing devices. A 

user was required to wear several devices on their head including multiple 

ultrasonic rangefinder modules, and an inertial sensing instrument. The 

rangefinder modules would send coded infrared signals to beacons positioned in 

set places around the user. When a beacon received its particular code, it would 

emit an ultrasonic pulse. The rangefinder modules would detect this pulse, and use 

the time from when the infrared signal was sent, to when the pulse was detected to 

determine the distance from the beacon to the rangefinder. By tracking the 

distances to different beacons, the rangefinders were able to detect their exact 

location in 3D space. Even this however was not enough to guarantee a high 

degree of accuracy; the ultrasonic system was vulnerable to acoustic interference 

and echoes. To compensate for this, the system used the head mounted inertial 

sensor to filter out distance readings from the rangefinders that were not 

consistent with movements that the user was actually making. The resulting 

system was capable of a high degree of accuracy; but the complexity of the 

system made it prohibitive for small scale applications such as that looked at in 

this project. 



9 

 

In addition to systems that could track a particular part of the human body, other 

systems that could simultaneously track the movements of an entire human body 

were developed. An example of such a system was described in 2004 in a paper 

entitled “A Real-Time Articulated Human Motion Tracking Using Tri-Axis 

Inertial/Magnetic Sensors Package” (Zhu & Zhou, 2004). This system utilised 

micro-electromechanical accelerometers, rate gyros, and magnetometers (all 

incorporated into a single device called an “Integrated Sensor Pack”) to provide 

motion sensing, and involved a sophisticated algorithm for combining all of this 

data to produce highly accurate results. The system divided the human body into 

15 segments, the position and orientation of each segment could be calculated by 

using multiple Integrated Sensor Packs strategically positioned around the human 

body. This system is closer in capability to the modern Kinect technology than 

those previously described in its ability to track separate parts of the human body. 

However, it is still very complex, requiring a user to wear a network of carefully 

placed sensors on their body; though it does have the advantage of being able to 

function in a room that requires no special preparation. 

Throughout the development of these large and complex systems, research was 

being done on far simpler systems for detecting the movements of the human 

body. In 2000 a paper entitled “Stochastic Tracking of 3D Human Figures Using 

2D Image Motion” (Sidenbladh, Black, & Fleet, 2000) demonstrated a system that 

was able to track the motion of a human body using only the colour video data 

from an ordinary camera. The system was primitive by the standards of the 

Kinect. It was unable to automatically detect the presence of a body to track, so it 

required manual setup of the initial position of different joints and limbs on the 

video image whenever a user was to be tracked. It also suffered from a problem 

where it would tend to lose track of its target after enough time had passed, 

requiring that it was setup again before use could continue. 

In more recent times the technology has matured and systems that used depth 

sensing cameras to track human movements were developed. Depth cameras are 

useful because they make it easier to separate users from the objects behind them, 

and make it simple to determine the distance of different parts of a user’s body 

from the camera. In 2008 a paper entitled “Controlled human pose estimation 

from depth image streams” (Zhu, Dariush, & Fujimura, 2008) demonstrated a 



10 

 

system that could track human body movements using only a depth camera. The 

system was successfully able to track the upper body of a person with reasonable 

accuracy. It was also capable of automatically detecting a body to track. This 

system is very close in functionality to that which was ultimately included in the 

Kinect. 

The Kinect itself was released by Microsoft in late 2010. It was more 

sophisticated than the system described by Zhu et al. in its ability to track multiple 

people simultaneously and it ability to do full body tracking. The key part of the 

Kinect that brings the field of motion controllers up to a level where uses such as 

the one explored in this project are feasible, is the it offers reasonably accurate 

and robust tracking, at an affordable price, and in a mass produced, widely 

available device. 

2.2 Virtual Worlds as Meeting Places 

The motivation for using motion controllers in virtual conferencing lies in an 

earlier project that was completed at the University of Waikato in 2010. This 

project was called Virtual Worlds as Meeting Places (Al Qahtani, 2010). The aim 

of the project was to investigate a use of the virtual world program called Second 

Life (Linden Labs, 2003) to hold meetings between people in different places, 

using the Internet. 

Second Life is an application that was created by a company called Linden Labs. 

It is an online persistent virtual world program. A user of this program will 

typically connect to a Second Life server using a client program (known as a 

Second Life Viewer). At any given time thousands of users may be connected to 

the Second Life servers (Plunkett, 2008). Each user is represented by an avatar 

within a very large virtual world. They are able to control their avatar and can 

move it around the virtual world. All users are able to see and interact with each 

other’s avatars. In Second Life the elements that make up the world (structures, 

object etc.) are built by users of the program and uploaded to the host server, 

where they become visible to all users. The capability for many users from 

anywhere on the planet to congregate and interact in a single place in a 

customisable virtual space is what makes Second Life suitable for virtual 



11 

 

meetings; indeed in 2009 headlines were made when IBM reported saving 

$320,000 in organisation, travel and productivity costs by holding two 

conferences in Second Life, instead of the real world (Ashby, 2009). 

A critical feature of Second Life that is identified in ‘Virtual Worlds as Meeting 

Places’ is the ability for avatars to perform ‘gestures’ on a user command. A 

gesture is a predefined action (such as clapping, waving, or performing a 

handshake). These gestures allow ways of communicating with other people using 

body language rather than just talking. 

2.2.1 The Advantages of Virtual Meetings 

Early on, ‘Virtual Worlds as Meeting Places’ identifies some of the potential 

advantages of virtual meetings over other forms of remote meetings. The first of 

these advantages contrasts to voice-only methods of meeting such as conference 

calls, in that virtual meetings allow for the use of visual aids (e.g. slideshows) 

within the virtual environment. The second advantage of virtual meetings over 

conference calls that, if a given participant is not familiar with the voices of some 

of the other participants then they may still be able to tell who is speaking by 

visually identifying their avatar (or its label). 

The third advantage that is presented is unique to virtual meetings. Because a 

virtual meeting takes place in a single virtual space shared by all the participants, 

there is the opportunity for participants to share certain interactions such as a 

handshake. On the face of it, it may seem like a trivial and unimportant thing for 

two avatars to share a handshake; however in the field of virtual reality research 

there is a concept known as presence. Presence is a sense of ‘being there’ felt by a 

user in a virtual environment. Essentially a user forgets their real world 

surroundings and enters a mindset where they feel like they are truly inside the 

virtual environment. This concept is also known as ‘immersion’. Very closely 

related to the concept of presence is the concept of ‘copresence’; the sense of 

being there together with another person. This concept refers to the idea that a 

user can feel like they are truly within the virtual environment with the other users 

in the same virtual space. This means that when one user interacts with another 

user within the environment, it can have the same relationship building effects as 



12 

 

performing the same interaction in real life. This is the value of being able to 

perform a handshake in the virtual environment. A detailed discussion of the 

concepts of presence and copresence can be found in the book ‘The Social Life of 

Avatars’ (Schroeder, 2002). 

The fourth advantage of virtual meetings stated in ‘Virtual Worlds as Meeting 

Places’ comes down to reduced need for travel. This advantage is shared with all 

forms of remote meeting. The lack of need to assemble every person involved in a 

meeting in a single physical location means that much time, effort and expense 

can be saved. This is especially true when the meeting involves people in different 

cities or countries, or when a large number of people are involved. The virtual 

conferences held by IBM that were mentioned previously are a prime example of 

this.  

The fifth and final advantage is an interesting concept that is exclusive to virtual 

meetings (and real world meetings). The idea is that because a virtual conference 

takes place in a 3D space, users can use 3D modelled objects within the meeting 

as visual aids. While video of objects may be shown in a video conference, virtual 

meetings potentially allow all of the users in the environment to directly interact 

with objects. 

2.2.2 Experimental Meetings 

Three experiments were carried out over the course of the research done for 

‘Virtual Worlds as Meeting Places’. These experiments took the form of actual 

meetings using real-world participants. Each of the three meetings had a different 

purpose. 

The first meeting was called the ‘trial meeting’ and was geared towards simply 

gaining some experience of what it is like to hold a meeting in Second Life. The 

meeting was informal and involved four people, all of whom already knew each 

other. After the meeting the participants were given a questionnaire that asked 

about their experiences during the meeting. The results of this meeting reinforced 

several of the advantages mentioned above. The participants generally reporting 

that they found virtual meetings a good way to meet with each other. 



13 

 

The second meeting was called the ‘informal meeting’. The informal meeting took 

place between seven people, all of whom were staff or students of the Faculty of 

Computing and Mathematical Science (FCMS) at the University of Waikato. It 

was in the preparation for this meeting that one of the disadvantages of using 

second life was made apparent. The only place where the participants were freely 

able to create the kind of objects one would use in a meeting (tables, chairs etc.) 

was in a special location in the Second Life world called ‘Sandbox Island’. The 

problem was that Sandbox Island is an open grass field that absolutely any user in 

Second Life can access, meaning that there was no privacy and a high chance of 

someone disrupting the meeting. For this particular experiment the problem was 

ultimately solved through a third party offering access to their own private, 

appropriately furnished space for the meeting to take place in. The meeting was 

conducted as an informal conversation between the participants. As with the trial 

meeting the participants were given a questionnaire to fill out after the meeting.  

The third and final meeting was called the ‘formal meeting’. The formal meeting 

was intended to look at holding a business meeting or conference within Second 

Life. Unlike the informal meeting, this meeting required a virtual screen on which 

a slideshow presentation could be displayed. This meant that a new virtual venue 

equipped with such capabilities was needed. There are businesses that operate 

within Second Life, that hire out facilities for these kinds of meetings. One of 

these facilities was hired for the purposes of this experiment. There was an 

unfortunate drawback of this method, in that in order to show slides on the virtual 

screens, a fee must be paid per slide. The process of actually uploading things to 

this screen was also described as being somewhat difficult by the researcher. The 

participants for this experiment were again drawn from staff and students at the 

FCMS. The meeting started with one participant giving a presentation to the other 

participants in the meeting. After the presentation a follow up discussion was 

held. As with the other experiments, after the meeting the participants were asked 

to fill out a questionnaire. 



14 

 

2.2.3 Outcomes 

A wide array of advantages, disadvantages and problems with virtual meetings 

were identified from the results of the experiments conducted for Virtual Worlds 

as Meeting Places. This section summarises the reported results of that project. 

One of the interesting points that was noted in the results was that people found 

the experience of a virtual meeting more immersive than teleconference. This 

confirms the hypothesis that was given at the beginning of Virtual Worlds as 

Meeting Places, and indicates that there is potential for virtual meetings to feel 

like a real world meetings to their participants. 

Several advantages that Virtual meetings hold over real world meetings were 

identified in the results. This included that there is the opportunity for meeting 

participants to return to their work faster than with real world meetings. This 

stems from the fact that it can be expected that a meeting participant will join a 

virtual meeting from their own computer in their own office, meaning that once 

the meeting is over they do not need to go anywhere else to resume working. This 

is especially beneficial in situations where the participants would be required to 

travel significant distances to get to a physical meeting. A counterpoint to this 

advantage was seen in the results as well; being at their own desks gave 

participants much opportunity for distraction. It was easy for participants to find 

something to do during a meeting that would distract their attention and cause 

them to lose focus on what was happening. There could be an advantage in this, in 

that if the meeting moves onto a topic that is not relevant to a given participant, 

then they can do something productive in the mean time. However, if a participant 

was distracted while something important was going on in the meeting, the 

usefulness of the meeting could be reduced. 

A closely related idea that was noted in the results was that participants were free 

to carry out tasks without disrupting others in the meeting. This can be something 

simple, such as getting a cup of coffee or replying to a text message; or something 

more important, like dealing with a sudden or urgent situation. 

Another advantage that was found from setting up the experiments, is that it is 

relatively cheap (and potentially free) to get access to large spaces that can house 

many meeting participants. This also applies to equipment in the virtual world 



15 

 

(chairs, tables etc.). The biggest potential use of this advantage is in large scale 

virtual conferencing; the need to hire out expensive conference venues can be 

eliminated. Second Life does generally have small costs associated with getting 

access to virtual venues of a suitable size, but in a specialised virtual meeting 

application there would be no reason for this to be the case. There would however 

be costs associated with finding a server that could handle a large number of 

connected participants and the associated networking costs. 

The ability to move around the virtual environment instantly was also identified as 

an advantage from the results of the experiments. The ability to traverse any 

distance and take no time doing so reduces wasted time. For example, if someone 

in a large conference was seated at the back of the virtual room and needed to get 

to the front, they could simply teleport there instead of walking. 

The experiments also revealed several drawbacks in holding virtual meetings in 

Second Life. The first of these was the lack of certain tools that are generally 

available in real world meetings. In particular, the lack of a whiteboard for 

participants to draw and write on was noted as being an inconvenience. 

Limitations with the user avatars in Second Life were the cause of several 

problems that were observed in the experiments. The first is that the avatars 

provide no means of confirming the identity of the person controlling them. An 

avatar associated with a particular Second Life account will appear the same 

regardless of who is using it. However, it is possible to tell the difference between 

separate avatars, as their appearance can be customised. A second and significant 

problem with the Second Life avatars was that they required constant input from 

the user to carry out actions. Users needed to issue keyboard and mouse 

commands to make their avatar do things in the virtual world. If they did not then 

their avatar would remain still. This could create an ambiguity in that it was 

impossible to see if a person was still at their computer and paying attention to 

meeting or not. An avatar that is receiving no commands from a present user 

looks exactly the same as an avatar whose user is absent. This made it critical that 

all users understood how to control their Second Life avatar. There was no passive 

system to do it for them. A more subtle problem with the avatars is that they 



16 

 

provide no indication that their user wishes to speak. The consequence of this is 

that in the experiments users would often start talking over each other. 

2.3 Video Conferences 

Virtual meetings are a relatively unexplored field. They are not commonly used in 

everyday situations by the general public. However video conferences are widely 

used and share certain similarities with virtual meetings (held over the internet, 

have a visual component etc.). Because of this, and despite the relative newness of 

the Kinect device, prior to the start of this project work had already be done in 

attempting to use the Kinect to improve video conferencing software. 

2.3.1 Kinected Conference 

Kinected Conference (DeVincenzi, Yao, Ishii, & Raskar, Kinected conference: 

augmenting video imaging with calibrated depth and audio, 2011) is a piece of 

software that was developed by a group of students at MIT. Of any work that had 

been done at the outset of this project, Kinected Conference had the most in 

common with the software that was to be created for this project. Kinected 

Conference looked for ways to improve the experience of video conferencing. The 

features of the software make use of the extra data provided by the Kinect’s depth 

camera and microphone array to enhance the raw video feed. Kinected 

Conference essentially aimed to do for video conferencing what this project aimed 

to do for virtual conferencing.  

Unlike the software in this project, Kinected Conference was intended to have 

more than one user per Kinect device. In fact no limit on the number of people 

that can use a single Kinect device with this software is discussed, and at times up 

to three people are actually demonstrated using a single device. This is feasible 

because Kinected conference does not rely on skeletal tracking of users at any 

point (skeletal tracking is the most significant limiter on how many people can use 

a single Kinect device at once). The Kinected conference software is also only 

designed to support two computer systems with Kinect devices being connected 

simultaneously, meaning that all of the participants of the conference must be in 



17 

 

one of only two places, a clear limitation over potential virtual meeting 

applications.  

Kinected Conference implemented several features that, in particular, took 

advantage of the ability of the Kinect’s audio array to determine the position of a 

speaker in the Kinect’s field of view, and the ability of the Kinect’s depth camera 

to identify the spatial location of objects in the view of the video camera. By using 

this information the software is able to perform a number of visual enhancements 

to the video feed that is being sent to the remotely connected participants of the 

meeting. These included focusing the camera on speakers, freezing parts of the 

camera image, and overlaying spatially contextual graphics. 

One of the features presented with this software is called synthetic focusing. 

Synthetic focusing involves making different users appear in or out of focus 

depending on who is talking at any given time. The system is presented as 

working by determining which person in a scene is currently talking, leaving that 

person in clear focus on the video stream, and using simulated depth of field to 

blur the parts of the video stream that show the other participants in the meeting. 

The creators of the software talk of using the depth information from the Kinect to 

enable realistic degrees of blur to be applied to people who are sitting at different 

distances away from the camera and also to allow realistic smooth transitions 

when changing which users are in focus. The proposed rationale behind doing this 

blurring at all, is to simulate the real world depth of field effect that would be 

produced by our eyes when focusing on different people around a meeting table – 

an effect that is greatly reduced when looking at different people on a flat screen. 

The blurring of inactive users also reduces the likely hood that those users will 

cause distractions by carrying out other activities (e.g. checking their email). This 

is an advantage of virtual meetings that was identified in “Virtual Worlds as 

Meeting Places”, and is a clear example of the Kinect being used to improve 

video conferencing.  

A second feature that the creators of the software describe takes this concept of 

enabling users to carry out activities without causing a distraction even further. It 

allows individual users to freeze the part of the video image that shows them, 

without affecting the parts of the video image showing other participants in the 



18 

 

meeting. This allows participants carry out more distracting tasks and actions (e.g. 

leaving the table) with minimal disruption to other participants in the meeting. 

The creators of the program utilise the Kinect’s depth stream data when deciding 

which parts of the image to leave frozen. This allows them to minimize the chance 

that the frozen part of the video will occlude any part of any other participant in 

the meeting by only freezing pixels when they would show something in a depth 

range that matched the location of the user who did not wish to be seen at that 

point. A particularly important result of this is that should a new participant move 

into the space between the camera and the location of the frozen participant, the 

system is able to recognise what parts of the image to unfreeze in order to show 

the new participant, avoiding having frozen pixels of the participant in the 

background being on top of the new participant in the foreground. A similar 

function could be utilised in this project to freeze all or part of the data from the 

Kinect to freeze a user avatar. The creators of the program even speak of the 

capability to selectively deleting all audio that originates from a particular 

location in the scene, meaning that if a frozen participant was doing something 

noisy, that noise would not be transmitted across the video conference link. 

DeVincenzi et al. also talk about augmenting the video feed by drawing additional 

graphics on top of the video. These additional graphics can have a spatial 

relationship with objects in the scene (e.g. they could appear in focus when a user 

they were associated with was in focus). The creators give examples of the 

capability to show things such as name tags above participants in the meeting; 

other details about those participants such as files that they may be sharing in the 

meeting; or even the total amount of time that a particular participant has been 

speaking for over the course of the meeting. The creators also talk about these 

graphics having interactive elements, such as the ability to click on a person’s 

name tag to get more information about them. This type of interface enhancement 

is simple to achieve in virtual meetings, and is already present in Second Life in 

the form of names above avatars. 

In more recent publications on their website (DeVincenzi, Yao, Ishii, & Raskar, 

Kinected Conference | MIT Media Lab), the creators of the Kinected Conference 

software talk about and demonstrate additional features of the software.  



19 

 

One new feature is called ‘privacy areas’. Privacy areas are similar in function to 

the ability to freeze the image of a particular person in the video stream except 

that they allow all activity in a particular part of the room to be rendered invisible. 

As an example of how this can be used, the creators propose a situation where 

somebody wishes to set up a presentation in the background for a later part of the 

meeting, but does not wish to cause a distraction to the current part of the 

meeting. The software can also be told to hide things in the video that are beyond 

a certain distance from the camera. Hiding can take the form of overlaying an 

image of the room as it appeared beforehand or simply painting a solid colour 

over parts of the video. 

A second new feature that is shown by the creators makes use of augmented 

reality principles to enhance the use of objects as visual aids in a meeting. This is 

demonstrated with wooden blocks sitting on the meeting table that participants are 

seated around. Using the depth data from the Kinect, the distance between the 

blocks is calculated and displayed as a graphic showing a line running between 

the blocks, labelled with the distance between those blocks. In another example 

certain blocks are equipped with data matrix codes that allow the software to 

recognise specific blocks and perform some kind of graphical enhancement to 

them. In the example shown, certain blocks have images of buildings overlaid on 

top of them, giving the appearance that the participants in the meeting are 

arranging buildings on the meeting table. This bears some tangential similarities 

with the concept addressed in “Virtual Worlds as Meeting Places” of having 

virtual objects within the meeting which participants can interact with. 

Overall, “Kinected Conference” demonstrates how the Kinect can be successfully 

used to improve an existing form of remote meeting. Many of the features 

developed in that project, allow video conferencing to make use of augmented 

reality to address some of its limitations. 

2.4 Gesture Detection 

The Kinect SDK does not provide any support for gesture recognition. This meant 

that in order to make use of the Kinect to recognise gestures, a system would need 

to be implemented. Recognising simple large arm movements as gestures from the 



20 

 

data available from the Kinect is trivial. However, finer details such as finger 

positions are not as simple. 

In the past, attempts to track the location and position of a users hands and fingers 

from visual data have encountered a number of complicating factors. For example 

the uniform colour of the human hand, and the tendency for self-occlusion when 

in ordinary use. Specialised hardware in the form of motion capture technology or 

visual markers can ease these problems, but also present problems of their own in 

terms of ease of setup and use (Oikonomidis, Kyriazis, & Antonis, 2011). Kinect, 

being a relatively cheap and easily set up piece of hardware presents the 

opportunity to capitalise on the advantages of specialised hardware while limiting 

the associated negative impacts.  

The Kinect SDK provides no built in functionality for detecting fingers. It 

provides only broad full body skeleton tracking on individuals. The skeleton 

tracking system does however provide an accurate position of a tracked user’s 

hands when they are visible to the Kinect’s depth camera. This information can be 

used in combination with depth stream data (i.e. raw data from the Kinect’s depth 

sensor) to detect a user’s finger positions. 

Oikonomidis et al. demonstrate the feasibility of applying Kinect in this area with 

their own solution to the problem of hand tracking. They present what is described 

as a “model-based” approach where a 3D model of a hand is used to simulate the 

Kinect data produced by a particular hand position. This model data is then 

compared to the actual data being received from the Kinect sensor to determine 

how similar the current model is to the user’s actual hand position. New model 

data is generated until it is deemed similar enough to the actual data, at which 

point the current model hands position is taken as the user’s true hand position.  

This method proved reasonably effective for its purpose; however it does come 

with notable drawbacks. The primary obstacle is that this algorithm is 

computationally expensive. Its creators required a powerful, modern system and 

needed to exploit the GPU to even get close to the real-time speeds. However in 

their report the creators do touch on an alternative class of algorithms to the 

model-based one they created. They describe this class as “appearance-based”. 

Algorithms of this class map certain image features to particular hand positions 



21 

 

that are specifically defined in the program. These algorithms are described as 

being well suited for problems where there is a small number of known hand 

positions that need to be detected.  

2.5 Summary 

Motion controller technology has existed for many decades. However for much of 

its history the technology has been too complex, expensive, and inaccessible for it 

to be used in consumer software. The Kinect changes this. 

 In “Virtual Worlds as Meeting Places” Al Qahtani outlined several advantages to 

virtual meetings. These were: the ability to use visual aids in presentations, the 

ability to visually identify meeting participants, the immersive qualities of having 

a shared space with other participants, the reduction in time and money costs for 

holding meetings and conferences, and the ability to collaboratively manipulate 

the virtual environment. These advantages demonstrate the value of this project 

pursuing virtual meetings as a means of holding remote meetings. 

The work done by Al Qahtani identifies aspects of existing virtual meeting 

software that limit its usefulness. It identified the avatars in Second Life as being 

particularly unsuitable for their purpose. Their clumsy controls and lack of 

expression were key areas where the avatars had problems. These two areas show 

clear possibilities for improvements using the motion controllers, given these 

devices can capture a user’s body movement directly. Also, the experimental 

meetings that were held as part of “Virtual Worlds as Meeting Places” provide a 

basic model for a usability trial for the software created as a part of this project. 

In “Kinected Conference” DeVincenzi et al. show that the application of the 

Kinect to remote meeting software can successfully lead to new features that can 

address limitations and create new, compelling advantages. This reinforces the 

idea that the Kinect can be used to improve virtual meeting software. 

The work of Oikonomidis et al. demonstrates that the raw data of from the Kinect 

can be used in ways beyond what is provided by existing Kinect software. It also 

lays out potential paths for advanced gesture recognition for the software in this 

project. 



22 

 

  



23 

 

Chapter 3: Project Design 

This project began with work previously done at the University of Waikato 

investigating the advantages and limitations of virtual meetings. A few months 

before the project began Microsoft had released its Kinect motion controller for 

the Xbox 360. The core idea behind this project was to investigate ways in which 

this new technology could be used to address some of the limitations of virtual 

meetings that were found in the previous study, and to look for new ways to apply 

this technology to further improve the experience of holding a virtual meeting. 

This chapter looks at the goals and history of the project. The first section of this 

chapter will outline the four key steps that were identified. The subsequent 

sections will look at each step and talk about the approach taken when attempting 

to complete those steps. Also discussed in these sections will be how these 

approaches were chosen, including alternative methods that were considered and 

the reasons for which they were ultimately rejected. 

3.1 Project Outline  

From the start of the project, the basic goal was to use the Kinect device to 

enhance the experience of participating in a virtual meeting. It took some time to 

clarify exactly how to go about achieving that goal. The project proceeded in four 

steps, listed below. The approach taken was experimental, ideas were formulated 

and refined through informal testing, so steps 2 and 3 were iterated several times. 

1. Investigate the capabilities of the Kinect device and software. 

2. Apply those capabilities to design potential enhancements for virtual meeting 

software. 

3. Build these enhancements into a purpose built piece of software. 

4. Evaluate the usefulness of those enhancements by testing that software with 

real people. 

The following sections will discuss each of these steps in detail. 



24 

 

3.2 Kinect’s Capabilities 

The first step called for an investigation into the capabilities and limits of the 

Kinect device and the software available to interface with it. 

At the time this project started (early in 2011), Microsoft provided no official 

support uses of the Kinect device outside of companies licenced to develop games 

for the Xbox 360. Despite this, since the release of the Kinect device in late 2010, 

third parties had been developing unofficial ways to interface with the Kinect 

from a PC. 

To investigate the Kinect’s practical capabilities and limitations, a piece of 

software was created for this project. This software could be thought of as the 

predecessor to the software that was to be created as part of the third goal of this 

project. The software was written in C++ and utilised libraries and drivers 

provided by a company called PrimeSense. PrimeSense was the company 

originally responsible for providing the 3D depth sensing technology that was 

used in the Kinect device. They elected to release their own software for 

interacting with a Kinect device. Their software is divided into two parts. One is 

called the OpenNI framework which is an API for creating programs that can 

make use the 3D camera data that the Kinect provides (the API is intended to be 

usable with a wider variety of 3D camera hardware than just the Kinect) 

(OpenNI.org, 2010). The other bit of software provided by PrimeSense is called 

NITE. NITE is responsible for the analysis of 3D data coming in from the Kinect; 

it is this software that provides things such as user skeleton tracking and gesture 

recognition (PrimeSense, 2011). PrimeSense also provided device drivers for 

using the Kinect with a PC (Joystiq, 2010). 

The software that was created for this stage of the project had no 3D graphics and 

was largely directed at looking at the information that could be acquired from the 

Kinect, what that information looked like and how accurate it was. During this 

exploratory phase the software was programmed to do things such as using the 

Kinect to greet people as they walked through a door, or give them instructions 

based on what they were doing. 



25 

 

3.3 Potential Enhancements 

This section looks at the specific ways that were considered for enhancing the 

process of holding a virtual meeting. Within each subsection, each individual 

enhancement is outlined and discussed.  

The first of the enhancements that are listed here directly address problems and 

limitations associated with virtual meetings in the program Second Life that were 

encountered in the work for “Virtual Worlds as Meeting Places” as discussed in 

Chapter 2 of this thesis. These enhancements were intended as potential solutions 

to those problems. The remaining enhancements listed in this section were created 

to take advantage of the abilities of the Kinect to improve virtual meetings in new 

ways that had not previously been considered. 

3.3.1 Avatar Control 

One of the first of the problems to be identified by previous work in Second Life 

was that there was no way to tell if a user was actually present and paying 

attention during a meeting (just because their avatar is in the virtual meeting 

doesn’t mean the user is still at their computer) unless that user constantly issued 

commands to their avatar to perform actions (like clapping, laughing etc.). 

Essentially, a user was required to constantly and actively provide some kind of 

input if they wanted to indicate their continued presence at a meeting. A potential 

way in which the Kinect technology could be applied to solve this problem was 

obvious: use the skeleton tracking abilities of the Kinect to enable a user to 

passively puppeteer their avatar. The idea being that whenever a user moved, their 

avatar would perform the same movement. This meant that a user could indicate 

their presence simply by doing the things that one does when sitting down 

listening to somebody speak (look around, adjust sitting position etc.), without 

any active effort on their part to issue commands to control their avatar. 

3.3.2 Facial Expression 

A second problem encountered in the study done in Second Life was the lack of 

any way to gauge people’s reactions to what was being said in a meeting unless 

that person was explicit, either stating their reaction verbally, or commanding 



26 

 

their avatar to perform some action that reflected their reactions. To an extent this 

is related to the first problem and is indeed partially solved by the solution to the 

first problem: if a person’s skeleton is being tracked by a Kinect sensor, and their 

movements are being reflected by their avatar, then that person’s body language 

will be visible to the other participants in the meeting. While body language may 

already be accounted for in this project, this does not entirely solve the problem as 

a person’s body language is only one way in which they can express their 

feelings.  

A person’s facial expression also provides a way to gauge their feelings. As with 

body language, there is no automatic way to capture and broadcast a person’s 

facial expression when they are involved in a meeting in Second Life. Initially the 

idea of using the data from the Kinect to animate a user avatar’s face in the same 

way as their body was considered for this project. Ultimately however, it was 

decided that attempting to implement a system for doing this kind of face tracking 

would be too large of an undertaking. Furthermore, it would have required the 

implementation of some kind of facial animation system within the graphics 

system for this project, which would have taken even more time. Fortunately a 

simpler way of transmitting a user’s facial expression was available. The use of 

the skeleton tracking information, along with a pair of transformation provided by 

the Kinect SDK made it possible to isolate the part of the video feed of the Kinect 

that contained the image of the user’s face. This meant that it would be possible to 

simply texture a user’s avatar’s head with a live image of that user’s head.  

3.3.3 Head Orientation 

The first enhancements that weren’t derived from problems and limitations 

encountered in earlier work actually arose from a limitation with the Kinect itself. 

The system does not provide information about the current rotation of a user’s 

head in its skeleton tracking output. This means that while most of a user’s body 

movements will be reflected by their avatar, the direction that they are looking in 

won’t be. Furthermore, even if the Kinect did provide this information it would 

not really be useful as the user’s head would usually be facing straight ahead 

towards their computer monitor no matter where in the virtual environment they 



27 

 

were looking. This meant that a special system was required for deciding how to 

animate a user avatar’s head, based on where the user’s view was directed in the 

virtual environment. 

3.3.4 Presentations and the Display Screen 

The act of giving a presentation to an audience in a meeting is naturally enhanced 

by user avatars being animated by the skeleton tracking capabilities of the Kinect 

for the reasons given above. It frees the user to behave naturally, rather than issue 

commands to their avatar to perform certain actions. This translates to performing 

a presentation in that a user simply needs to do the presentation in front of the 

Kinect camera in the same way that they would in a real world meeting, and their 

avatar would mimic their actions. This idea of a single participant performing a 

presentation to the other participants in a meeting lead the creation of a series of 

new potential features for the software in this project that would make performing 

such a presentation easier. 

One of these potential new features could occur when a user is using a slideshow 

or some other similar visual aid as a part of their presentation. It was thought that 

it might be desirable to give that user a real world screen as a prop to do their 

presentation with; a corresponding virtual screen would exist in the virtual 

meeting environment that the user’s avatar would stand in front of. The image 

displayed on the real world screen would be captured and transmitted to all 

connected clients to be displayed as a texture on the virtual screen in the virtual 

meeting room. The user would be able to point to things on or perform other 

gestures to their real world screen and their avatar would match those movements 

in front of the virtual screen. 

3.3.5 Gesture Controls and Simulated Touch Screen 

The idea for the linked virtual and real world display screen system lead to a 

handful of ideas for features that would allow the user who was doing a 

presentation to control the contents of the screen using gestures recognised by the 

Kinect. Initially it was planned that these gestures would be simple actions that 

allow control of the contents of the display screen in basic ways. This included 



28 

 

functionality that would allow the user to zoom in on and pan across the image 

that was currently displayed on the screen using broad hand gestures. Later in the 

project a new possibility became apparent. It seemed that if the software was 

aware of the location and dimensions of the screen, then that information could be 

compared against the location of the users hand to give fine control over areas of 

the screen; essentially this meant that there was the possibility of creating a 

rudimentary touch surface out of any screen by using the Kinect. 

3.3.6 Automatic Camera Positioning 

Another potential feature was that was identified was the capability for the 

software to intelligently select the position and angle the user needed or wished 

the camera in the virtual environment to face. The idea behind this was to free the 

user from having to use the keyboard and mouse to look around the virtual 

meeting room. Instead the user would be able to sit back and pay attention to what 

was going on in the meeting, using subtle and natural gestures to change their 

view if necessary.  

3.3.7 The Advantages of Virtual Reality 

During the design of this project a common theme was to find ways of utilising 

the fact that the meeting takes place in a virtual world in order to do things that 

one could not do in a meeting that takes place in the real world.  

An example of this lies with the camera controls. Instead of having their view of 

the virtual environment limited to the perspective of their own avatar, users have 

the option of taking control of the virtual camera and positioning it anywhere in 

the environment without shifting their avatar. This could be used by a user to get a 

better view of another participant while they spoke or see a close up of the 

contents of the virtual display screen without disrupting other participants and 

interfering with the meeting. This can be expanded upon by allowing a user to 

connect to the meeting with a second instance of the software (without enabling 

its Kinect related capabilities). The user could position this second instance to see 

the meeting from a different angle, essentially giving them two different views of 

the scene. A presenter could use this, for example, to simultaneously get a view of 



29 

 

their audience and their self while they performed a presentation. Because the 

second instance would have no Kinect data, there would not be a duplicate avatar 

in the scene, meaning no disruption would occur. 

The development history and technical details of all of the features listed above 

can be found in : Development & Implementation. 

3.4 Building the Software 

Early on there was a great deal of consideration given to how the main software 

for this project should be created. This included consideration of what platform to 

build the software on, whether it should be built from the ground up, or be based 

on some already existing software, and even what programming language would 

be best used to create the software. 

3.4.1 Early Investigations 

As this project was based principally on work done using the commercially 

available virtual world software called Second Life, there was some early 

consideration given to using Second Life as a platform to build on; the idea being 

to incorporate Kinect functionality directly into the Second Life application, 

allowing a direct comparison between the results of this project and the results of 

the project it is based on. Second Life has some limitations however that 

ultimately made it undesirable to attempt to follow this course. Among these was 

that there was no guarantee that it would be possible to incorporate skeleton 

tracking data from the Kinect to control a Second Life avatar in all the ways that 

were desirable to investigate. Additionally when it comes to matters of doing 

presentations in Second Life there are limitations on what can be transmitted 

between participants (for example, in order to use a slide show, a in game 

currency must be paid to upload the slides in the show) (Al Qahtani, 2010). Also, 

the fact that all activity in Second Life takes place on a persistent virtual world 

could have caused difficulties and disruptions when attempting to test any 

software. In particular any data that needed to be sent between individuals in the 

meeting needs to fit within the network protocols of the persistent world servers. 



30 

 

For these reasons it was decided that it would be better to build experimental 

software as a stand-alone application. 

The next decision to be made was how to incorporate 3D graphics into the 

program if Second Life was not going to be used. Consideration was given to 

building the software as a mod to an existing video game. This would differ from 

the implementation using Second Life that was dismissed above in that it would 

not be dependent on online persistent-world servers populated by other users 

across the world. Such a game mod could use its own servers which meant that it 

would be possible limit people on those servers to those directly involved in the 

project, and that it would be possible to implement a custom network protocol to 

carry whatever data was necessary. Particular consideration was given to utilising 

the Source engine, a video game engine created by Valve Software. The idea was 

to use the graphics and network systems of the engine, and to incorporate Kinect 

related functionality into these systems. This approach was ultimately rejected due 

to it not being clear if it would be feasible to implement a system for animating 

characters from the skeleton tracking data provided by Kinect within the Source 

graphics system. The Source engine is not open source (Valve Software, 2007), so 

if there was some kind of underlying obstacle to allowing Kinect data to be used 

in this way, then it could have been extremely difficult to identify the problem and 

it may have been impossible to fix it. 

3.4.2 Ogre 

It was always clear that it would be desirable to base the software for this project 

on a system that would reduce the time spent programming graphics related code, 

as the goal of the project was not to investigate how to draw 3D graphics from 

scratch. With plans to use Second Life or the Source engine rejected, another 

solution had to be found. One possibility was the Ogre game engine. Ogre differs 

from the Source engine in that it is open source (Ogre), so if there were obstacles 

in implementing Kinect functionality it would likely be possible to isolate and fix 

these problems. The other advantage present in using Ogre rather than building 

the graphics from scratch is that graphics assets that are compatible with its 

systems are freely available on the internet(Ogre, 2012), which meant that time 



31 

 

would not need to be spent creating graphics to represent users and objects in the 

virtual meeting space. Another advantage of using Ogre is that there were already 

demonstrations available on the internet, of characters within its animation system 

being dynamically animated based on skeleton tracking information from the 

Kinect (OpenNI, 2011). As a consequence of this some early work was done in 

looking at the Ogre engine in preparation for using it as the main graphics system 

for the project. 

3.4.3 The Kinect SDK 

Not long after the decision to use Ogre was made, Microsoft released its own 

SDK for developing Windows applications with Kinect support. This opened up a 

new possibility for software development. The Kinect software from Microsoft 

did not have as all of the same features as the software provided by PrimeSense, 

but it did have a few advantages (Hinchman, 2011)(Microsoft Kinect SDK vs 

PrimeSense OpenNI). The first of these was that its skeleton tracking system was 

more seamless to a user; when utilising the PrimeSense software, a user would be 

required to assume a calibration pose before skeleton tracking could begin. The 

calibration pose involved having the user stand up straight with the arms held out 

horizontally away from the body, and bent upwards into a vertical position at the 

elbow. The Microsoft provided software could begin skeleton tracking on a user 

as long as it could make out the users arms, legs, and head, regardless of what 

position they were in. Overall, the process of locking onto a user was faster and 

more reliable with the Kinect SDK. Another significant advantage of Microsoft’s 

Kinect SDK was that it was designed to be usable with the .NET framework 

which meant that the software for the project would be able to be written in C# 

(Microsoft, 2011). The C# libraries for the Microsoft’s SDK were simpler to use 

than the C++ libraries for both Microsoft’s and PrimeSense’s Kinect software. 

Using them would result in faster development of the features needed for the 

project. 



32 

 

3.4.4 XNA 

Writing the project’s software in C# provided another advantage. It would make it 

possible to utilise the XNA libraries (provided by Microsoft) to create the 

graphics. This meant that Ogre could be disregarded, along with any need to learn 

how to operate it. XNA is not a game engine per se, but a framework for building 

video games that is designed to handle much of the basic code for establishing 3D 

graphics (among other things) (Microsoft, 2010). The advantage of this system is 

that it provides the greatest flexibility to the programmer when creating the 

graphics for a program of any of the systems considered for this project earlier. 

Ultimately it was decided that the final software for this project would be written 

in C#, utilise the Kinect for Windows SDK from Microsoft for interacting with 

the Kinect device, and use the XNA framework to handle the game-like aspects of 

the software (graphics and mouse/keyboard input.  

3.4.5 Networking 

There was still one large component of the program that needed to be considered. 

This was component would be responsible for the network communication that 

the program would need in order to transmit information between all of the 

participants in a single virtual meeting. It was quickly decided that it would be 

best to simply build a networking system from scratch, as the requirements of the 

software were fairly simple. All that needed to be done was to build a system that 

could exchange information between each participant in the meeting, and ensure 

that all data reached all participants. Consideration was first given to whether the 

system should use a distributed peer-to-peer model, where each instance of the 

software would have a connection to every other instance involved in a given 

meeting; each program instance would be alone responsible for ensuring that its 

information reached every other connected instance of the program.  

In the end however, it was decided that a client-server model would be used. In 

this system, one instance of the program functions as the server for a meeting; all 

other participants function as clients, and must connect to the server to join the 

meeting. The clients only maintain one connection (to the server) and send and 

receive all data relevant to them across that connection. Each time a client is ready 



33 

 

to send data to all of the other participants in a meeting it will send a copy of that 

information to the server. The server is responsible for ensuring that all 

information it receives is forwarded on to all other clients. The server is also 

responsible for sending its own data to each client.  

The client-server model was selected over the distributed model for two reasons. 

Firstly it simplifies the system by requiring only one connection per client, rather 

than a connection from every client to every other client. This makes it simpler to 

establish a virtual meeting as each client only needs to know one IP address (the 

server’s). This also eliminates the possibility of failed connections between clients 

causing some clients to have only partial information about who is involved in the 

meeting. The second reason is that it makes it easier to implement a system where 

one person is responsible for running and managing the meeting. The server 

controls the state of the meeting and can issue commands to the clients (say for 

example, to select which client is currently doing a presentation, and thus 

controlling what is displayed on the virtual screen). Having a simple system for 

network communication is desirable because it reduces the amount of time spent 

creating and debugging it, leaving more time for the Kinect related parts of the 

software. The client-server model did carry the potential disadvantage of being 

more prone to lag, as it put a large proportion of the networking responsibilities 

onto a single computer with a single network connection. It was decided that the 

advantages of the client-server model outweighed the disadvantages, particularly 

as in an experimental setting, it would be possible to ensure the server has all of 

the resources it required. 

3.4.6 Audio 

In order to hold a meeting, users need to be able to talk to each other. This means 

that a method of transmitting audio between participants in a meeting would be 

required. Early in the project thought was given to including this functionality 

within the experimental software itself. In the end however it was decided that it 

would be best to use an independent third party program to handle audio 

communication during the user testing phase of this project. 



34 

 

The reason for this decision came down to the additional complexity that such a 

system would have added to the software. Thought would have had to been given 

to such things as how to capture and compress audio for transmission across the 

network, how to ensure that sound was reassembled from packets into a 

continuous audio stream reliably, and how to decide when to transmit at all (there 

is no point transmitting audio from a user when that user isn’t talking). These are 

problems that have already been addressed in existing software, and the potential 

audio related enhancements based on the Kinect’s microphone array were too few 

in number to justify the time that it would take to implement an audio system into 

the experimental software. 

3.4.7 Real and Virtual Environments 

In order to make progress with the project, it was necessary to make some 

decisions about the real and virtual worlds used for the experimental system. The 

virtual world created by the software, and the real world setting inhabited by the 

user need to be as closely matched as possible. When the user’s avatar is sitting at 

the meeting table in the virtual environment, the user should be sitting at their 

desk in the real world; and when the user’s avatar is giving a presentation in front 

of a virtual display screen, the user should be standing in front of a real display 

screen. 



35 

 

 

Figure 2: Virtual environment design 

Figure 2 shows the design of the virtual environment. It consists of a room 

containing a rectangular table in the middle, with chairs along two sides. It is 

similar to the layout used in the Second Life experiment. Participants’ avatars 

normally sit in the chairs during the meeting, and each user’s view of the virtual 

environment is usually from the perspective of their avatar (i.e. a first person 

camera). At one end of the room there is a large surface that functions as a virtual 

display screen which can be used by a participant to display images (e.g. slides in 

a slideshow). There is space in front of the screen and provision is made for an 

avatar (the presenter) to move from their chair to this space; there they can move 

about and gesticulate. When a user is presenting, their view of the environment 

will directed from the screen down the table towards their audience. 

Figure 3 shows the real world computer setup for use with the software. An 

ordinary computer can be seen with a user in front of a monitor with a keyboard 

and mouse. The user will see their view of the virtual environment on the screen; 

and be able to control certain aspects of the environment with the keyboard and 

mouse. A Kinect device is located above and behind the screen; this position 



36 

 

ensures that the device’s cameras have as clear a view of the user as possible 

while still ensuring that the user is far enough away from the device to be beyond 

its minimum range for detecting them. When the user is sitting in a chair as shown 

in Figure 3 their avatar would be sitting at the virtual meeting table. 

 

Figure 3: Real world user environment 

Figure 4 shows the real world setup for a user doing a presentation. The setup is 

similar what is shown in Figure 3; the key differences being that the user is further 

away from the device and is not sitting down, and that there is a large display 

screen behind the user. The display screen corresponds to the screen in the virtual 

meeting room. When the user interacts with this screen, those interactions will be 

reproduced between the user’s avatar and the virtual display screen. The space 

between the real world display screen and the Kinect device corresponds (loosely) 

to the space between the virtual display screen and the virtual meeting table, so 

the presenter may move freely through real world space and their avatar will be 

able to do the same in the virtual space without intersecting with any virtual 

objects. The idea is that a user can move between seated and presentation modes 

simple by standing up and stepping back. 



37 

 

 

Figure 4: Real world presenter environment 

3.5 User Testing 

The final stage of the project involved running an experiment to test the software 

in order to discover how successful the features that were included in it were at 

serving their purposes in a practical setting. A number of ways of testing the 

software were considered before a final design for an experiment was decided 

upon. 

There were two main formats for an experiment that were given serious 

consideration for use in this project. The first of these would have actually 

involved a series of experiments each of which would test one or more features of 

the program independently with different people at different times. For example, a 

single experiment might have involved having a single user sit down with the 

Kinect device and software set up on a provided computer, and that user would 

have been asked to complete one or more tasks relating to controlling their view 

of the virtual environment both using the keyboard and mouse, and using the 

automatic camera positioning system mentioned earlier. After carrying out the 

task the user would have been asked a series of questions on the experience, the 



38 

 

purpose being to find out the usefulness of the automatic camera controls over 

conventional camera controls, and to search for further ways to improve them. 

Different experiments in the series would have involved different users and 

different features being tested. 

The second potential experiment design that was considered called for a less rigid 

approach. Instead of depending on independent tests for all of the different 

software features, a single large test would be run involving multiple users testing 

all aspects of the software. The idea was to use the software as it would be used in 

the real world, with all of the participants involved in a single experiment 

conducting a meeting with each other. The participants would be instructed about 

the all of the features of the software and then asked to conduct a full meeting 

from beginning to end using the software. After they were done, the participants 

would answer questions about their experience using the software. The intention 

of this format of experiment is that the meeting that is being held between the 

participants is a real meeting, i.e. a meeting that would have been held in the real 

world even if it was not part of an experiment for this project. 

The main advantage of the first of these two options was that it would ensure that 

every feature could be tested in detail, and that the participant in the experiment 

would be focussed on giving exactly what information was desired by the 

experimenter. The second option was ultimately chosen however as it provided 

several different advantages.  

The first was that the second format is similar to what was done in “Virtual 

Worlds as Meeting Places”. This allowed a more direct comparison between the 

experience of a virtual meeting with and without using Kinect enabled features.  

The second advantage is that it provides one piece of additional information about 

each of the various features that get tested; specifically, the relevance and overall 

usefulness of that feature. If the first option for testing the software had been 

chosen then each feature would have been tested explicitly, a single experiment 

would test a feature in detail, regardless of whether it was actually particularly 

useful in the context of an actual virtual meeting. In the second possible 

experiment format, if a feature was not useful would likely go unused. This would 

give accurate information about whether it was worth having a given feature at all.  



39 

 

The third advantage of the second experimentation method is that it provides 

information about the experience of a virtual meeting in general. It makes it 

possible to determine what the advantages and disadvantages of a virtual meeting 

over other forms of meeting (e.g. real world meeting in person, video conference, 

teleconference etc.). If any participant in the meeting has been involved in any 

other type of meeting, then they will be in the position to comment on what they 

feel are the advantages or disadvantages of holding a virtual meeting. The 

information gained about the general experience of a virtual meeting could be 

used in future to come up with way to further improve that experience. 

The fourth advantage of this method lies in the fact that the participants are 

expected to be carrying out a real meeting with a purpose. This increases the 

likelihood that participants will be thinking about the features and experience of 

the virtual meeting software in a realistic context (e.g. when attempting to do 

something they would normally do in a meeting they might feel frustrated that 

they were unable to do it in a virtual meeting, or contrariwise satisfied with some 

feature that allowed them to do what they wanted). This means that the opinions 

received at the end of the experiment are more likely to be representative of 

individuals who would be using the software out in real world circumstances. The 

result of this is that the analysis of the results of the experiment will more likely to 

provide information that could be used to improve the experience of a virtual 

meeting in a real world situation.  

The primary disadvantage of the second method of running an experiment is that 

it is more time consuming to carry out. Having the participants hold a real 

meeting may be useful for having them behave naturally when using the software, 

but it also means that much time is spent with the participants simply carrying out 

the business of that meeting, and not necessarily thinking about the virtual 

meeting experience. Ultimately it was decided that the advantages of the second 

method outweighed the disadvantages, which is why it was selected as the method 

to use in the user testing experiments for this project. 

It is this decision to conduct the user testing for the software by holding actual 

meetings with multiple participants that necessitated the inclusion of the 

networking system for the software that was mentioned in the last section. 



40 

 

  



41 

 

Chapter 4: Underlying Systems 

The software created for this project (VMX) has relied on many software libraries 

and development kits. Chief among them, and central to the software’s function 

have been: XNA provided by Microsoft, which provides the 3D graphics 

functions for the software; OpenNI which is an independent open source system 

for interfacing with the Kinect device, it was used early in the software’s 

development; and the Kinect SDK which is Microsoft’s official system for 

interfacing with the Kinect device. The official Kinect SDK only became 

available a few months after the beginning of this project, hence the use of 

OpenNI earlier in the project’s development. 

Starting with XNA this chapter will look at each of these systems in detail. A brief 

explanation of each systems origin and intended purpose will be given first; then 

their purpose within VMX will be discussed, along with details of that usage. The 

details given in this chapter will underpin the following chapter, which will 

discuss the implementation of the VMX software in more detail. 

4.1 XNA 

This project uses XNA primarily to handle the 3D graphics functions of the 

software. XNA is also used for several other purposes in the program. It plays a 

role in initialising the program, providing and calling various core methods that 

must be overridden by VMX. It handles the running of the main program loop. It 

also provides access to the data provided from the keyboard and mouse attached 

to the computer. Much of the information in this section is derived from the XNA 

Game Studio Documentation(Microsoft, 2010). 

XNA (XNA is Not an Acronym) was created by Microsoft in the middle of the 

last decade. It is a runtime environment designed to facilitate the creation of video 

games. It was made with the intention of making the game development process 

easier by providing much of the underlying code and functions that are often used 

in games, freeing the developer to focus on programming the systems that are 

specific to their own games (Microsoft, 2004). Another aspect of XNA is that it is 

designed to make it relatively simple to produce software that is compatible with 



42 

 

several Microsoft products including: Windows, Xbox, and Windows Phone 

(Microsoft).  

As XNA is targeted for game development, it may seem odd to use it for 

developing the software in this project (which is not a game). The reason for using 

XNA is that while VMX might not be a game, it does share several aspects with 

games. Specifically, VMX extensively utilises 3D graphics and takes keyboard 

and mouse inputs from the user to control aspects of this environment. Also, like a 

game the software is intended to still be actively doing things when not taking any 

user input, necessitating the use of a ‘game loop’ to control the program’s 

functions (in this report the game loop is referred to as the ‘program loop’ or 

‘main program loop’). 

It should be noted that Microsoft states that XNA is not tested for compatibility 

with the Kinect SDK (Microsoft, 2011). However, throughout the development of 

the VMX software, which uses both, no issue has arisen. Indeed there have been 

some issues with the simultaneous use of XNA and the .NET drawing libraries 

which are also used by VMX. All of these issues concern classes in the 

frameworks sharing names (for instance both XNA.Framework and 

System.Drawing contain classes named ‘Color’, ‘Point’, and ‘Rectangle’), this is 

easily remedied with appropriate ‘using’ statements to rename the offending types 

however as shown in Figure 5. 

using DrawColor = System.Drawing.Color; 

using XnaColor = Microsoft.Xna.Framework.Color; 

using DrawPoint = System.Drawing.Point; 

using XnaPoint = Microsoft.Xna.Framework.Point; 

using DrawRect = System.Drawing.Rectangle; 

using XnaRect = Microsoft.Xna.Framework.Rectangle; 

Figure 5: Resolving conflicts between libraries 

The full XNA system is very comprehensive including all kinds of functions and 

systems for video game development. VMX utilises only a handful of these 

systems, those being the: core program framework, the 3D graphics systems, and 

the keyboard and mouse input systems. 



43 

 

4.1.1 XNA Core 

The core of any XNA program is the ‘Game’ class. Programs that use XNA are 

expected to have their central class inherit from Game. The Game class provides 

three abstract methods that are important to the function of an XNA program. 

These methods must be overridden by a programmer using XNA to insert their 

own program’s code so it can be called by XNA’s underlying framework. These 

three methods are called ‘Initialise’, ‘Update’, and ‘Draw’. In addition to these 

three there is another pair of methods that are less critical but work in the same 

way as the main three; these methods are ‘LoadContent’ and ‘UnloadContent’. 

The Initialise method is called by XNA shortly after the program is started, after 

the Game and Graphics Device classes have been instantiated, but before 

LoadContent is called. It is expected by XNA that this method will be used for the 

initialisation of various aspects of the program. In particular this is where it is 

expected that services used by the program will be initiated, and any non-graphics 

related content will be loaded. The base Initialise method in the Game class also 

has the function of calling the Initialise method of any ‘Game Components’ 

(Game Components are a means XNA uses to allow modular systems that can be 

loaded and unloaded as their functionality is required to be included in a game), 

so a call to base.Initialize must be made from the overriding method to maintain 

XNA’s functionality. The Initialise method is called by XNA before the Draw 

method; the result of this is that nothing is displayed on screen until initialisation 

is complete. 

The Update method is one of the most important methods in the entire system. 

This method is where most of the code that must be run on every iteration of the 

program loop is placed. Under normal settings, XNA does not leave the frequency 

with which this method is called entirely up to chance. By default XNA uses a 

variable called TargetEllapsedTime to control how frequently Update is called. 

When XNA is ready to call Update, the TargetEllapsedTime variable is checked 

against the actual amount of time that has passed since the last time Update was 

called. If the actual time passed is lower than the target time, then XNA will wait 

to call the Update method. Usually after Update is called the Draw method is 

called. However, if the update method takes so long to complete that by the time it 

is finished the actual elapsed time exceeds the target elapsed time then Update 



44 

 

will be immediately called again. This has the effect of ensuring that Update is 

called at the required frequency even when ‘catching up’ from a slowdown. The 

cost of this is that it causes graphics frames to be dropped if the Update method is 

running too slowly. XNA does allow this system to be disabled, instead having 

the Update method run whenever the program is ready to do so. 

Complementary to the Update method is the Draw method. This is method is 

usually called after the Update method (except in the cases as mentioned above)  

and is responsible for handling the updating of on screen graphics to reflect 

changes to game state made in the update method. Note that where a call to 

Update is delayed because not enough time has passed since the last call, the 

Draw method will still be called. Due to the potential discrepancy between the 

frequency if calls to the Update and Draw methods, it was important to ensure that 

VMX strictly kept all updates to program state in the Update method, and left the 

Draw method to deal with things that have no bearing on the progression of the 

game outside of drawing a single frame. 

The LoadContent method is used by XNA to load resources used by the graphics 

system into the program. It is called from the Game class base Initialisation 

method. Additionally it is called at any time when graphics content needs to be 

reloaded (e.g. on a Device Reset event). Because it is called from the Initialise 

method, when first run at the start of the program it has to complete before the 

first call to the Draw method is made, meaning that it too will contribute to a 

delay between the program starting and graphics being drawn for the first time. 

Due to its function of loading in game content, the Load Content method makes 

heavy use of the XNA Content Loader, which will be discussed in the ‘XNA 

Graphics’ section of this document. 

The Unload content method serves the opposite purpose to the Load Content 

method, unloading graphics resources when the call is made to do so. 

4.1.2 XNA Input 

The XNA framework contains an extensive library for taking user input into a 

program. A host of different devices are supported by the framework including: 



45 

 

game pads, keyboards, mice, touch surfaces, accelerometers, and microphones 

(though not Kinect sensors); exactly which of these is supported depends on the 

platform the program is running on (for instance, the accelerometer and touch 

surface systems only work on programs that are running on a Windows Phone 7 

system). Of interest to this project are the systems for taking input from the 

keyboard and mouse. These systems both depend on the program polling the 

XNA libraries to obtain the current state of the mouse or keyboard (i.e. key 

presses and mouse movements do not fire events that a program can hook on to). 

To use input from a keyboard XNA provides a data structure called 

‘KeyboardState’. At any time a program may obtain a copy of the current state of 

the keyboard by calling the GetState method from the Keyboard class that is 

provided by the XNA framework; this method is static so there is no need to 

instantiate a Keyboard object. The primary purpose of a KeyboardState object is 

to provide information about the keys that are currently being pressed. It provides 

four different ways that can be used to retrieve this information, three of those 

ways are methods provided directly by KeyboardState: IsKeyUp, IsKeyDown, 

and GetPressedKeys; and the fourth way allows individual keys to be accessed 

directly. VMX only uses the IsKeyUp and IsKeyDown methods in its operation. 

IsKeyUp is a function that is used to determine if a key is not currently being held 

down by a user. It works by taking a key’s identifier as a parameter and then 

returning a Boolean; if the key is being pressed then the method will return false, 

if it isn’t then it will return true. IsKeyDown functions in the same way as 

IsKeyUp but returns true if the key is being pressed and false otherwise. Keys are 

identified through the Keys enumeration (also provided by the XNA framework) 

that allows them to be easily accessed by name.  

Access to the mouse works similarly to the keyboard. The XNA framework 

provides a Mouse class that has a static method called GetState that can be used to 

acquire a MouseState object which contains all of the data about the current state 

of the mouse. Unlike the Keyboard object, the Mouse object has a couple of extra 

public members besides GetState. These members are WindowHandle and 

SetPosition. WindowHandle is a property which contains a reference to the 

window that is currently being used for mouse processing (usually the single 



46 

 

‘game’ window of the program). The most import fact about this window is that 

coordinates for the mouse’s current position are reported in the MouseState 

relative to the top left corner of the window (i.e. the mouse cursor coordinates (0, 

0) represent the position at the top left corner of that window). The SetPosition 

method can be used to programmatically reposition the mouse, the new 

coordinates are provided as parameters, and are also set relative to the top left 

hand corner of the currently set window. 

The MouseState object is somewhat simpler than its Keyboard equivalent. It 

provides no special methods for retrieving information, only a series of properties 

that can be accessed. There are essentially two kinds of properties in the 

MouseState. The first of these are the button properties. These properties are 

names LeftButton, RightButton, MiddleButton, XButton1 and XButton2. All of 

these return an object called ButtonState. ButtonState is an enumeration that is 

almost identical to the KeyState enumeration; it differs only in that the states are 

named ‘Pressed’ and ‘Released’ instead of ‘Up’ and ‘Down’. The second type of 

property contains the coordinates of the mouse cursor. There is an X and a Y 

coordinate property both are provided as integers which give the number of pixels 

between the cursor and the top left corner of the currently used window. The 

coordinates will be negative for X when the mouse is to the left of the window, 

and for Y when the mouse is above the window. 

4.1.3 XNA Graphics 

The main reason for this project using XNA was for its 3D graphics libraries. 

XNA provides a suite of tools for accessing and controlling graphics hardware, 

loading graphics content into VMX, performing graphics related calculations, and 

drawing graphics on screen. XNA is based on Microsoft’s DirectX 9 but provides 

a convenient object based interface to that library. 

The key components of the XNA graphics system are the 

GraphicsDeviceManager and GraphicsDevice. These classes are used by VMX to 

communicate with and control the graphics chipsets in a computer.  



47 

 

The GraphicsDeviceManager handles the configuration and management of 

graphics cards. It provides access to a GraphicsDevice object for each graphics 

card on the system. The GraphicsDeviceManager also provides several other 

services, a few of which are of interest in this project. In particular, it provides 

control of the size and shape of the back buffer. The back buffer is the ‘surface’ 

(area of memory on the graphics card) that graphics are rendered onto before 

being transmitted to the screen. The size of the back buffer is set using two 

properties in the GraphicsDeviceManager; these are the width and height in 

pixels.  

The GraphicsDevice class itself has a large number of functions in an XNA 

program. It is responsible for creating graphics resources (textures, for example), 

creating shaders, and rendering 3D primitives. It also manages additional 

configuration information for various aspects of the graphics rendering process. 

There are many methods provided in GraphicsDevice for drawing 3D graphics on 

screen. 3D graphics are made up of many graphics primitives which are 

essentially flat triangles that are oriented in 3D space. The primitives themselves 

are each made up of 3 vertices; vertices are points in 3D space that represent the 

corners of the triangles. The different methods handle different ways of providing 

vertices and connecting them together to form primitives. When drawing some 

piece of 3D geometry, the device will simply receive a list of all of the vertices 

that make up the primitives of that geometry. The device must decide how to 

assign these vertices into groups of three. There are two ways of doing this. The 

first is to simply read vertices off of the list three at a time and use each triple to 

draw a single primitive. The second way is slightly more complex; a second list is 

past in alongside the vertices, this list contains indices into the list of vertices. 

When drawing a primitive with a list of indices, the device will read three indices 

off of the list and then access the three vertices stored in the vertex list at the 

positions given by the three indices. These three vertices will be used as the 

corners of the primitive. The advantage of this method is that individual vertices 

in the vertex list can be referenced more than once, meaning that if several 

primitives have a vertex in the same place, then the data for that vertex for only 

needs to be included in the vertex list once.  



48 

 

VMX uses indexed primitives when it is drawing graphics. The reason for this is 

that all of the geometry in VMX is generated programmatically (i.e. not loaded in 

from external 3D model files). Separating the code for generating the positions of 

vertices from the code for linking those vertices together makes the algorithms for 

generating geometry more readable.  

A single vertex can contain several pieces of information. Generally speaking, all 

vertices will contain at least one set of three dimensional coordinates as a vector. 

These coordinates give the position of the vertex relative to the origin point within 

the 3D graphics space. In addition to this a vertex may hold other information 

such as: texture coordinates, which tell the device how to map a texture over a 

particular primitive; a vertex normal, which is a vector that is most frequently 

used to decide what way a primitive is facing with respect to a light source; and 

colour data, which tells the device what colour a primitive should be drawn. When 

drawing a primitive the graphics card needs to know what information is stored in 

a vertex and what to do with it. This is done with a structure called a vertex 

declaration. The vertex declaration is a very important piece of information. It 

defines that format that the vertex data is provided in. In VMX, vertices contain a 

position vector, a normal vector and texture coordinates.  

It should be noted that all vertex positions and normals are all stored in a XNA 

provided data structure called Vector3. As the name suggest a Vector3 object 

holds a three dimensional vector. 

A critical part of the process of rendering the graphics in a program is the shader. 

The shader is responsible for taking all of the graphics data for a scene and 

actually transforming it into a 2D image that can be displayed on a screen. 

Shaders themselves are programs that run on graphics hardware, they are typically 

written independently of the program that uses them by in a specialised 

programming language (e.g. High Level Shader Language (HLSL))(Li, 2009). 

Shaders can be loaded into a program like any other graphics resource, however 

XNA also provides a prebuilt shader that is capable of rendering a scene with 

fairly ordinary graphics effects. This XNA provided shader is called BasicEffect. 

The BasicEffect shader is capable of a wide range of standard graphics effects, 

such as: vertex transformations, alpha blending (transparency), ambient light, 



49 

 

diffuse colouring of objects, directional lighting (up to three independent lights), 

emissive colouring of objects, distance fog, specular lighting, and texturing. The 

BasicEffect shader object is created in the program by the graphics device; this is 

done by instantiating a new BasicEffect object, passing the device into the 

BasicEffect constructor as a parameter. The shader can be used to draw objects by 

loading it into the device before calling the DrawUserIndexedPrimitives method 

through the graphics device.  

When drawing a piece of geometry one of the most important functions carried 

out is to transform the position of the geometry from its 3D representation in the 

vertex list in to 2D coordinates representing pixels on a computer screen. This is 

done by transforming the position vector (and if present, the normal vector) of 

each vertex using a series of matrices. There are three matrices used: a world 

transformation matrix, the purpose of this is to shift geometry that is currently 

been processed into its proper location in the scene (relative to other geometry); a 

view matrix which shifts all vertices from being positioned relative to an arbitrary 

origin point, to being positioned relative to the camera in the scene; and a 

projection matrix that transforms the 3D space positions of the vertices into 2D 

screen space coordinates that give the location of the vertex as is will appear on 

the computer monitor. 

XNA provides a Matrix class that is used for all transformations. All matrices 

used by XNA are 4x4 so a Matrix object contains 16 values. The XNA Matrix 

class is an extremely powerful tool with a wide array of features, including 

methods for handling particular instances of a matrix, and static methods for 

generating standard matrices. 

When dealing with an instance of a matrix there is one method of particular 

interest for VMX. It is the Decompose method. It is intended for use on world 

transformation matrices. When called it will return the individual components of 

the transformation, specifically the translation vector, rotation quaternion, and 

scale vector as separate structures. It particular use in VMX will be looked at in 

Section 5.3 . 

The Matrix class also provides a series of static methods that allow new matrices 

to be generated easily from parameters. These include methods for creating 



50 

 

translation matrices from a vector, several ways of creating rotation matrices 

many of which are used in this project (including rotations around a cardinal axis 

by a given angle, rotations around a given axis by a given angle, and rotation 

matrices generated from a quaternion), there are also methods for generating scale 

matrices from vectors, and a handful of ways of generating perspective matrices. 

In addition to these methods for providing new matrices, the Matrix class also 

provides functions for performing various operations on existing matrices; these 

include methods for adding matrices together or subtracting them from one 

another, dividing or multiplying the components of a matrix by scalar values or 

the components of other matrices; a matrix can be inverted, negated or transposed; 

and two matrices can be linearly interpolated. All of these functions produce a 

new matrix as a result.  

The Content Loader is a system provided by XNA for managing external graphics 

content and loading data from external files into a program. It is capable of 

loading in data from a wide variety of different file types (e.g. textures, 3D 

models etc.) into an appropriate data structure for its kind of data. XNA calls the 

data items that are loaded ‘Graphics Resources’. Resources can also be generated 

programmatically. VMX uses the content loader to load static textures. It loads 

these textures from ordinary image files (typically PNG format files). Within 

VMX the Content Loader does one other thing, it loads in a SpriteFont. The 

SpriteFont is used when drawing text on the screen.  

Textures in particular are used extensively in VMX. XNA provides a class for 

managing textures called Texture2D. Texture2D provides both a data structure to 

hold texture information, and a tool for manipulating that data. Texture 

information is represented as a 2D grid of ‘texels’. Texels in a texture are much 

the same as pixels in an image. Once filled with texture data, a Texture2D object 

can be passed directly into a shader where it will be used to texture colour in 

geometry when a 3D scene is being rendered. 

VMX utilises several different ways of getting data into a Texture2D object. The 

first of these is by Texture2D.SetData. This method has a few overloads but only 

one is used by VMX. The version of the method that VMX makes use of takes a 

two dimensional array of XNA framework Color objects. The two dimensions of 



51 

 

the array directly correspond to the two dimensions of the image, meaning that the 

location of each Color object in the array corresponds directly to the location of 

the texel it represents in the texture. This method is used when VMX generates 

the contents of a texture programmatically (e.g. when converting an image from 

the Kinect video data stream into a texture). Another method used by VMX is 

called Texture2D.FromStream; this loads data into the texture from an 

appropriately formatted image data stream (Kinect data cannot be loaded in this 

way as it is not provided by the Kinect runtime in an appropriate format). VMX 

only uses this method when receiving data from a screen capture operation. The 

final method used by VMX for loading in a texture is by using the Content 

Loader. 

4.2 The Kinect SDK 

The first beta version of the Microsoft Kinect SDK 1.0 was released in June of 

2011(Peckham, 2011). It is free to use for non-commercial use. It provides the 

APIs and systems necessary to build software for Microsoft Windows that utilises 

the Kinect sensor. It was adopted for use in the development of software for this 

project shortly after release. The structure of the libraries and the means by which 

the Kinect sensor data is processed and provided differs significantly from the 

structure used in OpenNI. The Windows compatible version of the Kinect SDK 

has limited functions compared with the features provided by the Kinect on Xbox. 

In particular, it lacks the gesture and facial recognition systems.   

The second beta version was released in November of 2011 (Clayton, 2011). It 

provided only a handful of miscellaneous improvements such as a new event that 

fires when the status of the Kinect device changes and improvements to the 

skeletal tracking system (Stott, 2011). Few of the improvements had much effect 

on VMX; nonetheless VMX was updated to function with this version. The final 

release of version 1.0 of the SDK was released in February of 2012 (Cangeloso, 

2012); this included a series of new and updated features but due to the closeness 

of its release to the completion of this project, VMX was not updated to run on 

this new version. 



52 

 

Unless otherwise noted the information in this section was acquired from the 

Kinect for Windows SDK documentation (Microsoft, 2011). 

4.2.1 Image Data Streams 

First and foremost, the Kinect SDK provides access to the raw data stream from 

each of the Kinect device’s on board sensors. A colour video stream can be 

accessed from the RGB camera, a stream of depth data can be obtained from the 

depth sensing camera system, and an audio stream can be acquired from the 

microphone array on the device. When first initialised various parameters can be 

passed into these streams to control aspects of the data they provide. 

The Kinect camera itself actually captures a 1280 x 1024 Bayer colour image at 

30 frames per second. This data is compressed and converted to an RGB image 

before being transmitted over USB to the Kinect runtime on the host computer. 

Without compression it would not be possible to transmit image data across the 

USB connection fast enough to maintain 30 fps. The trade-off is a reduction in 

image quality. The colour video stream that is then provided by the runtime can 

be configured in several ways. The resolution of the video frame can be 

configured to one of three available settings: 80 x 60, 320 x 240, and 640 x 480. 

The number of image frames from the camera that can be buffered at once is also 

customisable. It can be set as high as four. The other main setting that can be 

changed is the format in which the image data is provided. There are three 

possible settings available for this. The data can be provided as 32-bit per pixel 

image formatted in sRGB colour space. Only the lowest order 24-bits of each 

pixel’s data contain useful information with 8-bits each for the red, green and blue 

channels. The image can also be formatted as a YUV colour image with 16-bits 

per pixel; this format saves memory by only taking up half as much data per pixel. 

When using a YUV format image, additional limitations are placed on the image 

stream: it must be using a resolution of 640 x 480, and it must be running at 15 

frames per second. The third type of image stream available is also RGB but first 

converted from a YUV version of the image. VMX uses the 32-bit sRGB format 

as it makes translating the video data into a texture straight-forward. 



53 

 

The depth camera stream also has a series of configurable settings. Like the colour 

video stream is can be set at three different resolutions (the same three as the 

colour video). It also shares the configurable frame rate and frame buffer size. The 

depth data however is provided in different formats from the colour image data. 

There are two different depth data formats. Both of these formats have 16 bits per 

pixel.  

The first format is the depth data only setting. In this format the low order 12 bits 

of each pixel give the distance to the nearest object visible at that pixels 

coordinates in the sensors field of view. The distance is measured in millimetres. 

The value does not represent the distance from the point where the sensor is 

located to the point on the object; rather it represents the distance on the z axis 

between the (x, y) plane that the sensor sits on and the object. This means if the 

sensor was facing directly at a flat wall, the entire wall would be represented with 

the same distance values, instead of the distance increasing for pixels that were 

closer to the edge of the image. The other four bits of the pixel’s data are not used.  

The second setting for the depth stream format includes additional data in the 

form of player segmentation data. Player segmentation data is a bitmap where 

each pixel gives the user ID of the user that appears in that pixel on the depth 

image. Within the internal workings of the runtime, the player segmentation data 

is treated as a separate data stream from the depth data, however in practice it is 

only available from outside of the runtime when integrated into the depth stream. 

Each pixel in the combined depth/player segmentation data is still represented by 

16-bits. The 3 lowest order bits represent the user ID of the user that appears in 

the depth pixel for that image. If this value is zero then no user appears in that 

pixel. The high order 13 bits represent the distance to the object in that pixel, in 

the same way as the plain depth data format does. When using this format, the 

resolution of the depth image is limited to a maximum of 320 x 240. 

It is worth noting that when providing the depth stream data to a program, the 

runtime provides it as a byte array. Each pixel uses two bytes in the array, but the 

bytes are arranged so that the byte that has low order bits of the pixel is placed in 

the array at the position before the byte that has the high order bits. This order 

needs to be reversed before the bytes can be stored into a different type of 



54 

 

variable. Also of note is that if the depth value for a pixel is ever zero, it means 

that Kinect is unable to determine the distance to the object in the pixel. Typically 

this is caused by the object that is in that pixel, being either too close to or too far 

away from the sensor. 

The Kinect SDK provides two ways for a program to actually acquire this data 

from the runtime. The first is the polling method. When using this method a 

program will call a method in the Kinect libraries that will provide the latest 

available frame available for the requested data stream. The runtime will never 

provide the same frame more than once however, so it is up to the programmer to 

decide how the retrieval method should behave if a new frame is not available. 

This is done by providing the retrieval methods with a number that represents the 

maximum number of milliseconds to wait for a new frame before returning 

(essentially a time-out). By setting this value to zero the retrieval method can be 

made to immediately return when there is no new data, allowing the thread to 

carry out other tasks in the meantime. The time out value can also be set to 

infinity, which causes the retrieval method to block until a new frame is available.  

The second way to retrieve data is using events. When using this method the 

programmer writes their own event handler that is set up to do whatever needs to 

be done when new data is received from the runtime. This event handler can then 

be hooked into the runtime’s DepthFrameReady or ImageFrameReady events. 

The runtime will then trigger the appropriate event when new data becomes 

available, and pass on that data into the event handler provided by the 

programmer. This method saves the programmer having to manually poll the 

runtime for data. Only one of the two ways of retrieving data can be used at any 

one time, a single program cannot use the polling and event methods 

simultaneously.   

4.2.2 Skeleton Tracking 

The Kinect runtime is capable of tracking the position and orientation of two users 

standing in front of it. The system uses the depth data received from the Kinect to 

do this. A 20 “joint” skeleton is inferred based on the image of each user as seen 

by the depth sensor. Each joint in the skeleton has a set of coordinates that give its 



55 

 

position in 3D space. The skeleton data can be provided from the Kinect runtime 

to a program in the same ways that the depth and image frames are provided: 

either through the program polling the runtime to acquire the latest data, or by an 

event handler being hooked into the SkeletonFrameReady event in the runtime.  

The skeleton data is computed directly from the data in a depth image frame. A 

new skeleton frame is generated whenever the Skeleton Tracking Engine in the 

runtime finishes processing a depth frame. This occurs even if a depth frame has 

no users in it, thus it is possible for a skeleton frame to contain no actual skeleton 

data. A skeleton frame includes within it the timestamp of the depth frame that the 

skeleton frame was generated from, allowing the skeleton frame to be easily 

matched with its corresponding depth frame. 

The skeleton tracking engine provides two forms of skeleton tracking: active 

tracking, and passive tracking. The engine can handle two simultaneous actively 

tracked skeletons; an actively tracked skeleton contains complete data for the 

skeleton; this includes all of the joint positions that could be determined, either by 

looking at the depth data directly or by being inferred from a combination of other 

joint positions and the depth data. In addition to the actively tracked skeletons, the 

engine can pick up and provide passive tracking for four additional skeletons. 

Passively tracked skeletons contain no data for individual joint positions in the 

skeleton, only a single coordinate representing the centre of mass of the skeleton 

(a centre of mass coordinate is also provided for actively tracked skeletons). 

A single skeleton frame always contains an array of exactly six skeletons. Each of 

the six can be tracked actively, passively or not at all. The runtime guarantees to 

always keep a particular user’s skeleton in the same place in the array for as long 

as that user stays in view of the depth sensor. This means that when accessing the 

skeleton for a particular user, it is not necessary to check through all of the 

skeletons to find the one that has the user ID associated with that user; instead the 

index of the skeleton for that user in the skeleton array simply needs to be 

remembered. 



56 

 

4.2.3 Coordinate Systems 

The Kinect SDK utilises several different coordinate systems. Each defines the 

location of points in their respective data streams. There are three different 

systems: Skeleton Space, which is used for skeleton and joint positions; Depth 

Image Space, which is used to define the location of objects in the depth image; 

and Colour Image Space which defines the location of points on the colour image 

stream. 

The skeleton space system is a full 3D Cartesian system, with points defined with 

respect to a single origin. The Kinect SDK places the Kinect sensor array at the 

origin point when defining the coordinates of objects. The positive Z axis moves 

outwards directly in front of the sensor array, the positive Y axis goes directly 

upwards, and the positive X axis moves off to the left when viewed while facing 

in the same direction as the sensor array. It should be noted that if the sensor array 

is on a lean, either from being on a non-level surface, or from being tilted on its 

pivoting stand, then the direction of the Y axis may not be perpendicular to the 

floor. This can cause users who are standing up straight in the real world to appear 

on a lean in skeleton space. 

 The Figure 6 illustrates this: 

 

Figure 6: Skeleton Space coordinate orientation(Microsoft, 2011) 



57 

 

The units of the coordinates in skeleton space represent distances in metres in the 

real world, for instance if a skeletons centre of mass had a Z coordinate if 1.0, 

then we would know that the user corresponding to that skeleton was standing one 

metre away from the Kinect sensor array.  

Every time the runtime processes a new skeleton frame, it will attempt to provide 

an estimate of the plane of the real world floor in skeleton space. It provides this 

estimate as a Vector4 where each value in the vector serves as a coefficient in an 

equation for a plane in 3D space. The equation is as follows: 

             

Equation 1: Equation for a plane in 3D space 

In this equation the four values of the Vector4 are places into the equation like so: 

A = Vector4.x, B = Vector4.y, C = Vector4.z, D = Vector4.w. Note that the values 

in the vector will be scaled so that D represents the distance between the sensor 

array and the floor, in metres. 

Depth Image Space is the coordinate space used for describing the location of 

objects in the depth image. While still technically three dimensional, the system 

differs significantly from the skeleton space system in that the units on the 

equivalent of the x and y axes do not correspond to real world distances. Rather x 

and y coordinates refer to pixels on the depth image. The equivalent of the z axis 

does however relate to real world distance in that it gives the number of 

millimetres between the plane that sits of the x and y axes and the object that 

appears in a given pixel. Figure 7 illustrates how the distances given in the depth 

image relate to the Kinect sensor itself: 



58 

 

 

Figure 7: Depth space measurements (Microsoft, 2011) 

It is critical to note that the distances given by the depth image do not correspond 

to the straight line distance from the Kinect sensor to the object. The distance 

given represents only how far in front of the camera the object is. The x and y 

coordinates for a point on the depth image are given by the runtime as a value 

between 0 and 1, with (0, 0) being at the far left and top of the depth image, and 

(1, 1) being at the far right and bottom of the image. 

The third coordinate system is used by the Kinect for identifying points on an 

image frame from the colour camera. Unlike the other two systems, it is two 

dimensional. It uses only an x and a y axis. These axes correspond to the x and y 

axes in depth image space. As in depth image space, the units on those axes do not 

correspond to real world distances. However, where depth space values would 

range between 0 and 1, colour image coordinates use pixels as their units; thus a 

colour image will have coordinates ranging from 0 to the maximum resolution of 

the image (e.g. 0 to 480 on the y axis, and 0 to 640 on the x axis for a 640 x 480 

resolution image). When normalised for each other, coordinates of an object on 

the depth image, and coordinates for the same object on the colour image will be 

similar but offset from one another due to the physical separation of the colour 

and depth cameras on the device. The degree of offset will depend on the distance 

from the Kinect sensor to the object, with more distant objects appearing to have a 

less significant offset than objects that are closer. 



59 

 

The Kinect SDK provides a number of ways to translate coordinates between 

these different systems. There are two methods for translating skeleton space 

coordinates into depth image space coordinates. Both of these methods take a 

Kinect vector representing a set of skeleton space coordinates, and a series of 

output parameters into which the results of the conversion are placed. Both 

methods return a value between 0 and 1 for the x and y coordinates of the pixel 

corresponding to the given skeleton space coordinates. The difference between the 

two methods is that one of them also has a third output parameter; it is a short 

value that represents the depth value stored at the point on the depth image 

corresponding to the provided x and y coordinates. Note that the depth value 

provided may not be the actual depth of the point indicated by the skeleton space 

coordinates. It is possible that another object could be between the Kinect sensor 

and the skeleton space point, thus the depth value at the corresponding point in the 

depth image may be for an object in front of the skeleton space point in the 

camera’s field of view. 

The Kinect SDK is also capable of translating from depth space coordinates to 

skeleton space coordinates. The method for doing this takes three parameters and 

returns a Kinect vector. The three parameters are the x and y coordinates of the 

depth space point (as float values between 0 and 1), and the depth image space 

depth value for the coordinates (as a short representing the distance in 

millimetres). 

The final transformation the Kinect SDK is capable of is the translation of depth 

space coordinates into colour image space coordinates. The method provided for 

this takes a large number of parameters. The first is the resolution of the colour 

image. The second is the view area of the colour image camera. The view area is a 

structure that holds information about the current pan and view settings of the 

Kinect camera. Every image frame provided by the runtime includes a view area 

field populated with the correct data for that image frame. The next parameters to 

the method are the depth space x and y coordinates. Unlike the conversion from 

depth space to skeleton space, these coordinates must be provided as integers, not 

floats between 0 and 1. To convert the coordinates into meaningful integers, the 

float values are multiplied by the resolution of the depth image, as follows: 



60 

 

                             

                              

Equation 2: Converting depth space coordinates from float to int 

The fifth parameter is the depth value stored in the depth image pixel 

corresponding to the accompanying x and y coordinates. It is provided as a short 

value. The final two parameters are the output integers used to return the image 

space x and y coordinates of the pixel in the colour image that corresponds to the 

provided depth coordinates. These values are integers which indicate the row (x) 

and column (y) of the pixel they represent. 

The process of converting coordinates from 3D depth image space to 2D colour 

image space is not reversible. This is because information is lost in the 

conversion. There is no way to determine from the colour image coordinates 

alone, how far an object in a certain pixel is from the Kinect sensor, thus the 

position offset between the object in the depth image, and in the colour image 

cannot be determined. For this reason the Kinect SDK provides no methods for 

converting from colour image space back to skeleton or depth image space. 

4.2.4 SDK Structure 

The Kinect SDK employs several data structures that are used to pass around 

information. VMX utilises several of these structure extensively in its handling of 

data from the Kinect. 

The full data for a single skeleton is stored in a structure called SkeletonData. 

This is where the collection containing all of the data for all of the joints is kept; 

SkeletonData also contains the skeleton’s position, user ID, and tracking state 

(active, passive, or not tracked). In addition there is a Tracking ID which gives an 

ID corresponding to the one used in the player segmentation data in the depth 

frame for the user that the skeleton represents. Also provided in SkeletonData is a 

value called Quality. Quality indicates what parts of the user are actually visible to 

the Kinect camera; it will indicate if part of the user is out of the depth camera’s 



61 

 

frame to the left, top, right, or bottom. This information can be useful for setting 

the tilt of the Kinect sensor array. 

The Camera class is used by the SDK to provide data and allow control of the 

Kinect’s camera. It is this class that provides the method for converting 

coordinates from depth image space to colour image space. The other notable 

feature of this class is the ElevationAngle property. It is this property that is used 

to control the tilt of the Kinect sensor array. When ElevationAngle is changed by 

VMX, an attempt is automatically made by the Kinect hardware to adjust its 

current tilt to match the new angle. The Kinect’s tilting mechanism has a range of 

54 degrees; allowing movement of up to 27 degrees either up or down from the 

horizontal position. The Kinect’s tilting mechanism was not designed with the 

intention of it being used to change the Kinect’s angle on an extremely frequent 

basis. If too many commands to change the elevation angle are made in too short a 

space of time, then the Kinect runtime will throw an exception and the change 

will not occur. The exact limits on changes to elevation angle are: no more than 

one change can be made per second and no more than 15 changes per 20 seconds. 

Also of note is that when ElevationAngle is changed, sometimes the mechanism 

will not match the provided angle perfectly and may be one degree out. If this 

does occur the Kinect runtime will update the value stored in ElevationAngle to 

accurately reflect the true angle. 

The Joint class provides all of the data for a given joint. It contains three 

members, all of which are properties. The first is the ID which is a value that 

indicates which of the 20 points the Kinect picks up on a user’s body this joint 

represents (e.g. Spine, HandLeft, Head etc.). The ID is of the type JointID which 

is an enumeration which links joint names to the index of their usual position in a 

skeleton’s joint collection. The Joint class also contains a Kinect Vector which 

represents the position of the joint in skeleton space. The final member of the 

Joint class is the TrackingState, which indicates how the joint’s position is being 

determined. There are three possible values for the tracking state: Tracked, Not 

Tracked, and Inferred. ‘Tracked’ indicates that the joint is currently in view of the 

depth sensor and its position is known. ‘Not Tracked’ indicates that the joint 

cannot be seen by the sensor and its current position is not known. ‘Inferred’ is a 

special case, it indicates that position data is available for a joint, but that joint is 



62 

 

either out of the sensor’s field of view or is obscured by another object. To 

acquire the position, the Kinect runtime looks at the position of ‘Tracked’ joints 

and uses that information to infer the position of the non-visible joint. 

The Kinect SDK represents 3D coordinates with its own Vector structure. The 

Kinect’s Vector structure is actually equivalent to an XNA Vector4 with space for 

an X, Y, Z and W coordinate. Typically when used, the X, Y, and Z coordinates 

correspond to their respective axes in skeleton space, with W unused. The W 

coordinate is used in some other situations where the Vector is being used to carry 

information beside coordinates (for instance, when the runtime is providing its 

estimate of the location of the floor plane). 

The image frames that are provided to event handlers for a DepthFrameReady or 

ImageFrameReady event store the actual image data they contain inside a special 

structure called a PlanarImage. This structure is simple, containing four fields. 

The first field is called Bits and is a byte array containing the data for the image 

itself. BytesPerPixel is the second field and is used to determine how many bytes 

in the ‘Bits’ array are used to represent a single pixel in the image. The other two 

fields are the width and height (in pixels) of the image. Those last three fields are 

necessary for a program to be able to convert the single dimensional array into a 

two dimensional image. 

The Runtime class is the most important class in the entire Kinect SDK, it is 

through this class that a user program interacts with all parts of the SDK (except 

for those part relating to the Kinect audio capabilities). It is this class that provides 

the events that a user program can hook into to receive Depth, Video and Skeleton 

frames from the Kinect. It is also provides direct access to the video and depth 

streams so they can be manually polled for new frames. Another noteworthy part 

of the Runtime class is the Status property which gives information on the status 

of the Kinect sensor itself, able to report if it is connected, disconnected, not 

powered, not ready, or if there has been some other error. The Runtime class also 

provides direct access to an instance of the Camera class. The Runtime provides 

two methods, Initialise and Uninitialise. These methods are respectively 

responsible for setting up and shutting down all of the runtimes subsystems. The 



63 

 

final major purpose of the Runtime class is to provide access to the Skeleton 

Engine. 

The Skeleton Engine class is responsible for managing the skeleton tracking 

system. It is the class that provides the methods for converting coordinates 

between skeleton space and depth image space. It also provides the method used 

by a user program to poll for new skeleton frames. Its other main function is to 

provide control of skeleton smoothing operations. Skeleton smoothing is a way of 

reducing apparent jitter in the position of individual joints in the skeleton. There 

are several customisable parameters related to smoothing, the skeleton engine 

maintains the current settings for these parameters in a data structure called 

TransformSmoothingParameters. 

TransformSmoothingParameters contains five properties, each affecting some part 

if the skeleton smoothing process. The first is called Correction; it is a float value 

between 0 and 1 that affects how quickly the smoothed position of joints will 

change in response to changes in the position in the raw data. Low values will 

cause adjustment to be slow, which results in smoother movements in the 

skeleton, having the trade-off that a user’s movements may appear to lag behind 

their actual movements, and that fine movements may be filtered out entirely. 

Higher values for this parameter have the opposite effect; more responsive 

movement with the trade-off of having more jitter. The second parameter is called 

JitterRadius; it is also a float. It represents a radius (in metres) which limits the 

distance that a joint may move in a single frame. The purpose of this is to prevent 

jitter from causing joints to jump around extensively. The third parameter is called 

MaxDeviationRadius. The purpose of this parameter is to limit how far away from 

the raw data the smoothed data can be. It too is a float value representing a radius 

in metres. If a smoothed data point would be outside this distance from its 

equivalent raw data point, then it will be clamped to this distance. The fourth 

parameter is called Prediction. It is a float that determines how many frames are 

predicted by the smoothing algorithm (i.e. how far ahead the smoothing algorithm 

should extrapolate movements when factoring them into smoothing). The final 

value is called Smoothing; it is a float between 0 and 1 which simply determines 

how much smoothing should be carried out. A value of 0 for this parameter will 

cause the algorithm to return the unchanged raw data. Increasing the value 



64 

 

increases the effect of smoothing on the data, subject to the same trade-offs 

mentioned in regard to low Correction values.  

  



65 

 

Chapter 5: Development & Implementation 

The software that has been created as a part of this project is called VMX (Virtual 

Meeting XNA). It is the successor to VirtualMeeting which was the early test bed 

that was used in this project for early research into the Kinect device’s 

capabilities. VirtualMeeting utilised the OpenNI framework to interact with the 

Kinect device and was programmed in C++. Unlike its predecessor VMX is 

programmed in C# and is built on the XNA libraries for graphics, and the official 

Microsoft Kinect SDK for interacting with the Kinect device. 

This chapter will give the details of the development and implementation of each 

of the features of VMX. It will include a broad overview of the structure of the 

program, and detailed descriptions of the structure of each system within the 

program. It will also include detailed descriptions of all of the important 

algorithms within the system, including a discussion of the problems and 

obstacles that were encountered as the each algorithm was developed.  

The chapter starts in Section 5.1 with an overview of the whole program 

describing its overarching structure. After that the chapter moves on to Section 5.2 

which discusses the details of how the program interacts with the Kinect runtime 

in order to retrieve information from, and issue control commands to, the Kinect 

device. Next, Section 5.3 looks at the graphics system is described, including the 

key graphics classes and overall implementation of the system. After that, the 

chapter moves on to Section 5.4 which goes over the various aspects of the user 

avatars that are used within VMX, including how they work with the data from 

the Kinect and link into the graphics rendering system. This section also includes 

a history of the evolution and improvement of the user avatars over the course of 

the project. In Section 5.5 the various types of gesture recognition used by the 

project are discussed. This includes discussion of ways to recognise gestures 

based on finger positions, despite the fact that the Kinect runtime offers no 

explicit support for finger tracking. Section 5.6 talks about the features and 

functions of the display screen that is present in the virtual meeting room and how 

it can interact with a corresponding real world display screen. Section 5.7 looks at 

the camera control systems including details of the implementation of both the 

manual and automatic systems. The chapter concludes with Section 5.8 which 



66 

 

discusses the networking system within VMX, including details of the network 

protocol used.  

5.1 VMX Structure 

Broadly speaking, the classes that make up the VMX program can be divided into 

four groups: Core, Graphics, Network, and Kinect. 

The Core group is made up of a single class. This class is called VMX and is the 

central class in the program. All communication between the other three groups 

goes through the core. The VMX class is a sub class of the XNA Game class. 

Game is class that is provided by the XNA libraries. This is the class that actually 

contains the code that provides the program’s main loop, however it is the VMX 

class that contains most of the logic that is executed in that loop. Throughout this 

chapter the VMX class will be referred to as ‘the VMX core’ or just ‘the core’ to 

differentiate between it and the program as a whole. 

The Graphics group contains all of the classes that are specific to the graphics 

engine in VMX. It is the largest of the groups, containing ten classes. Most of the 

graphics classes inherit from the abstract Drawable class; these classes mostly 

correspond to particular kinds of objects that appear in the virtual environment, 

with differing classes used for objects that require particular graphics 

functionality. Despite the size of this group much of the control of the graphics 

engine lies within the core class, mainly due to the close relationship between 

graphics and the XNA Game class. 

The Network group is the second largest of the groups and contains the classes 

that are responsible for communication between separate instances of the VMX 

program across multiple computers. The Network group is more autonomous than 

other groups. Some of its classes utilise threads that run separately from the main 

thread that the VMX core runs on. Very little network specific code is contained 

in the core class and the classes in the network group are designed to make the 

details of network communications as transparent as possible to other parts of the 

program. 



67 

 

Figure 8: VMX program structure, with respect to the core class. 

 



68 

 

The Kinect group is another one-class group; it is responsible for providing access 

to the Kinect runtime. The Kinect group only provides methods for configuration 

as most of the data from the Kinect device is passed directly from the runtime to 

the core class by use of events. 

Figure 8: VMX program structure, with respect to the core class. Figure 8 shows 

the structure of the whole VMX program, showing each group and the classes it 

contains. The diagram does not show all relationships between classes; only 

inheritance and relationships that demonstrate how a class relates to the VMX 

class are shown. More detailed diagrams of the individual groups can be seen in 

the following sections.  

5.2 Kinect 

 

Figure 9: Kinect Class Structure 

5.2.1 Initialisation 

The VMX Kinect class handles many of the interactions between VMX and 

Kinect; although as noted before, the Kinect runtime 

itself directly communicates information back to the 

VMX core using events. VMX does not require a 

Kinect device to be plugged into the computer in 

order to run. This makes it possible for users who do 

not have a Kinect to join a meeting and watch what 

is going on. It also allows the instance of VMX that 

is functioning as server to run on an independent 

system with no Kinect device or user. It takes an 

instruction from the user to initialise a connection to 

Figure 10: Kinect class 

structure 



69 

 

an attached Kinect device.  

When the user gives the instruction to make an attempt to establish a connection 

to the Kinect device, several steps are carried out. The first is to initialise a series 

of arrays that will hold the images that come in from the Kinect’s cameras. 

Following that, a call is made to the VMX Kinect class instructing it to attempt to 

initialise the Kinect runtime. 

During the VMX Kinect class’s initialisation process, four main steps are carried 

out. The first is to initialise the Kinect NUI runtime. This step includes giving a 

series of parameters to the runtime that specify which components of the Kinect 

runtime VMX wants to use. These components are the colour camera, the depth 

camera (including the ability to determine which pixels in the depth image 

correspond to a particular user), and the skeleton tracking system. The second step 

in the process is to open the stream from the video camera and define the 

parameters for it. The most important of these parameters is the resolution in 

which the camera should provide images (VMX uses 640 x 480, which is the 

maximum resolution of the Kinect camera (Microsoft, 2011)). The third step is 

similar and opens the stream from the depth camera. The depth camera is also 

capable of a resolution of 640 x 480; however this resolution can only be used 

when Kinect is providing only depth data for each pixel. VMX depends on also 

receiving data for each pixel that indicates whether that pixel “belongs” to a 

certain user (i.e. if a part of the user’s body is in that pixel); when providing this 

data, the resolution of the depth camera is limited to 320 x 240 (Microsoft, 2011). 

The fourth step is to give an instruction to the skeleton tracking engine to use 

smoothing on its reported joint positions. Smoothing has the effect of greatly 

reducing jitter in the position of skeleton joints as reported by the Kinect runtime. 

If all four of these steps are successful the method will report its success back to 

VMX. If initialisation fails at any point, that will be reported back to VMX 

instead. 

If a successful initialisation is reported, VMX will carry out a few last steps to 

complete the initialisation process. The first of these is to hook VMX’s event 

handlers to the Kinect runtime’s events. There are event handlers for three 

different events: Skeleton Frame Ready, which is triggered when the NUI has a 



70 

 

new set of skeleton joint positions; Video Frame Ready, which is triggered when 

there is a new image frame ready from the video camera; and Depth Frame ready 

which is triggered when there is a new frame ready from the depth camera. Once 

the events handlers are hooked up, VMX sends a command via the Kinect class 

that sets the angle of the tilt on the Kinect device. The angle that is set is specified 

in VMX’s configuration file. Once initialisation has been completed, interactions 

between VMX and the Kinect runtime only occur on a user command, or when an 

event is triggered from the runtime.  

5.2.2 The Video Frame Ready Event 

The Video Frame Ready event is triggered by the Kinect runtime when a new 

image frame from the Kinect’s colour video camera available; when this occurs 

the corresponding event handler in the VMX core will be called. The first step of 

the event handler is to extract the raw image from the data provided in the event 

parameters. This data is held in a data structure called an ImageFrame. In addition 

to the data for the image itself, ImageFrame has some extra related information, 

including a timestamp for the image, the resolution of the image, a frame number, 

the type of image (i.e. Colour image), and a ViewArea object, which gives 

information about any zooming or panning used to generate the provided image 

(Microsoft, 2011). Following that, the image data is passed to the method that 

extracts any faces from the image for use on user avatars (more details on this are 

in Section 5.4 ). To make it easier to manipulate the image itself, its data is 

transferred from the one dimensional byte array in which it is provided, into a two 

dimensional array of XNA Color objects.  

int i = 0; 

for (int y = 0; y < image.Height; y++) 

{ 

for (int x = 0; x < image.Width; x++, i+=4) 

{ 

videoTextureData[x,y] = new Color(image.Bits[i + 2], image.Bits[i + 1], 

   image.Bits[i + 0]); 

} 

} 

Figure 11: Code for converting image data from a 1D array into a 2D array. 



71 

 

Figure 11 shows how this is done. For each pixel in the new array, three bytes 

taken from the old array; these bytes correspond to the red, green, and blue (RGB) 

values for the pixel. The RGB values are passed into a new Color object. It can be 

seen in Figure 11 that despite the fact that only three of the bytes are used for each 

pixel, the loop jumps ahead by four input bytes on each iteration, meaning one 

byte goes unused. This is because the raw data includes a fourth (alpha) channel 

for each pixel. However, as the pixels from the camera always have solid colours, 

this channel is not used.  

After the loops have finished the event handler then is to call the method that 

draws extra graphics on to the image. The method draws markers that serve as an 

indication when detecting a TV screen in the image (For more information see 

Section 5.6.2 ). The final output array of Color objects is then stored in an 

instance variable for later use by other parts of VMX (e.g. the graphics system 

when generating the texture of the video feed for display in the graphics engine. 

See Section 5.3 for details).  

5.2.3 The Depth Frame Ready Event 

The Depth Frame Ready event handler is very similar to the Image Frame Ready 

handler. The Depth Frame has a payload of information that is similar to an image 

frame (the actual image data, a timestamp, the image resolution, the image type, a 

frame number, and a view area). This extra data is stored, and then the one 

dimensional byte array is copied into a two dimensional Color array in a similar 

way to the colour image. However, there is an extra step that must be carried out 

before the colour array can be filled. The depth data provided in the image frame 

includes both information on the depth of the pixel in question, and the user ID of 

the user whose body is occupying that pixel (if any). The two components of the 

data must be separated in order to create an image that is comprehensible to a user 

(the reason for creating an image at all is for diagnostic display of what the Kinect 

is seeing and what object(s) it is interpreting as a user. Figure 14 shows an 

example of such an image). The way the data is encoded is fairly complicated. It 

is provided in a byte array. Each pixel is stored in a two byte value, structured as 

shown in Figure 12. 



72 

 

 

Figure 12: Byte structure of depth pixel data. 

In order to produce an image, the byte array is passed to a static method in the 

VMX Kinect class to process it into something usable. The method takes the data 

from each two byte pixel and extracts it into a new array that is structured in the 

same way as a colour image frame array (i.e. four bytes per pixel, one byte for 

each of the red, green, blue, and alpha channels of the pixel). First, bitwise ‘and’, 

‘or’ and shift operations are used to extract pixel data into a user ID and depth 

value, as shown in Figure 13. 

int userID = depth[depthIndex] & 0x07; 

int pixelDepth = (depth[depthIndex + 1] << 5) | (depth[depthIndex] >> 3); 

Figure 13: Depth data extraction 

Next, the pixel data is manipulated for display. Pixels that are closer to the Kinect 

device are made to appear brighter and the pixels that are further away appear 

darker. To achieve this, the pixel depth value is divided by 4095 (the maximum 

depth value), then the result is multiplied by 255, and finally the result of that is 

subtracted from 255; if the final result is less than zero then it is set to zero. This 

leaves a number that will be 255 if the pixel depth is 0mm from the Kinect, and 

range down to 0 if the pixel depth is greater than or equal to 4095mm from the 

Kinect. The number is then used as the basis for each of the red, green and blue 

channels of the pixel in the new colour array. The user ID value is used to modify 

which of the pixel’s channels are set in that pixel. This has the effect of colouring 

each user differently. If the user ID is 0 (i.e. there is no user in this pixel) then all 

channels are set, making the pixel grey; for user ID 1 only the red channel is set 

making the pixel appear red scale. User’s 2, 3, 4, 5, and 6 have their channels set 

so they appear green, cyan, yellow, magenta, and blue respectively. Once all of 

the pixels have been processed into the new colour array, that array is passed back 

to the event handler in VMX’s main class. From there the new array is processed 

in exactly the same way as the array in the colour image; with its data being 



73 

 

extracted into a two dimensional array of Color objects. Figure 14 shows the final 

depth image, a single user can be seen in the middle, coloured on the yellow scale. 

 

Figure 14: A processed depth image frame 

The areas in Figure 14 that appear bright white occur where the Kinect is unable 

to determine the depth of the pixel. There are a number of potential causes of this, 

including: objects that are too close to the device (Kinect cannot pick up the depth 

of objects that are closer than 82cm away from the device), objects that are too far 

away, and any situation where the Kinect’s infrared projections are not visible to 

its infrared camera (for instance, in the image above on the right hand side of the 

user, a white strip appears; this strip is a part of the user’s body that is in the field 

of view of the infrared camera, but obscured from the view of the Kinect’s 

infrared projector. Also the large flat white areas in the background are reflective 

surfaces that are deflecting the infrared signals away from the Kinect’s camera).  

5.2.4 The Skeleton Frame Ready Event 

The Skeleton Frame Ready event handler differs significantly from the other two 

handlers. Its main function is to process the skeleton data from the Kinect 

runtime, and assign it its data to the appropriate avatar. Upon receiving a skeleton 

frame update, the event handler first extracts the data for the skeletons included in 



74 

 

the update and puts that data into an array. Regardless of how many skeletons are 

actually being tracked, the array will contain data structures for exactly six 

skeletons, one for each of the six users supported by the Kinect runtime at any one 

time. 

For each skeleton, first the tracking state is checked. The tracking state indicates 

what information is actually available for that skeleton. There are three possible 

tracking states: ‘Not Tracked’ means that no data is available for that skeleton, 

‘Position Only’ means that the overall position of the skeleton is available but 

data for individual joints is not, and ‘Tracked’ means that all joint position data is 

available for that skeleton. VMX is only interested in ‘Tracked’ skeletons, so if a 

skeleton’s state does not equal ‘Tracked’ then it will be ignored, or in the case that 

the checked skeleton was previously tracked, its corresponding avatar will be 

deactivated. If a skeleton is marked as ‘Tracked’ then a series of steps occurs.  

First a check is done to see if the skeleton’s corresponding avatar is already active 

(i.e. if the skeleton was also tracked in the previous skeleton frame update). If the 

avatar is not already active, then it is activated. The most important effect of 

activating an avatar is that it flags it as ‘Visible’ so that it will be drawn by the 

graphics engine. 

Next, the data for that skeleton is passed as a parameter to the corresponding 

avatars update method (details on this method can be found in Section 5.4 ). Once 

that method returns, the index corresponding to the skeleton’s position in the array 

of skeleton data is taken. The index is stored in one of two variables, firstFound or 

secondFound (while the Kinect supports six simultaneous users, it will only 

perform full skeleton tracking on two). Which variable it’s stored in depends on 

whether it was the first or second skeleton in the array to be marked as ‘Tracked’.  

Those two variables are used in the next stage of the handler, which decides 

which avatar to assign as the ‘main avatar’. The main avatar is the avatar whose 

data will actually be sent across the network, and used for things such as gesture 

detection. The first step is to check if there is already a defined ‘main avatar’. To 

check if there is currently an active ‘main avatar’, the avatar in the array at the 

index given for the ‘main avatar’ is checked to see if it is currently activated (this 

works because the Kinect maintains stable indices). If it is active then it will 



75 

 

remain the current ‘main avatar’, and if there was a second skeleton marked as 

‘Tracked’ in the skeleton frame update, its corresponding avatar will be assigned 

to be the ‘secondary avatar’.  If there is not a currently active ‘main avatar’, then 

the first skeleton in the frame update that was marked as ‘Tracked’ will have its 

corresponding avatar assigned to be the ‘main avatar’, and the second marked as 

‘Tracked’ will become the ‘secondary avatar’. If no tracked skeleton were found 

earlier then no change will be made to the currently assigned main and secondary 

avatars, but both will be kept in a deactivated (invisible) state. The final step 

carried out after a skeleton frame update is to run the algorithm that picks out 

colours for the avatars (more information in Section 5.4.6 ). 

The reason for using this robust system to keep track of which skeletons are in use 

rather than just picking the first detected skeleton on every frame comes down to 

the environment that the program was developed in (a busy lab with many people 

walking in and out of the Kinect’s field of view) and also the Kinect’s tendency to 

occasionally misidentify inanimate background objects (chairs especially) as 

users. 

5.3 Graphics 

The graphics in VMX are based on the XNA graphics library, which itself is built 

on top of DirectX (Grootjans, 2009). There are several key classes that make up 

VMX’s graphics engine. At the lowest level there is the Geometry class that 

serves as a data structure for basic graphics data. A special static class called the 

Geometry Builder is used to produce instances of the Geometry class that are 

preloaded with the graphics data for basic shapes. An abstract super class called 

Drawable is used as the basis for any class that is able to be drawn on screen by 

the graphics engine. Finally a class called VMXModel provides the higher level 

functions for building and displaying objects in the virtual world. Figure 12 shows 

the relationship between these classes and the core VMX class. 



76 

 

 

Figure 15: Graphics Engine Class Structure, not including avatar classes 

5.3.1 The Geometry Class, Geometry Builder, and Drawable 

The Geometry class forms the basic unit of all graphics in VMX. It is simply a 

data structure that holds one set of vertices, one set of indices to make polygons 

out of the vertices, and a world transformation matrix to be applied to those 

vertices. 

The Geometry builder is an extensive class that used to create 3D shapes that have 

been preloaded into an instance of the Geometry class. It is capable of generating 

a variety of shapes including cuboids, inverted cuboids (whose polygons face 

inwards), spheres, textured quads, flat textured circles, cylinders, inverted 

cylinders, and tori. All of these can be generated according to specified 

parameters (e.g. level of detail, radius, 

width, height, length) depending on what 

kind of shape they are. Quads, cubes and 

circles are the only geometry that is 

generated with proper texture coordinates 

(as they are the only types of geometry that 

require them in VMX). All of the 

algorithms for generating these shapes are 

based on standard geometric formulas. 

Figure 16: Geometry class structure 



77 

 

Drawable is an abstract super class that provides the 

means for classes that inherit it to be drawn by VMX’s 

graphics engine. It provides just two things to those 

classes. The most important is an abstract declaration of 

the draw method. This method is used by VMX to tell 

objects to go ahead and draw their geometry. The second 

purpose of Drawable is to store a flag that indicates 

whether lighting calculations should be applied to an 

object. The reason for this is to make it possible to draw certain objects at full 

brightness, irrespective of the actual lighting in the scene. An example of such an 

object is the main presentation screen in the virtual meeting room. Being drawn at 

full brightness improves the visibility of the data on the screen and makes it look 

as though it is a projected image or active display screen. For other objects an 

appropriate lighting model supports the 3D appearance of the scene. In VMX all 

objects that need to be drawn in the virtual environment are kept in a single list of 

Drawable type objects; thus no 3D object that doesn’t inherit from this class can 

be drawn in the VMX graphics engine. 

5.3.2 The VMXModel Class 

VMXModel is the class that is responsible for the 

high level management of a set of geometry. All 

3D objects in the virtual world are displayed using 

the VMXModel class. It provides facilities for 

easily adjusting the transformation matrices of a 

model, texturing a model, and drawing a model. 

Stored within the VMXModel class there is a list 

of one or more instances of the Geometry class, 

which provides shapes for the model. 

To make it easy to manipulate the position of a 

model, two ways to modify the world 
Figure 18: VMXModel class 

structure 

Figure 17: Drawable 

class structure 



78 

 

transformation matrix are provided by the VMXModel class. The first allows a 

world transformation matrix to be passed into the model directly. When this is 

done the VMXModel will store the matrix and utilise it when it needs to draw 

itself. When passed such a matrix, VMXModel will also run an algorithm to 

decompose it into its individual components: a translation vector, a rotation 

quaternion, and a scale vector (the method for doing this is provided by the XNA 

libraries). The translation and scale vectors are stored in the VMXModel as is, 

where they can be read by other parts of the program. However, the rotation 

quaternion is first turned into a rotation matrix (by a call to an XNA routine) 

before being stored in a similarly accessible location. The second way of 

modifying the world transformation matrix is to change the individual translation, 

rotation, and scale components directly. This is done by passing in the appropriate 

data structure for each one (vector, matrix, and vector respectively). When any 

one of these components is changed, a new world transformation matrix is 

immediately generated using the updated copy of the changed component, and the 

existing copies of the other two components. The new world transformation is 

then made publically accessible. 

The VMXModel class is also responsible for the actual drawing of the geometry it 

contains onto the screen. It will do this with a method called draw, the call to this 

method is made either from the main VMX program or from draw methods in 

other objects that themselves are called by VMX. When the call is made, VMX 

will provide the graphics device which is to be used, and the shader to apply to the 

geometry. When entering the draw method, first the VMXModel will determine if 

it set to be visible. If it is not, then the method will immediately return and 

nothing will be drawn. If the model is set to be visible, then the next step is to tell 

the shader about any texture to be applied to the geometry. First the shader is told 

whether or not to use a texture at all; then it is passed whatever the VMXModel 

has stored in its texture property. Following that the model will begin iterating 

over each of the Geometry objects it has stored within it. For each one a complete 

world transformation will be calculated and passed to the shader. Two or three 

different transformations are involved in the calculation shown in Equation 3. 

 



79 

 

                                         

Equation 3: Calculation of the final world transformation for a piece of Geometry. 

Local is the model space transformation supplied with the particular instance of 

Geometry involved; Model is the world transformation of the entire model, stored 

in the VMXModel class; and Base is an optional additional transformation that 

can be passed into the draw method to further adjust the Model transformation. 

Note all of the values in the above equations are matrices and thus the order in 

which they are multiplied is important. The final transformation is then passed 

into the shader. 

At this stage the shader is told whether or not to use lighting based on the value 

stored in the UseLighting property of the object to be drawn. 

The last step of the draw method does the actual drawing. For each effect pass in 

the shader the pass is applied and the graphics device is instructed to draw the 

series of indexed primitives based on the vertices and indices stored in the current 

piece of geometry. 

5.3.3 The Core Graphics System 

Much of the work for creating and displaying the graphics is done by the core 

class of VMX. This includes the initialisation of the graphics system, loading and 

creating graphics content, and issuing the commands to the other classes used in 

the graphics engine. 

Initialisation of the graphics device is handled by the XNA game class code when 

the program is started. The first major step that occurs in the VMX class itself is 

the creation of the window for display of the 3D graphics. This is done using the 

Windows.System.Forms library. Depending on the program configuration a 

second window may be opened at this point. 

This second window is used when the user is using a second, real-world screen set 

up behind them for the purpose of running presentations in VMX. The second 

window is opened and set with a solid background colour (red). The background 



80 

 

colour is used by the algorithm responsible for determining the position of the 

screen in the Kinect’s field of view. (More details can be found in Section 5.6 ).  

Following window creation, the shader to be used is created. VMX uses the 

BasicEffect shader that is provided as a part of the XNA libraries.  

Following this, the lights and cameras in the virtual environment are set up. VMX 

uses low level ambient lighting and three different directional lights to fully light 

a scene (two of the directional lights are deactivated if for some reason the 

background graphics are not in use). The camera set up involves initialising a 

series of settings which relate to both automatic and manual cameras (more detail 

can be read in Section 5.7 ).  

The next step in the initialisation process involves loading in, and creating content 

to be displayed. The only external files used by VMX’s graphics are texture files. 

They are loaded in using XNA’s content manager, which takes normal image files 

and constructs Texture2D objects (Texture2D is the class provided by XNA for 

storing and managing two dimensional textures). After that is done, VMX begins 

setting up data structures for storing the various kinds of avatars (see Section 5.4 

for details). Then, the background graphics for the virtual meeting space are 

generated, including the walls, table, chairs and the various screens and added into 

a list of Drawables. The Drawables list is used as a central data structure for 

accessing all of the objects in the system that can be drawn on screen. The final 

step in the initialising process is to load a screen font for use when drawing text 

onto the screen. 

During normal program operation the main function of the graphics engine is 

carried out on every iteration of the main program loop. The program loop itself is 

within the XNA provided super class of the VMX main class. The super class is 

called Game. From Game a call to the ‘Draw’ method is issued. VMX’s main 

class provides the actual implementation of Draw. When it is called a series of 

steps is carried out which ultimately draw all of the graphics for one frame of the 

program. 

To begin with the graphics from the last frame are cleared off of the screen render 

surface. Then the view and projection matrices are passed to the shader. These 



81 

 

matrices are generated from the camera system and affect the user’s view of the 

virtual environment. The view matrix determines the location of the camera in the 

virtual space; and the projection matrix determines certain properties of the 

camera, such as the field of view, and how far it can see. 

If the Kinect is currently active and providing data to the program, then at this 

stage the textures that show the raw depth and video images from the Kinect are 

updated to show the latest available data. The first step of doing this involves 

creating a new texture in the system with a width and height matching the 

resolution of the camera feed from which the texture will get its data. VMX 

maintains two two-dimensional arrays in which the latest images from each of the 

Kinect’s respective cameras are stored. In order to be converted into a texture, the 

contents of these arrays must be extracted into one dimensional arrays. So, new 

arrays of colour values are initialised; their lengths matching sizes of the two 

dimensional arrays. Once filled the one dimensional arrays are copied into the 

texture data for appropriate images. The final result is two textures that can be 

used anywhere in the graphics engine, one showing the output from the Kinect 

depth camera, the other showing the output from the video camera. 

The next stage of the drawing process involves the actual drawing of the 3D 

graphics in the scene. This process is made simple by the use of the Drawable 

superclass, and the list of Drawables that VMX maintains. The Drawables list is 

iterated. Each Drawable object has its UseLighting property checked and the 

associated setting in the shader is made accordingly. Following that, the only 

thing that needs to be done is to make a call to the Drawable’s draw method with 

the shader and graphics device passed in as parameters.  

Once the 3D graphics are drawn, the two dimensional HUD (Heads Up Display) 

is drawn. This is made up of text that informs the user of various aspects of the 

program state, and of the various controls the user has access to. The text is drawn 

by a SpriteBatch object (provided by XNA) using a SpriteFont that was loaded in 

at content load time. The HUD itself has two display modes. The first shows only 

an instruction to the user about how to open the full HUD, and possibly an 

important notification from some part of the program. The other mode gives a list 

of the user’s controls, and data from various parts of the program (for example the 



82 

 

server and client systems both show their upload and download rate on the HUD 

when they are running). 

 

Figure 19: The full read out HUD 

Once the HUD is drawn, VMX’s drawing process is finished and a call back to 

XNA’s libraries is made for it to finish the process of getting the graphics onto the 

user’s computer monitor. 



83 

 

5.4 User Avatars 

Figure 20: User Avatar classes within the graphics system 

5.4.1 Overview 

VMX requires a way to represent the skeleton information provided by Kinect on 

screen in the graphics system. This is achieved in a series of classes which store 

and manipulate the information from the Kinect and use it to draw onscreen 

graphics representing users in the system. 

The data that forms the base of all of an avatar’s functions is the skeleton data 

provided by the Kinect runtime. This data is in the form of twenty sets of three 

dimensional coordinates. Each set corresponds to a single “joint” in the Kinect 

skeleton, and represent runtime’s estimation of where that joint is positioned in 

3D space based on real world data from the depth camera. The names and relative 

locations of the twenty joints are illustrated in the figure below. 



84 

 

 

Figure 21: Kinect skeleton joint diagram. (Microsoft, 2011) 

In normal operation VMX utilises two kinds of avatars ‘local avatars’ and ‘remote 

avatars’. Both kinds of avatar utilise the same graphics system and basic 

geometry. The principle difference between them is how they receive joint 

position data and where it comes from. Local avatars are provided with data from 

a Kinect attached to the same computer the program is running on. Remote 

avatars receive their data over a network from other computers running an 

instance of VMX. 

5.4.2 Geometry 

When an avatar is first initialised, its basic graphics geometry is generated. The 

current avatar graphics are made up of several different components and have 

been through several iterations. Originally the entire avatar was made up of 

twenty spheres; each sphere represented a single joint in the Kinect skeleton. They 

were positioned based on the coordinates of their corresponding joints. This 

version of the avatar was good for visualising the data coming from the Kinect but 



85 

 

provided no way to determine the identity of the person in control of a given 

avatar. 

To rectify this, the sphere that represented the head on an avatar was replaced. 

The initial replacement was a simple forward facing square that was textured with 

an image of the users face. This was successful in allowing the identity of each 

avatar to be determined; however it did suffer from one problem. Visually the new 

face image didn’t stand out well from the background graphics in the virtual 

environment. This was especially true of avatars that were standing in front of the 

presentation screen when it was displaying a complex image. The first attempt to 

rectify this involved replacing the square head with a circular one; the idea being 

that the curved lines this would create would stand out against the background 

which tended to be made up of straight lines. While this did improve the situation, 

it did not entirely fix the issue. The final solution was found by drawing a border 

around the circle that displayed the face. This was achieved by adding another 

piece of geometry, a torus (donut shape) which was positioned around the edge of 

the circle. This solution was successful in making the face stand out against the 

background. The torus solution also had a secondary benefit. Previously, when 

viewed from behind, the avatar’s head was invisible. This is because only one side 

of the face circle is visible, due to the way the graphics engine works (a primitive 

is only drawn when viewed from a particular side, though this could have been 

changed in the graphics settings). The torus however, being a fully 3D shape with 

primitives facing in all directions, is visible from all sides; allowing users to 

determine the location of other avatar’s heads from behind. The fact that from 

behind only the border of the head is visible, serves the secondary purpose of 

allowing users to easily see past other user’s avatars when they are facing away. 

To retrieve an image of a user’s face to put onto the circle representing the head, 

another algorithm is needed. The source of the face image is the video feed from 

the Kinect’s colour video camera. A single frame from the video camera contains 

a lot more than just a user’s face, and because of the limited size of the circle the 

image is going on, it is desirable to isolate the part of the image that contains only 

the user’s face. The method for doing this starts by retrieving the coordinates of 

the user’s head from their Kinect skeleton, these coordinates are then translated by 

the Kinect libraries from skeleton space to depth-image space. At this stage the 



86 

 

actual depth of head is retrieved and stored for later use. The coordinates are then 

translated again from depth-image space to colour-image space. The resulting set 

of coordinates can then be used to determine the location of the pixel in the video 

image that corresponds to (approximately) the centre of the user’s head. From 

there it is necessary to determine how large an area is needed for a sample from 

the image to include the user’s entire head.  This is done using the depth value for 

the head that was stored earlier. Dividing an appropriate constant by that depth 

value yields a value for the length (in pixels) of a side of a square area to be 

sampled. On the scales that Kinect uses, this gives sufficiently good results. The 

specific constant value that VMX uses is 1,300,000; this value was chosen 

through experimentation. Larger constants will result in more area from around 

the head being captured, and smaller constants will focus the captured area more 

tightly on the face. After an area to capture is determined, checks are made to 

ensure that all of the boundaries of the area fall within the bounds of the video 

image. If they don’t the area is adjusted, usually by moving it across so that it no 

longer intersects a boundary, but if the area too large to fit within the image 

regardless of how it is moved, then it will be reduced in size. Once the appropriate 

area to sample has been confirmed, the latest frame acquired from the Kinect’s 

video camera is sampled and the appropriate pixels copied into a new texture that 

is applied to the face circle of the user’s avatar. The following figure illustrates 

how the sample area is determined. 

 

Figure 22: Illustration of the face capture algorithm 



87 

 

With the original avatar design, when multiple avatars were on screen at the same 

time, it could become difficult to tell which spheres belonged to which avatar, 

making it confusing for a user to tell how an individual avatar was moving. 

Another problem occurred if the Kinect was having trouble determining the 

precise location of any joints as it became difficult to tell which sphere was 

representing which joint (for instance, if the user’s legs weren’t visible to the 

Kinect, their foot joints might spontaneously jump above their head joint); this 

lead to the inclusion of the final part that makes up an avatar’s geometry. Eighteen 

one unit diameter cylinders are used to connect neighbouring joints. They provide 

much of the shape of the avatar and make it clear which joints belong to which 

avatar, and how each joint in the avatar is related to the other joints. The cylinders 

share the same diameter as the joint spheres, and their start and end points lie in 

the centre of those spheres. This gives the avatar a smooth and contiguous shape, 

forming a connected body frame for the avatar.  

Figure 23 shows the development history of the appearance of the VMX avatar. 

Moving left to right shows the progression from each version of the avatar to the 

next. The first avatar is the original, made only of twenty spheres. The next is the 

version where the head is replaced by a forward facing quad. The third has the 

quad changed to a circle. The fourth avatar was the first to include connecting 

cylinders to better define the avatar’s shape (note that the hand, foot, and head 

joints are not connected to the rest of the avatar’s body). The final avatar is the 

current version, displaying a torus around the face. 

 



88 

 

 

Figure 23: Development history of the VMX avatar. 

As a user moves around, the relative location and distance between joints in a 

Kinect skeleton constantly changes. Because of this the shape and orientation of 

the cylinders must be constantly updated. The algorithm to do this is common to 

both avatar types and is run every time new joint data is provided to an avatar. 

The cylinders are all stored in a single array of all avatar geometry. They are 

accessed using an enumeration which gives each a name related to the part of the 

avatar’s body it represents (e.g. ForeArmRight, UpperLegLeft, Spine etc.). The 

algorithm works by iterating over every cylinder in the avatar and for each it 

calculates a new translation, scale, and rotation matrix which when applied to the 

cylinder, shape and position it to perfectly bridge the gap between two joints.  

All cylinders when first created are generated with a length of one unit, and run 

end to end along the skeleton space z-axis (which is the axis which follows a line 

moving out horizontally from the front of the camera). These facts are important 

to the function of the cylinder positioning algorithm. The first step of this process 

is to acquire the vector that connects the two joints that will sit at each end of the 

current cylinder. This vector is calculated using vector subtraction, shown in 

Equation 4. 

          

Equation 4: Vector subtraction 



89 

 

Where c is the vector that connects the positions of the two joints (here-after 

referred to the connecting vector). j1 is the vector that represents the position of 

one of the joints, and j2 represents the position of the other. c will run in the 

direction from j2 to j1. From this new connecting vector the correct length and 

orientation for the cylinder can be derived. The length of the cylinder is changed 

by adjusting its scale matrix. A scaling factor is acquired simply, with the 

following equation: 

                 

Equation 5: Cylinder scale factor 

Because the cylinder is aligned along the z-axis, in order to increase its length 

without changing its diameter the scale factor is applied to the z-axis only, with 

the x and y-axes left unscaled. This results in a cylinder that is the correct length 

to connect the two joints. 

The next step is to rotate the cylinder so that it lies on a line parallel to the line 

that connects the two joints. This is a two step process. The first step is to find the 

angle by which to rotate the cylinder. The second is to find the axis around which 

to perform the rotation. By default, the cylinder is aligned along the z-axis, to 

connect the two joints it needs to be aligned to the connecting vector between 

them; this means that the angle between a unit z vector and the connecting vector 

is the angle that the cylinder needs to be rotated by. This and can be acquired as 

shown in Equation 6. 

                     
     

   
 

Equation 6: Determining the angle between a vector and the Z axis. 

Here c is the connecting vector, and z is a unit z vector (it is important that the z 

vector be of length 1). Note that the dot refers to a vector dot product operation. 

Having acquired the angle it is then necessary to find the rotation axis. The correct 

axis to rotate on is represented by the vector that is perpendicular to both the 

cylinders default orientation (the z axis) and the desired orientation (the 



90 

 

connecting vector). This new vector can be found with a vector cross product as 

shown in Equation 7. 

                         

Equation 7: Determining an appropriate rotation axis. 

Again c is the connecting vector, and z is a unit z vector. As a final step before 

using it, the rotation axis vector is normalised. The final rotation matrix for the 

cylinder is calculated using the XNA graphics libraries with the calculated angle 

and axis. 

With the cylinder scaled and rotated, the final step is to translate it. The cylinder 

now has the same length and orientation as the connecting vector. The connecting 

vector reaches exactly from j2 to j1 (from the vector subtraction equation above); 

by placing the cylinder at the position given by j2 it too will reach from j2 to j1. 

Thus the translation vector for the cylinder is set equal to the vector j2. With the 

rotation, scale, and translation calculated; the final world transformation matrix 

for the cylinder is calculated and applied. Before this is done the scale and 

translation vectors are turned into matrices using XNA provided routines. The 

final world transformation is calculated as shown in Equation 8. 

         

Equation 8: Calculating a World Transformation. 

Where W is the final world transformation matrix, S is the scale matrix, R is the 

rotation matrix, and T is the translation matrix. 

This process is repeated for every cylinder in the avatar, until all are in the correct 

position. This leaves the avatar in its final position, ready to be drawn by the 

graphics engine. 

5.4.3 Local Avatar Data 

Local Avatars are user avatars that are rendered from the data coming directly 

from the Kinect device that is connected to the computer on which VMX is 



91 

 

running. In practice two local avatars may be active within VMX at any given 

time, however the second of these two avatars does not get used in VMX, beyond 

rendering it in the virtual environment (i.e. the user controlling the second avatar 

cannot use gesture controls, and the avatar data is not transmitted across the 

network, so it does not appear to other users in the meeting). 

As described earlier the skeleton frame will include information for six skeletons, 

corresponding to the six users that the Kinect can support at any one time. 

However while it can identify six users simultaneously, Kinect only supports 

skeleton tracking for two of those users at a time. These two skeletons are 

assigned the Skeleton Tracking State: ‘Tracked’ by the Kinect. VMX maintains an 

array of six local avatars, each one corresponding to a potential Kinect user. Only 

two of these avatars are set to be visible at any one time, and only the first of 

those two to be detected is generally used by the program (for gesture recognition, 

sending avatar data over a network etc.); this avatar is designated the ‘main 

avatar’. If a tracked user leaves the field of view of the Kinect sensor, their avatar 

will disappear and any non-tracked user that remains in view will be upgraded to 

tracked state if possible. If the user that left was in control of the main avatar then 

the next tracked user will take control of the main avatar. 

When a skeleton is identified as tracked in the SkeletonFrameReady event handler 

its data is passed on to the corresponding avatar which begins processing that 

data. The first thing an avatar does is extract the joint coordinate data from the 

skeleton data. Each joint’s position data is read in sequence and the position of the 

avatar’s corresponding geometry is updated to reflect that. The data is provided as 

Kinect vectors, which need some translation before they can be used by VMX’s 

graphics engine. The first step is to repackage the Kinect vector data into a XNA 

Vector3 class; this is a straight forward process involving taking the X, Y, and Z 

coordinates stored in the Kinect vector and using them directly as parameters to 

create a new Vector3. The second step is a matter of scaling; the scales used in 

Kinect skeleton space are smaller than the scales used in VMX graphics space. To 

compensate for this all Kinect data must be scaled up to appear at a reasonable 

size. This is done by simply multiplying the resulting Vector3 by a global constant 

(VMX uses 10). When the data for the head joint is read, the additional 



92 

 

calculations relating to head position are done at the same time (details presented 

earlier). 

5.4.4 Advanced Positioning and Movement 

The raw positions of an avatar’s joints as they are provided by the Kinect do not 

always result in the most desirable position of the user avatar. The raw data can 

contain misjudged positions of joints which will cause the avatar appear oddly 

shaped (e.g. an avatars limbs might be arranged in ridiculous positions). In 

addition, information about the rotation of terminal joints (i.e. hands, feet, and 

head) is not available (so for instance, one can’t tell which way a users head is 

facing from the head joint data). For these reasons VMX utilises a series of 

algorithms that tweak the raw position data to make avatars move in ways that are 

more informative to other users. 

The first of these tweaks is used when a user is sitting down. If an avatar is sitting 

at the virtual table (i.e. not doing a presentation) it is generally expected that the 

user is also sitting down. There are two problems with this. The first is that the 

Kinect is not well equipped to estimate the position of a user’s body when they 

are sitting down (though it does do a passable job). The second is that there is a 

fairly good chance that if the user is sitting down, their legs will be obscured from 

the Kinect’s field of view by their desk. The current version of the Kinect SDK 

has no built in way to deal with this. The result is that when a user is sitting in full 

view of the Kinect device, their avatar appears to be more squatting than sitting; 

and when a user’s legs cannot be seen at all by the device the avatar’s legs will 

tend to appear in bizarre positions. The first two avatars in the following figure 

illustrate these two situations respectively. 



93 

 

 

Figure 24: Avatars sitting down. Left: A user sitting with legs in view of the Kinect; Centre: A user 

sitting with legs obscured from the Kinect; Right: Same as the centre image, but the avatar’s legs are 

forced into a sitting position. 

The third avatar in this figure illustrates the solution to the problem. When a user 

is known to not be currently doing a presentation, VMX will force their avatar 

into a sitting position. To do this three steps are taken. Firstly, all joints that are 

normally above the hip centre joint have their positions changed from being 

defined in terms of the avatar’s local space origin to being defined in terms of the 

hip centre joint position. Doing this means that the second step can be carried out, 

which is to change the hip centre joint position to sit at the avatar’s origin, while 

maintaining the relative locations of it to all of the joints above it. The overall 

purpose of this is to allow the program to control how far away an avatar is sitting 

from the virtual table, rather than leaving that to be determined by how far away a 

user is sitting from their Kinect. The reason for doing this is to essentially 

normalise the data being received from multiple Kinect devices over a network; if 

this wasn’t done, any user connecting in from a remote computer could appear in 

the virtual environment at a dramatically different height or distance from the 

table compared with other users. The final step of this algorithm is to simple force 

the joints that normally sit below the hip centre joint (i.e. the joints that make up 

the hips and legs) into hardcoded positions relative to the hip centre joint. These 



94 

 

hardcoded positions give the legs appearance of being in a sitting position, 

regardless of where the Kinect believes the legs are. 

VMX performs other adjustments to avatars besides forcing an avatar sit down. 

The second modification it makes relates to the direction that the avatars head is 

facing. 

In a virtual meeting environment it is desirable to give users an indication of 

which way other users are looking. This information cannot be acquired purely 

from the head joint for two reasons. Firstly Kinect provides no estimation of how 

various joints are rotated in space, so it is not possible to determine what way a 

person’s head is facing. Secondly, even if that information was available, or was 

determined by other means; there would almost certainly not be a one to one 

relationship between how much a user turned their head (as they would likely 

always have their head turned towards the computer monitor that they were 

using), and how much their avatar would need to turn its head to look at the same 

point in the virtual environment that the user is looking at. Over the course of the 

project two different systems for solving this problem were created. Both systems 

remain in VMX; with each being used under different circumstances. 

In the first implemented solution to this problem, the orientation of an avatar’s 

head is determined by the same principles which determine how to direct the 

Automatic Camera (more detail on the automatic camera can be found in Section 

5.7.2 ). Specifically the orientation of the avatar’s head is actually based on the 

movements of the user’s shoulders. If the user twists their body to the left such 

that their right shoulder ends up closer to the Kinect than their left shoulder, then 

their avatar’s head will appear to turn to the left. The opposite occurs if the user 

twists their body to the right. The algorithm to determine how much to turn the 

user’s head by works by first acquiring the coordinates of the user’s left and right 

shoulder joints from the their Kinect skeleton. The coordinates for the right 

shoulder are then subtracted from the coordinates for the left shoulder to give a 

vector that follows the angle of the line between the two shoulders. The angle 

between the vector and the skeleton space x-axis is determined by again referring 

to the equation for finding the angle between two vectors, shown in Equation 9. 



95 

 

            
     

      
 

Equation 9: Determining the angle between to vectors. 

Where s is the vector representing the line between the two shoulders, and x is the 

vector representing the x-axis. The x-axis is used because in Kinect skeleton space 

the x-axis runs horizontally and perpendicular to line running directly out from the 

front of the Kinect camera, which is the line on which a user’s shoulders would 

both sit if they were directly facing the camera. This use of this equation differs 

slightly from its earlier use in that the length of vector x is factored into the 

equation. This difference is due to the fact that the length of x cannot be assumed 

to be one whereas the length of a unit z vector can be assumed to be one. The 

angle acquired from this equation is always positive, so an additional step is taken 

to identify which shoulder is in front of the other. If the left shoulder is in front 

then the final angle it multiplied by -1. This calculation effectively provides an 

angle for the ‘yaw’ of the avatars head.  

Before this angle is applied to rotate the avatar’s head, a second angle is 

calculated. This angle represents the pitch of the users head (i.e. whether they are 

looking up or down). This angle is acquired using the same equation and process 

as used for acquiring the yaw. Different joints are used however. In this case the 

vector between the head joint and the shoulder centre joint is used, and it is 

compared to the y-axis (which runs vertically in Kinect skeleton space) instead of 

the x-axis. Having acquired angles for pitch and yaw, a rotation matrix is 

generated from them using the XNA graphics libraries. This rotation matrix is 

then incorporated into the world transformation matrix for the user avatar’s head.  

This system for orienting avatars heads was originally used at all times in the 

program, including when determining which way Remote Avatars were looking 

and when the user was using manual camera controls. It also suffers from a slight 

problem in that the automatic camera system uses a multiplier to exaggerate the 

degree of rotation of the camera’s view. All of this meant that the direction that an 

avatar’s head was facing might not really represent the actual direction in which a 

user was looking; this lead to the creation of a second system that directly uses the 



96 

 

direction in which the user’s virtual camera is looking when determining what 

way to orient an avatar’s head. 

The algorithm for the second head orientation system starts by acquiring two 

vectors. The first of these vectors represents the current direction that the virtual 

camera is facing; this will be called the CameraDirection vector. The second 

vector represents the direction that an avatar’s head will face by default (this 

vector always has the value (0, 0, -1)) it will hereafter be referred to as the 

DefaultDirection vector. Then these two vectors are used to calculate a yaw and 

pitch angles for the user avatar’s head. 

First the yaw is calculated. This is done with the same equation used in the first 

head orientation system (Equation 9). In this case the two vectors used in the 

equation are the DefaultDirection vector and a version of the CameraDirection 

vector that has had its Y coordinate set to equal zero. As in the earlier use of this 

equation the angle it produces is always positive; so it must be multiplied by 

negative one if the X component of the CameraDirection vector is positive. The 

pitch angle is also calculated using Equation 9. This time the vectors used are the 

CameraDirection vector with its Y component set to equal zero, and the full 

CameraDirection vector with its normal Y component value. If the normal Y 

component has a value that is less than zero then the final angle must be 

multiplied by negative one to ensure that the rotation it produces is in the correct 

direction. The resulting values for the yaw and pitch of the head are again stored 

in the avatar’s class where they are used to create the rotation matrix for the 

avatars head whenever it is updated. 

Under ordinary circumstances, when a user has the automatic camera enabled and 

their avatar is sitting at the virtual meeting table (i.e. not doing a presentation), the 

yaw and pitch values calculated above ensure that the avatar will appear to look at 

exactly what the user is actually seeing through the virtual camera. This however 

is not true in situations where the virtual camera is not located in the same place 

as the avatars head. There are two circumstances where this can occur. The first is 

when the user is doing a presentation, and the second is when the user uses the 

manual camera controls to change the normal position of the camera. 



97 

 

When a user is doing a presentation the automatic camera moves to a stationary 

location at the end of the virtual meeting table and points in a fixed direction (at 

the audience). Doing this allows the user to move around freely while doing a 

presentation without the camera moving around with them and losing its view of 

the audience. If the system above was used for positioning the avatars head in this 

situation, then the result would be to give the avatar the appearance of having a 

fixed stare towards the audience, which looks slightly unnatural. For that reason 

when doing a presentation the avatars head orientation is calculated using the old 

method (where the head direction is determined by relative position of the user’s 

shoulders). This gives a more natural look to how the avatar moves. 

When the user is using the manual camera controls, the camera could be 

absolutely anywhere in the virtual space and looking in any direction. This can 

pose a problem when using the newer system for determining head orientation. To 

give an example, say the user moves the camera to the opposite side of the virtual 

meeting table to their avatar, and then looks back towards the table. Under the 

system described above the result would be that the avatar would appear to look in 

the direction directly behind them (i.e. the avatar’s head would have spun 180º 

from the looking forward direction). Aside from looking unnatural, this tells other 

users nothing about what the avatar’s user is looking at (the user is looking at the 

table and the avatar is looking away from the table). A simple solution is used for 

this; constraints are applied to the directions that the avatar can appear to look in 

when the user is using the manual camera controls. The avatar is limited to 

looking in directions within the environment where other avatars are likely to be 

(around the virtual table, and in front of the virtual presentation screen). This 

solution is not perfect and sometimes causes the avatar to look in a direction that 

is not representative of where the user actually looking, but the chances of this 

occurring are reduced nonetheless, and there is no chance of the avatar rotating its 

head in physically impossible ways (i.e. 180º backwards). 

The newer system for calculating head orientation does hold one major 

disadvantage over the older system. The older system only required the shoulder 

position data to calculate head orientation. When communicating across a network 

this data is sent as part of the skeleton data for each user, thus remote instances of 

VMX could determine the correct orientation of the head of each avatar in the 



98 

 

meeting from data that was already available. The new system however requires 

information about a user’s camera to calculate the head orientation. Camera data 

is not exchanged between instances of VMX. This means that additional 

information must be sent along with the skeleton data in VMX communication. 

This information takes the form of two single precision floating point numbers 

that give the pitch and yaw angles of an avatar’s head. These are included in each 

packet that VMX sends that also includes updated skeleton data (For details see 

Section 5.8 ). 

Besides forcing sitting positions and calculating head orientations, one other 

modification is made to the raw skeleton position data when determining avatar 

positions. This last modification is simply to place the avatar at an appropriate 

location in the virtual environment. This is done with nothing more than a world 

transformation matrix for the entire avatar.  

The coordinates for the position of the geometry of an avatar are determined by a 

user’s relative location to their Kinect device. Since all users in a meeting are 

likely to be sitting at similar distances directly in front of their device, then if 

nothing was done their avatars would likely occupy the same space in the virtual 

environment. To prevent this, all user avatars are given a unique world 

transformation matrix that places them is a particular place in the virtual 

environment. VMX currently maintains nine hardcoded world transformation 

matrices, one of which is assigned to each avatar involved in a meeting. Which 

matrix an avatar receives is determined by two factors. The first is the order in 

which the client VMX programs connected to the server. When a client connects 

it is assigned an ID (the server also assigns itself an ID), That ID is used to 

determine which of eight matrices corresponding to the locations of the virtual 

chairs around the virtual table is assigned to that client’s avatar. The ninth world 

transformation positions an avatar in front of the virtual presentation screen; this 

transformation is assigned to which ever avatar is doing a presentation, and 

overrides that avatar’s chair position (until they have finished presenting). 



99 

 

5.4.5 Remote and Dummy Avatars 

The process for updating a Remote Avatar is much the same as the process for the 

updating a Local Avatar, differing only in the format in which the Kinect’s 

skeleton data is provided. Where a Local Avatar receives a complete 

SkeletonData object from the Kinect; a Remote Avatar receives only a byte array 

which can be decoded into 60 single precision floating point numbers representing 

the X, Y and Z coordinates of the 20 joints. More details of the encoding/decoding 

process can be found in Section 5.8 of this thesis. Note however that the encoded 

data will be the raw data from the remote Kinect, thus the data will not have been 

processed into the sitting position, even if it has been for display on the remote 

computer it came from. 

It should be noted that VMX has a third kind of avatar built into it for diagnostic 

purposes. It is called a Dummy Avatar and it functions as a clone of a given local 

avatar. When first created, a dummy avatar is passed a reference to a local avatar 

(exactly which local avatar can be changed at any time). This local avatar is 

source of all of the data the dummy avatar uses. Thus updating a dummy avatar 

requires no data to be passed to it; instead the dummy avatar will access the data 

of its local avatar to acquire the joint positions it needs. A dummy avatar will only 

differ from its assigned local avatar in that it can be independently positioned in 

the virtual environment, and that it can be forced into the sitting position even if 

its local avatar is not. The main purpose of the dummy avatar was for testing how 

the virtual environment accommodated multiple users, without needing multiple 

real users to connect to it. The following image shows dummy avatars in action. 

The local avatar they are based on can be seen in the background, in front of the 

screen. 



100 

 

 

Figure 25: Dummy avatars showing colourisation. 

5.4.6 Colourisation 

 

Figure 25 also illustrates another feature common to all avatar types, 

colourisation. By default avatars are initialised with a single colour for all of their 

geometry except the face (white for local avatars, yellow for dummy avatars, and 

blue for remote avatars). In an effort to make the avatars involved in a meeting 

more visually distinct from one another, a system was added for giving each its 

own colour. The intent of doing so was to make it easier for users to identify 

which avatar belonged to which user while in a meeting. It is particularly useful 

when one user’s avatar is facing away from another user, allowing the other user 

to identify whom the avatar belongs to without being able to see its face. The 

colours used are taken from the colour of the skin and clothes of the user the 

avatar belongs to, as seen by the Kinect’s video camera. 

The colourising algorithm works by picking out three colours: one for the upper 

half of the avatar (the ‘shirt’), one for the lower half (‘pants’), and one for the 

hands, feet and head (‘skin’). The algorithm runs on each local avatar, on every 

program update until a colour for that avatar has been found for each skin, shirt 

and pants. The basic process for selecting a colour is not too different from the 

process for extracting a face texture. First, a joint where we would expect to find 

the desired colour on the user’s body is selected. For the shirt colour the spine 



101 

 

joint is used, the head joint is used to find the skin colour, and pants colour is 

taken from the left hip joint. To get the colour for each joint, the coordinates of 

that joint are taken, translated into depth image space using the Kinect libraries, 

and then translated again into colour image space. The colour image space 

coordinates are then used to determine the pixel on the colour image that 

corresponds to the original joint; this pixel is then sampled to obtain its colour. To 

improve the chance that the colours found by the algorithm will actually be 

representative of the actual colour of the user’s clothes and skin, surrounding 

pixels are sampled as well and the colour values for all of the sampled pixels are 

averaged. Unlike the face capture algorithm, if part of the sample area is outside 

the bounds of the Kinect’s camera image, then the pixels that can’t be sampled are 

simply disregarded; no attempt is made to redefine the sample area’s boundaries. 

If no part of the sample area is within the image bounds then the algorithm will 

pass back no colour and another attempt to find a colour will be made on the next 

program update. Once a colour is found it is converted into a 1x1 pixel texture. 

The texture is passed to the avatar which is then applied it to the appropriate joints 

for the shirt, pants or skin. 

 Remote avatars and dummy avatars also use colourisation. Remote avatars have 

their colours selected by their computer of origin and the colours are sent across 

the network link (more details are available in Section 5.8 ). Dummy avatars 

retrieve their colours directly from the local avatar they are using as a source; they 

will attempt to retrieve a colour from their local avatar on every update until they 

successfully get one. 

5.4.7 Head Size 

By default, the heads of the avatars have a radius of three units. Part of this 

project’s objective is to look at ways in which a virtual environment can be 

exploited to do things that cannot be done in real world meetings. One possibility 

is to allow a user to increase the size of the heads of other avatars to get a better 

view of the faces of the people they are meeting with. 

The method for dynamically changing the size of avatars’ heads is fairly straight 

forward. The user is given control of the size of the heads of the avatars with 



102 

 

keyboard controls. They are able to smoothly increase and decrease the head size 

by pressing the + and – buttons on the numeric keypad. When the user pushes the 

appropriate button a variable in the program is adjusted accordingly. The variable 

is essentially a factor to scale by; it is a single precision floating point number that 

defaults to 1.0 and is adjusted in increments of 0.01. This variable is accessed by 

each avatar while it is updating its joint data, during the phase in which it 

performs the additional calculations for head position. To achieve the size 

adjustments, the avatar simply creates a new Vector3 with all of its values set to 

equal to the scaling variable. This vector is then passed into the head model as a 

new scale vector, which is then incorporated into the head’s transformation 

matrix. 

This achieves the change in size to the head, but leaves a problem. The local 

origin of the head geometry sits at the centre of the face circle rather that the 

“neck” of the avatar. This means that when the scale of the head is increased the 

head will increase in size downwards at the same rate it increases in size upwards. 

Left unchecked, the result of this is that the head of the avatar intersects large 

parts of the body of the avatar. To compensate it is necessary to adjust the local 

translation of the head joint away from its default, Kinect provided location.  It is 

only necessary to adjust the y-axis translation; this is because the x and z axis 

coordinates of the centre of the head are the same as the x and z coordinates of the 

bottom of the head (this wouldn’t necessarily be true after the head’s rotation has 

been changed, but we can ignore this as scaling is always applied before rotation 

when the head’s transformation matrix is recalculated). The new y-coordinate is 

found with Equation 10. 

                 

Equation 10: Calculating the new Y-coordinate of a scaled head. 

In Equation 10; NewY is the new y-coordinate of the face; OldY is the existing y-

coordinate, R is the radius of the unscaled head as measured from the centre of the 

head to the outer edge of the bordering torus; and S is the scale factor. Using this 

method means that when the size is adjusted, the avatar’s head appears to only 

grow up and outwards, not down into the avatar’s body. 



103 

 

 

Figure 26: Varying avatar head sizes 

This feature of being able to adjust the head size of the other participants in the 

meeting ties into the theme of finding ways to make use of the fact that the 

meeting is taking place in a virtual world, and not bound by the laws of physics. 

5.5 Gesture Recognition 

The Kinect’s skeletal tracking abilities provided the opportunity for 

experimenting with gesture controls for VMX. Because the Kinect SDK itself has 

no built in support for gesture recognition, a system had to be built into VMX. 

VMX uses two kinds of gesture recognition: hand gestures, and finger gestures. 

Hand gestures involve broad movements of the hands and arms, and gesture 

detection is based directly on Kinect skeleton data. Finger gestures are more 

precise and involve the positions of a user’s fingers, which must be found by 

analysing the new depth image stream from the Kinect. 

5.5.1 Hand Gestures 

Part of this project calls for the evaluation of the usefulness of using gestures to 

control elements of the program while doing a presentation with Kinect. To 

achieve this it is necessary to implement a system for picking up specific motions 

as gestures. Microsoft’s Kinect SDK has no built in functionality for doing this. 



104 

 

The gesture recognition system in this project is fairly simple, utilising the joint 

location information provided by the Kinect over time to determine if gestures are 

being performed. 

The gestures used in this program all revolve around the relative position of the 

user’s hands to each other and the user’s body. The principle hurdle appeared 

during the implementation of this system was distinguishing between times at 

which a user is specifically trying to perform a gesture, and when they are simply 

using ordinary body language and have no intention of doing a gesture. In order to 

get around this problem the gestures that have been built into the system are 

designed to require body movements that a user is unlikely to perform under 

normal circumstances. Exactly what those movements are, has gone through 

multiple iterations over the course of the project, each presenting its own 

advantages and disadvantages. All of the gestures that have been created are used 

to modify the image that is displayed on the presentation screen in the virtual 

environment. 

The first iteration provided a means of panning across an image on the 

presentation screen. The gesture itself required the user to use their hand to reach 

behind themselves so that the hand of their avatar went into the presentation 

screen in the virtual environment. Once the hand was picked up as being inside 

the screen, moving it up and down or left and right would cause the image on the 

screen to be “dragged” along with the hand; thus giving the user the ability to 

scroll the image. This gesture proved to have a few drawbacks. While functional, 

it wasn’t entirely comfortable for the user to perform the gesture while 

simultaneously watching the computer screen in front of them to see what they 

were doing. Scrolling left and right could also prove troublesome as often that 

would result in the user’s hand moving behind their body and out of sight of the 

Kinect. This approach was also incompatible with the intended approach of 

having a solid, real world screen behind the presenter to correspond to the virtual 

one. 

The second iteration had the user hold at least one of their hands no less than forty 

centimetres in front of themselves before any gesture recognition would occur. 

Once beyond forty centimetres, moving their hand up, right, left or down would 



105 

 

function in the same manner as in the previous iteration, scrolling the image. In 

addition to scrolling, support for a zooming gesture was added, it was performed 

by using two hands and moving them either closer together to zoom out, or further 

apart to zoom in (analogous to pinch zooming on touch screen devices).  While 

this approach solved the main problems with the former approach, it revealed new 

problems. In particular, it was difficult for a user to withdraw their hands to end 

the gesture without unintentionally zooming or scrolling the image in the process. 

The third iteration attempted to rectify this problem by including an additional 

requirement that needed to be met before gestures would be recognised. It called 

for the user to show their palm, with fingers pointing upright to the Kinect in 

order for gestures to be recognised. The mechanism for determining when the user 

was doing this was simple, the system checked if the user’s hand was above their 

wrist joint on their Kinect skeleton. Unfortunately this method proved unreliable 

and only partially effective. The act of a user shifting their hand so their palm was 

not to the camera was still enough to cause some unintentional scrolling (though 

much less than before). Furthermore a limitation in the Kinect’s mechanism for 

deciding the location of the user’s hands relative to their wrist was revealed. 

Specifically the direction from a user’s elbow to their wrist appeared to play a 

significant part in where the Kinect positioned a user’s hand. In practice this 

meant if a user’s arm was pointing towards the ground their hand would often 

appear below their wrist on their Kinect skeleton, regardless of whether or not it 

really was. 

The final and current iteration of this system requires the user to use both hands 

whenever they want to perform a gesture. One hand functions as the “gesture 

enabler” and one as the “gesture performer”. To perform a gesture, both hands 

must be held out in front of the body. The gesture performer is the hand that when 

moved causes the image on screen to scroll. The only function of the gesture 

enabler is to allow the actions of the gesture performer to be recognised. 

Therefore moving the gesture enabler back towards the body will allow gesturing 

to be disabled without accidently causing any gestures to be picked up in the 

process. This system works well but has a few drawbacks. The first is that with 

the one of the user’s hand tied up permanently as the gesture enabler, the zooming 

gesture can no longer depend on having two hands available; meaning that a new 



106 

 

way of telling the difference between a zoom gesture and a pan gesture is needed. 

The other drawback is that the system requires more coordination and practice to 

use than the older iterations and is not very intuitive.  

The system functions by first picking out the locations of the left hand, right hand, 

and centre shoulder joint of the user’s Kinect skeleton. The shoulder centre joint 

provides a location for the user’s body which is then used to determine if the user 

is holding their hands out far enough in front of themselves for gesture 

recognition to occur. In the graphics system each hand that is being held out far 

enough for gesture recognition is coloured red so the user can tell if they are in 

gesture mode. If both hands are in position for gesture recognition then 

recognition mode begins. In order to read gestures, the motion of the gesture 

performing hand must be analysed; its current position and a slightly older 

position are needed to do this. Consequently when gesture detection first begins, 

the only action is for the position of the gesture performer to be recorded into the 

variable holding the gesture performer’s ‘old position’. On subsequent iterations 

of the program loop true gesture recognition begins, in which the gesture 

performer’s current position is compared to its old position to determine if and 

how it has moved. If the gesture performer is deemed to have moved up, then the 

screen image is scrolled up; and if it has moved down then the image scrolls 

down. Horizontal scrolling is performed similarly by moving the hand left and 

right. Finally the current location of the gesture performer is stored into the old 

position variable for use on the next program loop iteration. 

Originally, there was no way to perform a zooming gesture in this system. Later, 

the system was modified to allow zooming. The modifications involved adding a 

second distance threshold for the gesture enabling hand that was further away 

from the user’s body than the first. When this new threshold is crossed the user’s 

avatar’s hands will turn blue. When in this mode, the user can move their gesture 

performing hand up and down to zoom in and out. 

If at any point the gesture enabling hand is withdrawn back close to the user’s 

body then gesture recognition ends and future gesturing will have to go through 

the process of first storing a new value for the gesture performer’s old position 

before beginning gesture recognition again. 



107 

 

5.5.2 Finger Gestures 

The project design called for a way for a presenter to accurately point at positions 

on an object in the Kinect camera’s field of view. To achieve this, a system for 

detecting and reporting the position of a presenters fingers or at least one extended 

finger needed to be put in place. 

In Chapter 2 of this thesis, the work of Oikonomidis et al in the area of tracking 

finger positions was examined. The algorithm that was created by those 

researchers was capable of successfully identifying the positions of a user’s finger 

using data acquired from a Kinect device. While effective, in the context of this 

project their algorithm is not entirely suitable for use; the main problem being that 

it is computationally expensive. Its creators required a powerful, modern system 

and needed to exploit the GPU to even get close to the real-time speeds that would 

be required for virtual meeting software to be useful. It is desirable for VMX to be 

able to run a wide variety of systems, including those that do not have GPU’s that 

support this kind of non-graphics related application, so this kind of algorithm is 

not ideal.  

The creators of the algorithm described it as being of a class of algorithm that they 

called “model-based”. They also described a second class of algorithm called 

“appearance-based”. Algorithms of this class map certain image features to 

particular hand positions that are specifically defined in the program. These 

algorithms are described as being well suited for problems where there is a small 

number of known hand positions that need to be detected. This is consistent with 

the requirements of this project where the only hand position that needs to be 

recognised is a pointing gesture. 

The algorithm applied in this project for gesture recognition is custom made and 

of the “appearance-based” class. It functions by identifying the location of the 

hand to perform analysis on, and then passing that information on to systems 

which utilise that position in tandem with raw depth data from the Kinect to 

identify certain gestures.  

The process of finding the location that a user is pointing at begins by finding the 

direction in which they are pointing. This is done by acquiring Kinect’s skeleton 

space co-ordinates for the user’s right wrist and right hand. These are 



108 

 

subsequently translated using the Kinect SDK into their corresponding depth 

image space co-ordinates. The new co-ordinates are then treated as two 

dimensional vectors in an equation in which the value for the wrist is subtracted 

from the value for the hand. This provides a third vector that indicates the 

direction from the wrist to the hand. It is this vector is used as the direction in 

which the user is pointing and will hereafter be referred to as the “direction 

vector”. 

Having acquired the direction, it is then necessary to determine where the user’s 

finger ends in order to get the exact location where they are pointing. In this 

algorithm the end of the finger is assumed to be the furthest point from the 

provided location of the hand in the direction of the direction vector. Before this 

point can be found the vector that is perpendicular (to be referred to as the 

“perpendicular vector”) to the direction vector is derived. Both the direction 

vector and the perpendicular vector are then normalised. The two vectors are then 

used to determine points in the raw depth image data to sample. This is done in a 

loop where on each iteration, the normalised perpendicular vector is scaled by a 

factor between -25.0 and 24.5 changing in increments of 0.5. This loop is nested 

inside a second in which the direction vector is scaled by a factor between 0 and 

49.5 also changing in increments of 0.5. The scaled vectors are then summed 

together along with the depth image space co-ordinates of the hand to provide the 

pixel on the depth image to be sampled. The sample point is then checked to 

ensure that it lies within the borders of the depth image before being translated 

into an index into the array that contains the raw depth data. The raw data is 

accessed and checked. If the raw data indicates that the sampled pixel is not 

showing a part of the user then the algorithm progresses to the next sample. If 

there is a part of the user in the sampled pixel then the location of that pixel is 

recorded and the remaining iterations of the inner loop are skipped (this is done to 

reduce the total number of samples taken, speeding up the algorithm). If the inner 

loop completes without finding any pixels with the user in them, then it is 

assumed that the end of the user’s finger has been reached and the last recorded 

location of a pixel displaying the user is taken as the location at which the user is 

pointing. Figure 27 illustrates this process. 



109 

 

 

Figure 27: Diagram of finger point searching algorithm. 

  

 

The algorithm can be seen in action in Figure 28; it shows a depth image with the 

pixels identified as belonging to a user coloured light blue, and the pixels that 

were actually sampled by the algorithm coloured red. 

Figure 28: Depth image showing the finger search algorithm in action 



110 

 

The rational of changing the scaling values in increments of 0.5 rather than 1 is to 

ensure that all pixels in the sample area are found, regardless of how well the 

direction vector is aligned to the grid of pixels. The drawback of this approach is 

that some pixels may needlessly be sampled more than once. 

One final step is taken before the co-ordinates the user is pointing at are passed 

back to the program. Because of the way that the Kinect works, there tends to be a 

degree of jitter in the depth data. In the depth image this manifests as rough edges 

with a constantly changing shape on objects. Unchecked this will cause the exact 

point at which a user is pointing to move about constantly, even is the user is 

perfectly still. To reduce the impact of this, a rolling average of the pointer 

location of the last 15 frames is used as the final location.  

Two values are ultimately passed back to the program. One is the final smoothed 

point, which is in depth image space; the other is the same point but translated 

with the Kinect SDK into colour video image space. 

5.6 The Display Screen 

Within the virtual meeting room there is a large screen that sits on one of the walls 

of the room. This screen is intended to function as a place for a user to make a 

presentation to other participants in the meeting. The screen requires special 

functionality that is not shared with other objects in the virtual environment. It is 

also designed to be used in correspondence with a real world counterpart when 

possible, essentially allowing a user to perform a presentation and have it entirely 

reproduced in the virtual environment to be seen by the other participants. 

5.6.1 The VirtualScreen Object 

Because the virtual screen requires additional functionality over other objects in 

the virtual environment, it was ideal to create a new class to handle this 

functionality. This class is called VirtualScreen. 



111 

 

The VirtualScreen class is a subclass of VMXModel. 

Unlike a general VMXModel object, a VirtualScreen 

object is always contains only a single Geometry 

object, specifically a textured quad. All of the new 

functionality of the Virtual screen objects revolves 

around the ability to manipulate the texture currently 

used on the screen to give the appearance of zooming 

and scrolling. This is done by implementing methods 

that control the texture coordinates of the four vertices 

of the quad using simple parameters. 

The parameters are Zoom, Horizontal Scroll, and 

Vertical Scroll; all three are defined as floating point 

numbers. By default zoom is set to 1.0 and both scroll 

values are set to 0.0. The scroll values determine the 

texture coordinates of the top-left vertex of the screen. 

A combination of the scroll and zoom values determine 

the texture coordinates of the other 3 vertices in the 

screen, as shown in Figure 30. Note that the Zoom parameter is an inverse scale 

value, with 0.5 representing a doubling in size. 

 

Figure 30: Calculation of VirtualScreen texture coordinates. 

Figure 29: VirtualScreen 

class structure. 



112 

 

To make sure that the image is displayed on screen properly, without strange 

effects like mirror images or tiling, the parameters must be limited. The limits 

imposed on the scrolling parameters are the same, they must not be less than zero, 

or large enough that their value plus the current value of the Zoom parameter is 

greater than one (if the value of the Zoom parameter changes, then this limit must 

be recalculated). The Zoom parameter must at all times be greater than zero (if it 

was zero then all of the texture coordinates on the screen would be equal so the 

screen would show nothing but a solid colour; and if it was less than zero then the 

image would be inverted on both dimensions). The other limit on the Zoom 

parameter is that it must not be greater than one (if it was the image would appear 

repeated and tiled across the screen.) 

5.6.2 The Real World Screen 

The virtual screen is designed to be used in conjunction with a real world screen. 

The real world screen would be situated behind the user in the Kinect camera’s 

field of view. The purpose of having this screen is to give a user a real world 

reference to interact with when using the VMX software to perform a presentation 

to other users in the virtual environment; with the Kinect device capturing the 

user’s interactions with the screen and manipulating their virtual avatar to 

reproduce those interactions with the user’s avatar against the virtual screen. To 

do this key information must be acquired, including the image that is currently 

displayed on the real world screen, so that it can be reproduced on the virtual 

screen; and the user’s physical position relative to the screen, so that their avatar’s 

position relative to the virtual screen can be closely matched.  

Throughout this project several mechanisms have been used to ensure that the 

image on the real world screen matches the image on the virtual screen. Originally 

it was done with use of HTML documents and web pages that would be displayed 

in a web browser on the real world screen, and separately rendered to an image 

that could be used as a texture for the virtual screen, a third party library was used 

for this but it proved to be slow and unreliable (often failing to render anything at 

all). Consequently, this was later was shifted to using a direct screen capture of 



113 

 

the image displayed on the real world screen; the screen capture would be 

converted into a texture and applied to the virtual screen. 

The mechanism for capturing the image on the real world display screen in the 

current implementation of VMX utilises the System.Windows.Forms and 

System.Drawing libraries. A method called CaptureScreen is used to perform the 

actual capture. The method works by calling the 

System.Drawing.Graphics.CopyFromScreen method. This method is passed the 

pixel coordinates of the top left corner of the real world screen, and the full 

resolution of the real world screen. This results in a full screen capture of 

whatever is displayed on the real world screen. This data is first placed into a 

bitmap object; from there it is saved into a memory stream in the PNG format. 

This memory stream is then passed to a Texture2D method that can read the 

stream and convert the PNG format data to a Texture2D object. The resulting 

Texture2D can be used as the texture for the virtual screen. 

To maximize the usefulness of the real world screen, there needs to be some way 

to determine how a user is interacting with it. Specifically it is necessary to have 

an idea of where the screen is relative to the user so that the relationship between 

the user’s avatar and the virtual screen can be made to reflect the relationship 

between the user and the virtual screen. 

Finding the position of the real world screen relative to the user is a tricky 

problem. It requires that the position of the real world screen be detected. Three 

main ways of doing this have been tried over the course of this project and none 

of those methods has proved perfect, though each has shown to be effective in 

certain conditions. All of the methods for detecting the location of the screen have 

been designed to output the same information. That information is the coordinates 

of the four corners of the real world screen in at least one of the coordinate 

systems used by Kinect.  

The first method for acquiring the coordinates was also the simplest. It was to 

simply have the user input the coordinates of the screen’s corners into the 

program manually; the coordinates would be in Kinect skeleton space. Since the 

units used in Kinect skeleton space coordinates correspond to real world metres, it 

is not as difficult to estimate the location of the corners as one might think; 



114 

 

however there would likely be a degree of trial and error involved when doing 

this. Regardless, the potential difficulty in getting accurate coordinates is not the 

primary drawback of this method. The main problem with it is that if the screen 

itself is moved, then the coordinates would have to be re-entered by the user. 

Worse if the Kinect itself was moved, then the entire coordinate system would be 

thrown out, and the new set of coordinates would likely end up being dramatically 

different from the original set. Any movement to the Kinect would result in this, 

including use of the Kinect’s own tilting mechanism. Because of this problem, it 

rapidly became apparent that there would need to be a system for detecting the 

location of the real world screen automatically. 

The first approach to automatic detection was to use the depth data from the 

Kinect. The theory was that depth image stream could be analysed to find the 

location of the screen. This could be done by simply analysing the contents of the 

depth image to look for a large flat surface in the background behind the user. The 

code for doing this would have resembled the code used for the current solution 

which will be discussed next. When the time came to actually implement this 

method however, a fatal problem immediately became apparent.  

The test screen that was being used for development of this software was an 

ordinary 52″ LCD television. Like many televisions the screen itself had a slightly 

reflective finish. This reflective finish revealed one on the primary drawbacks of 

the Kinect’s method of generating its depth image data. The infrared radiation 

from the Kinect sensor would be reflected away from the device by the screen. 

This rendered the depth sensor useless for producing accurate data about the depth 

of most parts of the screen (the centre of the screen of course reflected the infrared 

light directly back at the Kinect device so depth data could be acquired for that 

area of the screen, but this was useless for finding the X and Y coordinates of the 

screen’s corners). This problem would not have been present on a projector screen 

(which is designed to reflect light evenly in all directions; however there would be 

another problem with a projector screen in that the edge of the flat area in the 

depth image might not fully match the area of the screen that actually had an 

image projected onto it. 



115 

 

Figure 31 demonstrates the problem with reflective screens. In the centre of the 

lower half of this image there is a white rectangular shape with a grey blob in the 

middle. This rectangular area is the television as seen by the Kinect depth camera. 

The white areas are the parts of the screen for which the Kinect cannot determine 

the depth, because they are reflecting the infrared light away from the Kinect 

device. The grey blob in the middle is the area of the screen that is reflecting the 

infrared light directly back at the Kinect’s depth camera. To the right of the image 

a second smaller, computer screen can be seen exhibiting a similar problem. 

 

 

Figure 31: The bottom image is the TV screen as seen by the Kinect's depth camera, the top images is 

the same scene as seen by the Kinect’s colour camera. 



116 

 

These problems resulted in the third and current solution for detecting the location 

for the screen. This solution uses simple image recognition principles. The system 

works by having the user issue a command to VMX to search for the corners of a 

real world screen in the background of the Kinect’s image data. When this 

command is received VMX will run the algorithm for detecting a screen. The 

algorithm goes through a six stage process; the first two stages involve finding the 

left and then the right side of the screen, the other four stages are used to find each 

of the four corners of the screen. 

The algorithm functions by painting the entire screen red and then seeking the 

boundaries of the red area in the Kinect’s colour camera image. The first step in 

the algorithm that must be carried out is to make the screen appear red. The 

program uses windows forms to do this. A large window is created. The size of 

the window is made to match the resolution of the real world display screen being 

used. The window is also setup to be borderless, meaning that there will be none 

of the feature often seen on a typical window (e.g. a title bar, 

close/maximise/minimize buttons, resizable edges etc.) Instead the window will 

simply appear as a solid colour rectangle. The window’s background colour is 

then set to be red. The final step is to position the window so that it appears solely 

on the display screen. Obviously this method requires that the display screen 

being used is connected to the same computer that VMX is being run on, this is a 

requirement of both this algorithm and the algorithm for capturing and sending the 

contents of the screen to the other user’s virtual screens in the meeting. 

Once the screen is red, the algorithm can begin searching for it in the Kinect’s 

camera image. The first step of doing this is to select a point on the image to start 

the search. There are several restrictions that are placed on how a real world 

display screen must be placed in order to use it with the Kinect. The first of the 

these restrictions is that VMX requires that a real world display screen must be set 

up such that the television is directly in front of the Kinect sensor, facing it 

approximately head on, and be behind the user. The second restriction is that to be 

useful the screen must appear reasonably large within the Kinect camera’s field of 

view (more than half of the horizontal range), and the screen must appear entirely 

within that field of view. Figure 32 shows a screen that has been positioned to 

meet these requirements.  



117 

 

 

Figure 32: The spatial relationship between the Kinect device and the real world display screen 

These restrictions allow the screen seeking algorithm to make certain assumptions 

about where to start searching for the screen, specifically it can safely assume that 

the some part of the screen will appear in the centre of the Kinect’s camera image. 

However it is likely that when using the screen to do a presentation the user will 

position the screen at a level that allows them to easily point at locations on the 

screen. This means that the screen will be slightly above being vertically centred 

in the Kinect’s field of view. For this reason the algorithm selects a point in on the 

image from the Kinect colour camera that is horizontally centred and a third of the 

way down the screen. 

To determine if the display screen in visible on the selected point on the image, 

the colour of the pixel at that point is checked to see if it is red. A simple method 

called PixelIsRed is used to perform this check. This method takes the colour 

value of the pixel as a parameter, and returns a Boolean that is true if the pixel is 

deemed to be coloured red. Because of the properties of the screen and the Kinect 

camera, even though the screen is set to display only fully red pixels (with RGB 

colour values of (255,0,0)) it is highly unlikely that the camera will report the 

colour of the screen as perfectly red (for example, if the camera image is over 

exposed the screen can begin to appear slightly white coloured). This means that it 

is not sufficient to simply check if the colour of a pixel has the value (255, 0, 0) 



118 

 

when determining if it is red. So, when deciding if a pixel is red, the PixelIsRed 

method simply ensures that the red component of the colour is above a certain 

threshold and that the blue and green components are below that threshold. 

Even though it is reasonably certain that any screen that the user intends to use 

will appear at the selected starting point in the image there is one additional 

consideration that needs to be taken account of. It is likely that the user is going to 

be sitting between the Kinect device and the screen when they issue that 

command to run the screen seeking algorithm. This means there is the possibility 

that they will be partially obstructing the view of the screen when the algorithm 

begins. To account for this measures are taken in the first stages of the algorithm 

to handle not being able to see the screen immediately. Figure 33 illustrates this 

situation. 

 

Figure 33: A user partially obstructing the display screen 

The first stage of the algorithm moves outward to the left of the selected starting 

point in search of the left hand edge of the screen. This is where the measures to 

handle a screen obstructing user come into play. After the pixel at the starting 

point is checked the algorithm will move the sample point one pixel to the left and 

check that pixel, regardless of whether the first pixel was red or not. This pattern 

of moving one pixel to the left and checking again will continue until one pixel 



119 

 

does end up being red. Once a red pixel is found the algorithm assumes that it has 

found the screen. Once this happens the algorithm will continue as before, except 

that the pixel two steps to the left of the sample point is checked to see if it is 

black (using a method called PixelIsBlack which functions in the exact same way 

as PixelIsRed, simply with different thresholds). The reason for this is that the 

borders of the screen are coloured black, so the algorithm recognised the edge of 

the screen by finding a place where there is a red and a black pixel in close 

proximity to each other. The reason for checking the pixel that is two steps over 

from the sample point, rather than simply the neighbouring pixel is to account for 

the fact that the colour of the pixel that sits right on the edge of the screen may be 

a blend of the red of the screen and the black of the screen border. Having the 

additional check for the black screen border makes the algorithm more robust. It 

allows the algorithm it to deal with objects partially obstructing the Kinect’s view 

of the screen (so long as those objects are not black); it also reduces the chance of 

other red objects being misidentified as the screen. The trade-off of this additional 

robustness is that the screen must have a black edge in order to be recognised, 

though it would be trivial to change the colours that are searched for simply by 

changing the threshold values in the PixelIsRed and PixelIsBlack methods. 

Once the algorithm has identified a point where there is a black pixel on the left 

and a red pixel on the right, this point will be stored as the location of the left edge 

of the screen for later use. From this point the algorithm searches for the top left 

and bottom left of the screen. Before this happens however, it searches for the 

right edge of the screen. The process of finding the right edge is identical to the 

process of finding the left edge, only the sample point on the image moves right 

from the original starting point with each pixel colour check, and the black pixel 

must appear on the right of the red pixel. If either the search for the left edge or 

the search for the right edge fails to result in an edge being found, then the 

algorithm will report that it was unable to find a screen in the camera image, and 

will then return. 

Once the edges are found the algorithm moves on to find the four corners of the 

screen, starting with the top left corner. To begin the search for the top left corner, 

the algorithm will take the point that was stored for the left edge of the screen as 

its current sample point. From there the algorithm will loop through pixels in a 



120 

 

particular pattern in order to find the top of the screen. The pattern is complex and 

involves a loop that on each iteration will sequentially seek through the 

neighbouring pixels of the current sample point. As soon as it has found a 

neighbouring pixel that is red, that pixel will be made the new sample point and 

the loop will reset, checking through the neighbours of the new starting point.  

When seeking the top left corner, the algorithm will look first at the pixel to the 

left of the current starting point. This is done to handle circumstances where the 

screen isn’t perfectly aligned to face the Kinect camera; in this situation the edge 

of the screen will appear on a slight angle (i.e. not straight up and down). By 

checking first to the left of the sample point, the algorithm can ensure that if the 

edge of the screen angles away to the left on the camera image, then the current 

sample point will still continue to lie on it. There is no limitation on how many 

times the sample point can be moved to the left in a row. This is despite the fact in 

order for the edge of the screen to angle away at more than one pixel to the left for 

every pixel upwards it would have to be at such an extreme angle to the Kinect 

camera that the data resulting from this algorithm would be useless to any other 

part of the program. The benefit of allowing these repeated moves to the left is 

that it makes it possible for the algorithm, under some circumstances, to recover if 

the location of the left hand edge of the screen was misidentified. 

Figure 34 shows how allowing unlimited moves to the left can permit the 

algorithm to recover if it misidentifies the location of the edge of the screen. The 

X on the diagram shows the point of the screen that was for some reason mistaken 

for the edge of the screen (this could have been caused by an obstruction between 

the Kinect and the edge of the screen that is no longer present). The line coming 

from the X shows the path that the algorithm will take while it searches for the top 

left hand corner. 



121 

 

 

Figure 34: Recovering if the location of the edge of the screen was misidentified. 

If the pixel to the left of the sample point is not red then the next neighbour to be 

checked is the pixel above the current sample point. This is the natural direction to 

look in as the top left corner will be at the top of the left edge when the screen is 

perfectly aligned to the camera. It is this pixel that will always be selected as the 

next sample point.  

The final neighbour that will be checked is the pixel on the right of the sample 

point. This is done as a last resort only if the other two neighbours are not red. It 

may seem counter intuitive to search to the right when the algorithm is looking for 

a point on the far left of the screen, but there is a good reason. This check to the 

right serves to prevent the algorithm from prematurely selecting a point it believes 

is the top left corner in situations where the screen isn’t aligned to face the camera 

perfectly and as a result the left edge of the screen appears to drift on an angle to 

the right with increasing height.  

There is a special limitation on the sample point being moved to the right. It can 

only happen if both the pixel on the right is red, and the pixel above that pixel is 

red. If this special condition wasn’t imposed then when the algorithm did reach 

the top of the screen, it would get stuck in a loop of first changing the sample 

point to the pixel to the right of the top left corner, and then back to the top left 

corner again. If after checking all of these neighbouring pixels (there is never a 



122 

 

need to check the pixel below the current sample point) the algorithm is unable to 

find a new red pixel to be the new sample point, then the current sample point is 

taken to be the top left corner, the location of that point is stored and finally the 

loop ends. 

Table 1 shows each of the potential situations that need to be handled in the 

search for the top left corner of the screen. The table illustrates each situation with 

a diagram. Each square in the diagrams represents a pixel on the Kinect’s colour 

video image. The black squares represent pixels that show the edge of the screen, 

the white squares represent pixels that show the screen itself, and the grey squares 

represent the pixel that lies under the current sample point. The arrows on the 

diagram indicate which neighbouring pixels will be checked to see if they should 

become the next sample point in each situation. A thin grey arrow indicates that 

the pixel they point to would be rejected as the next sample point, a thick black 

arrow indicates that the pixel will be selected. 

  



123 

 

 

First check passes. 
This diagram illustrates a situation where 
due to the angle of the screen to the 
Kinect camera, the edge of the screen 
appears on a slight angle. When searching 
for the top left corner the algorithm will 
always attempt to stay hard up against the 
left edge of the screen, so the left pixel is 
checked first, and in this case the pixel to 
the left is part of the screen so it is 
selected.    

 

Second check passes. 
In this situation there is no apparent angle 
on the edge of the screen, the pixel to the 
left is not part of the screen so it is 
rejected. As a result the algorithm checks 
the pixel above the current sample point. 
In this case the pixel above is part of the 
screen so it will select that pixel as the 
new sample point. 

 

Final check passes. 
This situation is similar to the first situation 
shown, differing in that the angle of the 
edge of the screen runs in the opposite 
direction. In this case the checks for both 
the pixel to the left, and above the current 
sample point failed to find the screen, so 
the algorithm checks the pixel to the right 
and the pixel above the pixel to the right. 
In this case they are both part of the 
screen so the pixel on the right is selected 
as the new sample point. 

 

No checks pass. 
This final situation demonstrates why it is 
necessary to check both the pixel to the 
right and the pixel above it. Here we can 
see that the sample point is at the top left 
hand corner of the screen and needs to go 
no further. All three of the checks failed to 
find anywhere else to go so the algorithm 
will terminate and correctly return the 
current sample point as the location of the 
top left corner of the screen. If the check 
above to the right was not done then the 
algorithm would end up moving to the right 
in this situation and away from the correct 
location of the top left corner. 

Table 1: Potential cases when searching for the top left corner 



124 

 

Once the location of the top left corner is found, the locations of the other corners 

are searched for in the following order: bottom left corner, top right corner, 

bottom right corner. The algorithms for finding these corners are very much the 

same as the algorithm for finding the top left corner, but do differ in a few details. 

First and most obviously is that the algorithms that find the corners on the right 

hand side of the screen use the value stored for the location of the right hand edge 

of the screen instead of the left hand edge. The other difference in the algorithms 

for each of the corners is the order in which the neighbours in differing directions 

of the sample point are checked.  

Table 2 illustrates the order in which each neighbouring is checked for each of the 

different corners of the display screen. The squares on each diagram in the table 

represent the pixels on the Kinect colour video image. 

  



125 

 

 

Seeking the top left corner. 
 
In this situation the algorithms first 
priority is to stick to the left hand edge of 
the screen, so the first check is to the 
left. The next priority is to move towards 
the top of the screen so the second 
check is upwards. The final priority is to 
check that the top of the screen has 
been found when it is not possible to 
move up by checking the pixel to the 
right and above. 

 

Seeking the bottom left corner. 
 
As in the top left situation the first priority 
of the algorithm here is to stay on the left 
hand edge of the screen. Unlike the last 
situation the algorithms second priority is 
to reach the bottom of the screen, so the 
second check is downwards. The final 
check confirms that the bottom of the 
screen has been reached by checking 
the pixel to the right and below. 

 

Seeking the top right corner. 
 
Being on the right hand edge of the 
screen means that the first priority of the 
algorithm when searching for the top 
right corner is to stick to that right hand 
edge of the screen, so the first check 
done on the pixel to the right. The next 
priority is to move to the top of the 
screen so the second check is upwards. 
The final check to confirm when the top 
of the screen is reached is to the left and 
upwards. 

 

Seeking the bottom right corner. 
 
In this final situation the first priority is to 
stay on the right of the screen, so the 
check is to the right. The second priority 
is to get to the bottom of the screen so 
the second check is downwards. The 
final priority is to confirm when the 
bottom of the screen is reached by 
checking to the left and down. 

Table 2:  The order in which directions are checked when searching  

for different corners of the display screen. 



126 

 

When the locations of each of the corners are found they are stored and a 

rectangle representing the area that the screen occupies in the camera image is 

generated from the resulting points, and then the algorithm is complete. 

The algorithm that is used to find the screen is subject to a degree of uncertainty 

about how accurate the final result it produces any given time will be. It could 

potentially be very problematic if a user was attempting to use the screen and had 

not realised that VMX’s idea of where the screen was located was incorrect. To 

help prevent this situation feedback about where the algorithm believes the screen 

is located is given to the user. This feedback is in the form of four markers that are 

drawn on to the texture of the Kinect’s video feed that show the points on the 

image where VMX thinks the corners of the screen are located. Figure 35 shows 

these markers. They can be seen at the corners of the TV screen as white dots with 

black borders. Note that these markers are very small, so it is necessary to look 

closely at Figure 35 to see them. 

 

Figure 35: Screen Detection Markers 

The method of finding the location of the real world screen that has been given 

above comes with one major disadvantage over the other methods that were 

discussed earlier. That is that because the data is found using the colour image 

feed from the Kinect, the coordinates for each of the corners of the screen are 



127 

 

given in colour image space coordinates. The problem with this is that colour 

image space coordinates are two dimensional and therefore there is no straight 

forward way to find the depth of each corner of the real world screen. Fortunately, 

none of the other algorithms used in VMX are dependent on highly accurate 

information about the distance of the screen from the Kinect device, so a user’s 

estimate of the distance will be sufficient and can be provided in the configuration 

file for VMX. Another reason that this is not a major problem is that if the real 

world screen is positioned correctly then there will little difference between the 

depths of each of the different corners, therefore the user need only estimate a 

single depth value, not four different ones. 

5.6.3 Laser Pointer 

After implementing the virtual screen a problem became apparent. If a user 

pointed at something on their real world screen, then their avatar would need to 

point to the same location on the virtual screen. In order for this to happen, the 

relative size and position of the virtual screen to the avatar, would need to match 

the relative size and position of the real world screen to the user’s body. In 

practice this caused the virtual screen to appear very small, which made it difficult 

for all participants to see the details on the screen. Figure 36 shows this. 

 

Figure 36: Small Display Screen 

The idea of scaling up the size of both the screen and the presenter’s avatar was 

first considered as a solution to this problem, but before that was implemented 



128 

 

alternative was thought of. The idea was to use the finger gesture that gives the 

location in the real world that the user is pointing to data (discussed earlier in 

Section 5.5.2 ), along with the real world screen’s position data (described in 

Section 5.6.2 ) to determine the coordinates (measured in colour image pixels) of 

where on the real world screen the user is pointing. These coordinates can be 

converted to represent the equivalent position on the virtual screen as shown in 

Equation 11. 

           
               

         
                             

               
              

          
                              

Equation 11: Conversion of real world screen coordinates to virtual screen coordinates. 

In these ‘virtual’ values represent positions on the virtual screen, and are given in 

VMX 3D graphics space; and ‘real’ values represent positions on the real world 

screen, and are given in Kinect colour image space. The x and y values are the x 

and y coordinates of where the user is pointing respectively. The top values 

represent the y coordinates of the top of their respective screen. The left values 

give the x coordinates of the left side of their respective screen. The width and 

height values represent the width and height of their respective screens. The y 

coordinate needs to be inverted in the conversion, as in Kinect colour image space 

the y axis increases in a downward direction, whereas in VMX 3D graphics space 

the y axis increases in an upwards direction. 

Once these coordinates have been acquired, a virtual ‘laser pointer’ is drawn from 

the presenter’s avatar’s hand to those coordinates on the virtual screen. The laser 

pointer is made up of two pieces of geometry: a sphere and a cylinder. The sphere 

is positioned at the coordinates on the virtual screen. The cylinder is positioned 

using the same algorithm that positions the cylinders that make up an avatar’s 

body, with the presenter’s avatar’s right hand joint and the coordinates on the 

virtual screen serving as the “joints” to connect in the algorithm. Both pieces of 

geometry are coloured red and do not use lighting calculations to give them a 

more laser-like appearance. 



129 

 

To prevent situations where a laser pointer appears when the presenter doesn’t 

actually want it (e.g. when the user is just using ordinary body language while 

speaking and happens to put their hand in front of the screen) the laser is only 

shown when the user’s hand is within a fixed distance from the screen. This 

requires that the system know the depth of the screen. Because this cannot be 

determined at runtime with the current system for finding the location of the 

screen, it must by preset in VMX’s configuration file. 

The final result makes it possible for an avatar to point at the same location on the 

virtual screen that the user is pointing at on the real world screen, regardless of the 

size of the virtual screen. Figure 37 shows the laser pointer in action. 

 

Figure 37: Laser pointer. 

5.6.4 Interactive Whiteboard 

The algorithm that is used to determine the location on the virtual screen at which 

to direct the laser pointer can also be adapted to a second purpose. It can be used 

to allow a user to “draw” on the virtual display screen. 

This works by first creating a window on the display screen that will function as a 

drawing surface. Equation 11 is then modified so that instead of producing 

coordinates in 3D graphics space, it produces coordinates of the point on a 

window that corresponds to the place on the screen at which the user is pointing. 

The modified equation is shown in Equation 12. 



130 

 

          
               

         
               

          
              

          
                

Equation 12: Acquiring the texture coordinates of the point on the display screen a user is pointing at. 

The values that previously referred to the virtual screen now refer to the drawing 

window. The top and left values for the window are not added as an offset at the 

end of the equations, because these values would always be zero. The other 

difference is that the equation for the y value does not need to be inverted, as the y 

axis on the window increases downwards. 

Once the coordinates on the window are found, a small solid circle is drawn on 

the window at this point. The circle will remain there until the user clears the 

screen. By moving their finger across the screen they are able to draw lines and 

simple pictures out of the circles. 

Drawing is activated by a keyboard command given by the user in control of the 

presentation screen. The command would open the drawing window on the 

presentation screen. 

Ultimately this feature was not very successful. While it was partially functional, 

informal testing revealed the jitter in the Kinect skeleton position data had too 

great an impact to allow the user to draw with any degree of accuracy. For this 

reason the feature was not included in the formal usability trial. It is an option for 

future work to try and find ways of solving the accuracy problem. 

5.7 Camera Controls 

VMX contains two forms of camera control. One requires the user to use their 

keyboard and mouse to navigate the camera around the virtual environment, much 

like a video game. When a user is using this form of control, they are said to be 

using the manual camera. The second form of camera control makes use of the 

user’s skeleton data from the Kinect to decide how to position and orient the 



131 

 

camera. When using this method of camera control the user is said to be using the 

automatic camera. 

5.7.1 The Manual Camera 

The manual camera allows the user to manually position their viewpoint in the 

virtual world. The user does this by using the keyboard to change the position of 

the camera, and the mouse to change the orientation of the camera.  

When the user uses the mouse and keyboard to control the camera, they are 

essentially changing the values of a few key variables that are used by VMX when 

generating the view matrix used when drawing objects. There are three of these 

variables, two of which directly influence each other. The first of these variables 

is the camera position. The camera position gives the world space coordinates of 

the camera in the virtual environment. The two closely related variables are the 

camera target variable and the camera heading variable. The camera target is the 

location in world space of the point at which the camera is currently directed. The 

camera heading is the vector that gives the direction from the camera position to 

the camera target; thus whenever the camera target is changed the camera heading 

must be recalculated, and vice versa. All of these variables are three vectors. A 

fourth variable is not modified by the user but plays an important part in the 

movement process. It is the camera speed variable, and predictably it controls the 

speed at which the camera moves when the user uses the keyboard to change its 

position. 

The keyboard controls are six keys that control the value of the camera position 

vector. The keys are arranged into three pairs. Each pair modifies the position 

vector in a different way. One key in each pair will move the camera in one 

direction and the other key will move the camera in the opposite direction.  

One of the three pairs directly corresponds to, and modifies only one component 

of the position vector. This pair changes only the Y component of the position 

vector. The result is to move the camera up and down. The modification to the 

vector is done by first taking a unit Y vector, then scaling that vector by the value 



132 

 

in the camera speed variable. The resulting vector is then either added or 

subtracted from the camera’s position vector depending on which key is pressed.  

The other key pairs have a more complicated relationship with the camera 

position vector. The first of these pairs moves the camera forwards and 

backwards. This movement does not occur along any particular axis, rather it 

depends on the camera heading variable. When the user presses one of the 

forwards or backwards movement keys the camera heading variable is taken, 

normalised and then scaled according to the camera speed variable. The final 

result is either added or subtracted from the camera position vector. This has the 

effect of either moving the camera either forward or backwards in the direction 

the camera is facing. 

The final key pair is responsible for shifting the camera’s position left or right. 

Again, with this pair the left or right movement is relative to the direction the 

camera is currently facing, not along a particular axis. An extra step is required to 

acquire the vector that must be added or subtracted to the camera position vector. 

This vector should be perpendicular to the unit Y vector (so that it will only cause 

motion on the horizontal plane) and perpendicular to the camera heading (so that 

it will cause the camera to move sideways). This vector can be acquired by taking 

the vector cross product of the camera heading and the unit Y vector, this is 

because the vector cross product of two three dimensional vector is the vector that 

is perpendicular to the original two vectors(Nykamp). Once this vector is acquired 

it can be normalised and then scaled by the camera speed variable, to give a vector 

that will move the camera to the right of where it is currently looking when it is 

added to the camera’s position vector. By subtracting this vector from the position 

vector the camera can be moved to the left. 

In VMX, as with many video games, the user controls the direction of the camera 

looks in with the mouse. Moving the mouse up and down will pitch the user’s 

view of the environment up and down, and moving the mouse left and right will 

pan the view left and right. The angle by which the view changes on a given 

program update depends on how far the mouse has moved since the last update. 

Normally this would require keeping track of the last mouse position that was 

recorded, so that that value could be compared to the current position of the 



133 

 

mouse. However, this is not necessary as in VMX after reading the position of the 

mouse, that position is reset to a default location (specifically the middle of the 

window that VMX is running in. This means that the amount the mouse has 

moved between updates can be acquired by subtracting that default location from 

the current location. The location of the mouse is expressed as a two coordinates, 

one gives the distance of the mouse cursor from the top of the VMX window, and 

one gives the distance from the left hand border of the window. Both of these 

coordinates are measured in pixels. The way that VMX acquires the information it 

needs from the mouse is best illustrated by examining the code directly: 

MouseState currentMouseState = Mouse.GetState(); 

float xDifference = currentMouseState.X - graphics.GraphicsDevice.Viewport.Width  

   / 2; 

float yDifference = graphics.GraphicsDevice.Viewport.Height / 2 -   

   currentMouseState.Y; 

cameraHoriRot -= cameraSpinSpeed * xDifference; 

cameraVertRot -= cameraSpinSpeed * yDifference; 

Mouse.SetPosition(graphics.GraphicsDevice.Viewport.Width / 2,  

  graphics.GraphicsDevice.Viewport.Height / 2); 

 

The first line of this code retrieves the complete set of information about the 

mouse (as provided by XNA). The second line get the distance that the mouse has 

moved horizontally since the last time the mouse was checked by subtracting the 

default horizontal coordinate of the mouse from the actual horizontal coordinate 

of the mouse. The third line does the same thing for the vertical coordinate, but 

differs in that this time the actual coordinate is subtracted from the default; this 

has the effect of reversing the direction of the change it produces in the camera’s 

orientation. In the next two lines we see the two variables that ultimately control 

the direction the camera points in. They are the cameraHoriRot variable, which 

gives the angle in radians that the camera should be rotated around the vertical 

axis; and the cameraVertRot variable which gives the angle in radians that the 

camera should be pitched away from the horizontal plane. The final line does the 

job of resetting the mouse cursor’s position back to its default location. Note that 

VMX runs with the mouse cursor hidden, so the user isn’t bothered by a flickering 

mouse cursor in the middle of the VMX window. 



134 

 

The manual camera is a minor example of the use of the fact that the meeting 

takes place in a virtual environment to do things that one could not do in the real 

world. In this case the ability is to see the meeting from angles that would not be 

possible for someone seated at a meeting table in the real world. 

5.7.2 The Automatic Camera 

The automatic camera relies on using data from the Kinect to position and orient 

the camera in the virtual environment. For this reason it can only be used after the 

Kinect device has been initialised and when at least one user is being fully 

tracked. The camera changes position according to the activity the user is 

performing (sitting at the table, performing a presentation). When sitting at the 

table the camera will turn to look in different directions depending on how the 

user moves. 

Originally it was intended that the camera would turn around to match the user’s 

own head movements (e.g. if the user turned their head to the left, the camera 

would pan to the left). Ultimately however there were two problems with this 

approach. The first arose from the fact that while it might seem natural to turn 

one’s head left in order to look left, the whole activity is defeated by the fact that a 

user’s computer screen likely only takes up a small area of their vision in front of 

them. This means that if a user wanted to look to the left, in order to still see their 

screen they would have to direct their eyes to the right. This is a somewhat 

unnatural position to sit it, and it could become uncomfortable if a user was 

required to do it for a long time (which could be the case if the user wanted to 

look at someone on their left in the virtual environment while that person gave a 

presentation). The second problem with this approach is that the Kinect runtime as 

it is provided by Microsoft provides no data about the rotation of a user’s head in 

space. This means that for this kind of camera control to be possible, an algorithm 

that could infer the rotation of a user’s head from the raw depth or image data 

would have had to have been created. This would have been a very time 

consuming process for a feature that would likely not be very ergonomic. 

Consequently a different way to do this was sought. 



135 

 

The solution was to make use of the position of the user’s shoulders instead of the 

position of the user’s head. To do this the idea was to analyse the position of the 

user’s Kinect skeleton’s left and right shoulder joints with respect to each other. 

The distance in front of the Kinect device of each shoulder would be taken and 

compared with each other. When the one shoulder was closer to the device than 

the other shoulder, the automatic camera would pan to the left or the right. This 

meant that in order to turn the camera in the virtual environment the user would 

need to effectively rotate their body, not their head. This allowed the user to keep 

their head looking directly at the screen at all times, a much more comfortable 

position as it is common for a person to have their head facing in a slightly 

different direction from their body when they are looking at something. Note that 

body rotation is easy to accomplish in a rotatable office chair. 

A second aspect of the user’s body posture was also experimentally used for 

control of the automatic camera. The purpose of this second control was to allow 

the user to zoom the view of the automatic camera. It works in a similar way to 

the mechanism for turning the camera, but instead of using the left and right 

shoulder joints, the algorithm uses the head and spine joints. In this case too, it is 

the relative distances of these joints from the Kinect device that is considered by 

the algorithm. The net effect of the algorithm is that the zoom of the automatic 

camera will change when the user leans forward or backwards. There is a slight 

problem with this approach however. The problem stems from the Kinect’s limits 

on how far a user must be from the device in order for skeleton tracking to 

function correctly. The minimum distance a user may be from the Kinect is 

limited to 82 centimetres. As it stands a Kinect device positioned above a user’s 

computer screen is most likely already very close to the user. This means that if a 

user leans forward there is a strong possibility that the Kinect runtime will lose the 

capability to directly track the user’s head joint. Then the runtime will attempt to 

infer the location of the head instead. This can have unexpected results and cause 

the camera to behave in ways that could be confusing the user. A solution to the 

problem is of course to move the Kinect device further away from the user. This 

comes with trade-offs however, such making the user appear smaller in the 

Kinect’s camera image, lowering the resolution of the image of their face that is 



136 

 

sent to other user’s. Ultimately because the problem does not completely prevent 

the zooming system from working, the feature was left in as is. 

There is one other mechanism that controls the automatic camera. Its purpose is to 

switch the mode of the automatic camera between one designed for a user sitting 

at the table, and one for doing a presentation. When a user’s avatar is sitting at the 

table, the camera sits in the same position as their avatar and will pan and zoom 

according to the user’s movements as described above. However when doing a 

presentation the automatic camera changes its operation. There are two main 

effects of this change. The first is that the camera’s position changes so that it has 

a view straight down the middle of the virtual meeting room. This allows the 

presenter to see their audience clearly. The second effect is to disable the panning 

and zooming functions that are described above. The reason for doing this is that 

when making a presentation, a user is likely to be quite animated (walking around, 

performing gestures, pointing at the screen etc.). Left unchecked this would cause 

the automatic camera to flail about wildly and unhelpfully. For that reason when 

in presenting mode, the automatic camera does not pan or zoom by itself. To 

decide whether the automatic camera should be in sitting mode, or presenting 

mode, the control algorithm looks at how far away the user is from their Kinect 

device. If they are deemed close enough to the device, the camera will go into 

sitting mode, if they are far enough away then the camera will go into presenting 

mode. The user’s distance from the Kinect device is taken from the Z axis 

coordinate of their Kinect skeleton’s centre shoulder joint.  

Early on there was a problem with this mode changing system. Originally there 

was simple a distance threshold that would cause the switch from presenting mode 

to sitting mode and back again. This was problematic because if the user was 

sitting in a position where they were close to this threshold, then there would be a 

tendency to constant switching between modes as the user moved about 

(particularly when they were leaning forwards and backwards to zoom the 

camera). The solution to this problem was to simply modify the system so that 

there was not a single threshold, but two. One threshold would be closer to the 

Kinect device and trigger the change into sitting mode, and one would be further 

away and trigger the change into presenting mode. This means that once a user 

enters a particular mode, they have to make a significant change in position to 



137 

 

switch back out of it. In VMX there is no built in way for automatically 

determining appropriate thresholds, but they can be set in VMX’s configuration 

file. By default the thresholds are set to be 50 centimetres apart. 

There is one final thing that must be done in order to make the automatic camera 

work well. Even though VMX instructs the Kinect runtime to use smoothing on 

the user’s skeleton data, there is still a degree of jitter in the positions of joints 

over a sequence of skeleton frames. Add to that the fact that the Kinect is 

reasonably sensitive to small movements that the user actually makes, and the 

result can be a very shaky automatic camera. To compensate for this, smoothing is 

done in VMX whenever certain properties of the camera are changed. These 

properties are: the camera’s position vector, the camera’s horizontal angle of 

rotation (yaw), the camera’s vertical angle of rotation (pitch), and the camera’s 

field of view (effectively the camera’s zoom). To achieve smoothing all four of 

these camera properties need two separate values each. One of the values is the 

target value for that property. The target value is the raw data value that would be 

used if no smoothing was being done. The other value is the actual value that that 

has been smoothed. It is this value that is used when calculating the 

view/projection matrices for the camera. 

The smoothing algorithm is quite simple. Whenever a discrepancy is detected 

between the target value and the actual value for one of the properties, the actual 

value is recalculated as follows: 

                  
                

  
  

Equation 13: Smoothing camera movement. 

This equation results in smooth transitions when changes are made to camera 

position, with faster movement when the discrepancy between the target and 

actual values is large. 

5.7.3 The AutoCam Class 

The AutoCam class is used by VMX for storing data about different automatic 

camera modes. The two modes that are discussed above (presentation mode, and 



138 

 

sitting mode) are the only modes that are used in 

normal operation of VMX; though there is also a 

third mode that is used when the automatic 

camera is enabled but no users are being tracked 

by Kinect. 

In each of these modes the camera has different 

default positions, orientations and fields of view. 

For example, the sitting mode camera is 

positioned at the side of the table, oriented to 

face the table, and has a somewhat narrow field 

of view that makes it easy to look at the faces of 

specific individuals around the table. The 

presentation camera on the other hand is 

positioned at one end of the room, is oriented to 

look across the table straight down the middle of the room, and uses a wide field 

of view so that everyone in meeting can be seen at once. The AutoCam class 

provides a place to store these pre-set values. 

The AutoCam class has six public properties that are used to store data. These are 

called: Position, VerticalAngle, HorizontalAngle, FOV, RotationSensitivity, and 

Target. The Position property simply gives the world space translation for the 

camera’s default position. The FOV value gives the default field of view angle (in 

radians) to use when producing the projection matrix for this camera. The 

VerticalAngle, HorizontalAngle and Target values are all closely related and 

affect each other. Essentially between them, there are two different ways to 

determine which way to orient the camera. The Target property gives the world 

space translation of a point in the virtual environment that the camera is set to 

look at. The HorizontalAngle and VerticalAngle give the yaw (left/right rotation) 

and pitch (up/down rotation) angles of the camera respectively.  

Either the Target property or the two angle properties together can be 

independently used to set the final orientation of the camera. It is not necessary to 

use all three properties. The target property is best used when there is a specific 

object in the environment that the camera needs to be pointed at, as the Target 

Figure 38: The AutoCam class 



139 

 

value can simply be set to the world translation coordinates of that object. The 

angle properties are best used when there is a specific direction that the camera 

needs to be pointed in. The values can be set to the bearing corresponding to that 

direction. Of course, whenever the angles are changed, the target value must be 

updated to reflect the new direction; likewise when the target value is changed, 

the angles must be updated. To do this the AutoCam class has two private 

methods. The DeriveCameraAngles method is called whenever the Target 

property is set, and the DeriveCameraTarget method is called whenever one of the 

angle properties is set. 

Both the DeriveCameraTarget and DeriveCameraAngles utilise an additional 

static value stored in the AutoCam class called defaultHeading. This value is a 

vector that represents the direction in which a camera will face when the 

HorizontalAngle and VerticalAngle properties are both zero. The value is always 

a positive unit Z vector i.e. Vector (0, 0, 1). This base value is important for 

converting between the Target property and the angle properties. 

The DeriveCameraTarget method is the simpler of the two methods. To start, the 

two angle properties are used as parameters to create two rotation matrices. The 

horizontal angle generates a matrix that rotates around the Y axis, and the vertical 

angle generates a matrix that rotates around the X axis. The X axis rotation matrix 

is then multiplied by the Y axis rotation matrix to give a final rotation matrix for 

the camera. Applying the final rotation matrix to the defaultHeading vector gives 

the actual direction vector for which way the camera should now be facing. This 

vector can be transformed into a vector that represents the target vector by adding 

it to the Position property of the camera.  

The DeriveCameraAngles method is slightly more complex than the 

DeriveCameraTarget method, because there are two separate values that need to 

be found. The first step of this method is the reverse of the last step of the other 

method. The position vector of the camera is subtracted from the new target 

vector giving the vector that represents the direction the camera is facing in.  

With the direction vector acquired work begins on finding the value for 

HorizontalAngle, i.e. the angle between the X and Z components camera’s 



140 

 

direction vector and X and Z components of the defaultHeading vector. This is 

shown as calculated in Equation 14. 

            
                          

                            
 

Equation 14: Finding the angle between a pair of two dimensional vectors 

In fact Equation 14 only provides the magnitude of the horizontal rotation angle, 

so an additional step must be taken to determine whether this rotation should be to 

the left, or the right. If the X component of the camera’s direction vector is 

positive then the rotation will be to the left so the value for the horizontal angle is 

left unchanged. If the X component is negative however, then the angle must be 

multiplied by -1 before being stored. 

The process for finding the value for VerticalAngle is similar. The main 

difference is in the two vectors that need to be used in the angle finding equation. 

Unlike when finding the HorizontalAngle, the VerticalAngle is found using three 

vectors. The vectors used are the camera direction vector that was acquired 

earlier, and a duplicate of that vector that has had its Y component set to zero. 

These two vectors are then substituted into the equation above (Equation 14) to 

give the magnitude of the angle. To set the sign, this time it is the Y component 

that it is checked. If it is positive, then the value is left unchanged and the rotation 

will be upwards. If it is negative, then the value is multiplied by -1 and the 

direction of rotation will be downwards. 

5.8 Network Communication 

In order to facilitate meetings across multiple computers in locations, the program 

needs the ability to send Kinect data over the Internet. To do this VMX utilises a 

client-server model, supporting up to seven remote client connections to the 

server. VMX does not have a dedicated server program; any instance of the VMX 

program can function as either client or server. 



141 

 

5.8.1 Network Structure 

 

Figure 39: Network Class Structure 

As can be seen in Figure 39, the networking system is made up of the VMX core 

class and five classes specific to the system. The diagram shows the relationship 

between each of these classes.  

RemoteServer is the class that hold the server implementation for VMX. When an 

instance of VMX needs to host a meeting and function as a server, this class will 

be used. It contain all of the code necessary for establishing a server, listening for 

connections from clients, and relaying data between itself and all of the clients 

connected to it. 

RemoteClient is the class that is used for network communication when an 

instance of VMX is not functioning as the host of a meeting. The RemoteClient 

class contains only the code necessary to open a connection to a server, and 

communicate with that server. The server sends all of the information about itself 

and other clients connected to it to the client, so only the connection to the server 

is required. 

The RemoteCom class is an abstract class from which both RemoteClient and 

RemoteServer inherit. All of the public members of both RemoteServer and 

RemoteClient are declared within RemoteCom. As can be seen on the diagram 

there is no direct relationship between the VMX core class and RemoteServer or 

RemoteClient. The core class only interacts with RemoteCom. The purpose of this 

is to allow the VMX core class to interact with its networking system in the same 



142 

 

way regardless of whether it is running as a server or a client. This simplifies the 

code in VMX and helps ensure that all code specific to running a server is kept in 

the RemoteServer class, and all code specific to running as a client is kept in the 

RemoteClient class. Importantly, this includes the methods for encoding and 

decoding packets. 

Because the server and client each send packets that contain different information, 

the RemoteServer and RemoteClient classes each have different ways of encoding 

the packets they send, and decoding the packets they receive. In order to keep 

client and server specific code out of the VMX core class there needs to be an 

intermediate way of storing the information that needs to be sent across the 

network, or has been received across the network. If the client and server were to 

pass back information to VMX simply by handing over the packets they received 

then there would need to be server and client specific code in the core to handle 

the different packet types. The goal of avoiding this necessity gave rise to the 

ClientData class. 

As can be seen on the diagram above the ClientData class is used by the VMX 

core, RemoteServer and RemoteClient. It is used as a place to store data when it is 

being passed between the VMX core, and the networking system. Its existence 

permits the desired situation of having the core be oblivious to whether it is 

functioning as a server or a client. 

The final class on this diagram is the VMXClient class. This class is used only by 

the server and is used as a way to consolidate several bits of information relevant 

to a single client connected to the server. The server maintains one instance of this 

class for every client currently connected to it. 

5.8.2 Packet Structure 

VMX essentially utilises two types of packets. One is used by the server to send 

data to clients; the other is used by clients to send data to the server. 

The reason for having different types of packets for sending data from a server 

and sending data from a client lies in the fact that a client will always be sending 



143 

 

one set of data (its own) and a server will often be sending multiple sets of data 

(its own plus data from other connected clients). 

Figure 40 shows the structure of the packet that the server sends to the clients 

connected to it. The first four bytes of the packet are the payload length, which 

describes the length of the entire packet, excluding itself. These four bytes are 

read and processed by the receiving client before other information is read from 

the TCP socket. It is used to determine how much data must be read from the 

socket in order to assemble the entire packet. The next byte in the packet is the 

Client ID, this tells the client what its own currently assigned ID number is. The 

next byte is the Presenter ID, this tells the client the ID number of the client that is 

currently doing a presentation. This information is used to decide which client 

avatar should be placed in front of the virtual presentation screen (if any). This 

value can be the same as the Client ID (if the client receiving the packet is the 

presenting client). The value can also be the ID of the server (if the user hosting 

the server is doing a presentation), or if all of the bits of this byte are set, then no 

one is presenting. The next byte is a block of eight flags. These flags indicate two 

things: the first is how many sets of client data are included in the packet, and the 

second is the ClientIDs that correspond to each set of data. If a given flag is set in 

this block, it means that the packet contains data for the client with the Client ID 

associated with that flag. Blocks of clients’ data are then placed in the packet in 

the same order as their associated flags. Immediately preceding each block of 

client data there is a four byte value that gives the length (in bytes) of that. This is 

put in so that when a client program is decoding the packet, it can tell where one 

block of client data ends, and the next begins. 

  



144 

 

Payload Length 

Client ID Presenter ID Client Flags  

Length of Client 1 Data Block   

    

Data for Client 1 

 

... 

Length of Client X Data Block 

 

Data for Client X 

 

Figure 40: Server Packet Structure 

Figure 41 shows the structure of the packets that are sent from a client to the 

server. These packets are much simpler than the packets sent by the server. They 

contain a four byte Payload Length which serves exactly the same purpose as the 

Payload Length value in the server packet. The remainder of the packet is made 

up of one set of Client Data containing the data for the client that is sending the 

packet. 

Payload Length 

 

Data for Client 1 

 

Figure 41: Client Packet Structure 

Both the server and the client use the same structure for packaging the data for 

each set of client data. Figure 42 shows this structure.  

  



145 

 

Contents Flags    

 Avatar Data  

 

 

Face Texture Data 

 

 

Display Screen Texture Data 

 

 

Screen Zoom/Scroll Data 

 

Figure 42: The packet structure of the data for one client. 

Most of the blocks of data within this structure are optional. Only the Contents 

Flags will always be present. These flags indicate which of the other blocks of 

data are actually contained within a particular packet. The details of the data is 

stored in each of these blocks can be seen in Table 3 in Section 5.8.4 . 

5.8.3 RemoteCom 

Whether or not a given instance of VMX is functioning as a client or a server is 

almost completely transparent to the core program. The core program interacts 

with an abstract super class named ‘RemoteCom’; this class is inherited by 

‘RemoteServer’ and ‘RemoteClient’ which actually implement the methods 

provided by RemoteCom. Both server and client each use their own packet 

structures. 



146 

 

Remote communications are initiated either 

by user command or from an instruction in 

the configuration file. The VMX core class 

maintains a variable called remote; this 

variable is of type RemoteCom. When 

VMX is instructed to either start a server or 

a client module, the appropriate class is 

instantiated and stored in remote.  

RemoteCom is abstract and contains 

declarations of all of the methods that the 

core VMX class uses when performing 

remote communications. These include 

methods for sending and receiving data, and 

methods for setting up and shutting down 

the remote connection. In addition to these 

methods, the RemoteCom class provides a 

host of properties for providing state 

information to the VMX core. Among these 

there are properties which specify: whether this instance of RemoteCom is a 

server or a client, the total amount of data that has been sent, how much has been 

received, whether the remote system is currently active and set up, a string which 

gives any status messages back to VMX, and whether any packets have been 

received and are ready to be processed. In addition to these read-only properties, 

there are two settable properties. One is called ServerPort and one is called 

ServerAddress. The precise function of these two properties depends on whether 

the system using them is a client or a server. For a client, the properties give the 

address and port to connect to in order to communicate with a given server. For a 

server the ServerAddress property is unused, and the ServerPort gives the port on 

which the server should listen for new connections. 

  

Figure 43: RemoteCom class structure 



147 

 

5.8.4 ClientData 

As described, the client and server systems each 

use their own packet formats, requiring slightly 

different ways to decode each kind. This is 

problematic when trying to keep their inputs and 

outputs identical when interacting with the VMX 

core class. To solve this, an intermediate data 

structure called ClientData is used to store all the 

information about a single client when it is being 

passed between the VMX core and its server or 

client class. When the VMX core is retrieving 

data from or supplying data to an instance of 

ClientData, it will use the class’s assortment of 

public variables and properties; however when the 

server or clients classes interact with the 

ClientData class they use a pair of methods. One 

of the methods (PackageData) is used to encode 

all of the data in the class into a byte array that 

can be put directly into a network packet, the 

other (UnpackData) carries out the opposite 

function, decoding a byte array taken from a 

packet to populate the variables in an instance of 

ClientData.  

The ClientData has variables and properties that correspond to all of the kinds of 

data that an instance of VMX will need to send across a network, Table 3 lists all 

of those variables. It should be noted that not all kinds of data are transmitted all 

the time. For example, VMX will only transmit skeleton position information 

when it has new skeleton position information to send; if there is no skeleton data 

available, or the current skeleton data has already been transmitted, then no 

skeleton data will be provided to the ClientData class. Table 3 also shows the 

conditions under which particular data is included. 

  

Figure 44: ClientData class structure 



148 

 

Will be included 
when… 

Variable Name 
Variable 

Type 
Variable Contents 

Included when new 
skeleton data that 

hasn’t already been 
transmitted is 

received from the 
Kinect runtime. 

ColourPants Color 
The colour to use when 
rendering the legs of an 

avatar. 

ColourSkin Color 
The colour to use when 

rendering the hands, feet 
and head of an avatar. 

ColourShirt Color 
The colour to use when 
rendering the arms and 

torso of an avatar. 

HeadYaw float 
The angle to rotate the 

avatar’s head about the Y-
axis. 

HeadPitch float 
The angle to tilt the 

avatar’s head up and 
down. 

UseLaser boolean 
Whether to draw a laser 
pointer beam from this 

avatar’s hand 

LaserTargetX float 
The X-coordinate of where 

the laser pointer should 
point to 

LaserTargetY float 
The Y-coordinate of where 

the laser pointer should 
point to 

SkeletonData byte[] 
The position data of all of 
the joints in the avatar’s 

skeleton. 

Included when a new 
face texture has 

been generated from 
the skeleton data 
and colour image 

data is received from 
the Kinect. 

FaceData.Length int 

The size of the FaceData 
array (see below). Note 

that this is not stored in a 
separate variable, but is 
included in the encoded 

data produced by the 
PackageData method. 

FaceWidth int 
The horizontal resolution 

of the avatar’s face 
texture. 

FaceData byte[] 
The texture data for the 

avatar’s face image. 

Included when the 
image on the virtual 
display screen has 
been changed or 

updated. 

ScreenData.Length int 

The size of the 
ScreenData (see below). 

Note that this is not stored 
in a separate variable, but 
is included in the encoded 

data produced by the 
PackageData method. 



149 

 

ScreenWidth int 
The horizontal resolution 

of the texture on the virtual 
display screen. 

ScreenData byte[] 
The texture data for the 

image on the virtual 
display screen. 

Included when the 
zooming or scrolling 

functions of the 
virtual display screen 

are used and 
changed. 

ScreenZoom float 
The zoom factor to use on 
the virtual display screen. 

ScreenHoriScroll float 
The horizontal scrolling 
position to use on the 
virtual display screen. 

ScreenVertScroll float 
The vertical scrolling 
position to use on the 
virtual display screen. 

Table 3: Data contained within the ClientData class 

In addition to these variables there are four public properties in the ClientData 

structure. These are called HasSkeleton, HasFace, HasScreen, and 

HasScreenAdjustments. They correspond to each of the four conditions given in 

the first column of Table 3 respectively. These properties are all Boolean values, 

and all are non-settable. They return true if their corresponding condition is 

satisfied and false if it is not. They are used under two different circumstances. 

The first is when VMX is reading data out of the ClientData class; the properties 

are accessed to determine exactly what data to read. The second use is by the 

ClientData class itself, when it is deciding what data needs to be encoded into a 

byte array for transmission. 

The PackageData method is used by both the client and server classes to encode 

data for transmission. This method starts by determining what data it needs to 

include in the byte array and how much space the data will take up (i.e. how big 

the byte array needs to be). While it is doing this it also generates the inclusion 

flags that will be placed at the beginning of the byte array. The first stage of this 

process is to instantiate three variables. The first of these is a Boolean called 

haveDataToSend, this initially set as false and then only set to true once it is 

confirmed if there is currently meaningful data stored the ClientData instance. The 

second is an integer called dataLength that is used to keep a running count of the 

total amount of data that needs to be sent (in bytes). The third variable is a single 

byte called flags; which will eventually become the first byte in the final array. 



150 

 

Following this, HasSkeleton, HasFace, HasScreen, and HasScreenAdjustments 

are each checked in sequence. If any of these values is true then haveDataToSend 

will be set to true. If HasSkeleton is true then the total size of all of the data that is 

sent under this condition will be added to dataLength, and the flags byte will be 

updated by performing a bitwise ‘or’ operation with the skeleton  data flag value 

on the flags byte. A similar process will be followed if HasFace, HasScreen 

and/or HasScreenAdjustments are true; with the dataLength being increased by 

different amounts depending on the type of data that is being included. Once this 

is done, the algorithm will know how many bytes the encoded data will require. If 

none of the four ‘Has’ conditions are true then at this point the method will return 

a zero-length byte array. 

If at least one of the ‘Has’ conditions was true then the process of encoding it into 

a byte array will begin. This starts with the creation of a new array with the 

number of elements given by the value in the dataLength variable. The first data 

to be added to the byte array is the flags byte from earlier. The method will then 

go through encoding the data shown in Table 3 into the byte array in the order 

shown in the table (subject to the inclusion conditions for each type of data in the 

table). Each variable is handled one at a time, first being converted from its 

ordinary type (float, int, bool, or Color) into a byte array using the C# system 

BitConverter class (assuming it isn’t already stored as a byte array) and then that 

byte array is copied into to the main byte array. Once all of the data has been 

included, the final byte array is returned by the method. 

The UnpackData method carries out the reverse process to the PackageData class. 

It starts by reading off the first byte in the array it is to decode. This byte contains 

the flags which indicate what data is included in the remainder of the array. The 

flags serve the same purpose as the ‘Has’ properties in the PackageData method. 

The method then goes through the remainder of the byte array looking for each bit 

of data that needs to be extracted based on which flags were set (following the 

order shown in Table 3). When extracting a particular piece of data, the bytes 

needed to encode it are extracted from the array and then parsed back into the 

normal type for the data (using BitConverter) before being stored into the 

appropriate variable. Most of the data stored in the packet takes up a known and 

constant number of bytes in the array. The exceptions to this are the ScreenData 



151 

 

and FaceData byte arrays, these have a variable length. This is the reason that 

ScreenData.Length and FaceData.Length are encoded into the main array 

separately. They are used to determine how many bytes need to be extracted from 

the main byte array to extract their respective data arrays. 

The ClientData class also has two simple utility methods called GetColorBytes 

and GetColourFromBytes; these are used to encode a Color variable into a byte 

array and a byte array into a Color variable respectively. When encoded into a 

byte array, the red, green and blue values of the Color are each stored in a single 

byte, meaning that each Color variable encodes into three byte array.  

5.8.5 VMXClient 

Before talking about the implementation of the 

server in VMX we must look at simple but 

important data structure that the server uses. This 

structure is called VMXClient. The purpose of 

VMXClient object is to keep track of five objects 

that all relate to the same remote VMX client on 

the server. 

The first of these five objects is an integer called 

ClientID that is used by the server to keep track of each individual client, 

particularly when forwarding data from one client to another. The second is a 

TcpClient object. TcpClient is part of the System.Net.Sockets library and is used 

to access and manage the TCP network connection between the server and the 

client. The third object is the thread that is responsible for listening for new 

communications from the client. The fourth is the thread that is responsible 

sending packets to the client. The fifth object in the VMXClient class is a Queue 

object which contains all of the packets that are waiting to be sent by the send 

thread. 

 

 

 

Figure 45: VMXClient class 

structure 



152 

 

5.8.6 Server 

As the name suggests RemoteServer is the 

class that is used to run and manage a 

server for VMX. Aside from providing its 

own implementation of the methods 

declared in RemoteCom, it also maintains 

the variables and private methods that are 

necessary for managing communications 

between it and multiple clients, having 

also to serve as a relay for communicating 

information from clients to other clients. 

The server class relies heavily on 

threading to carry out its functions. 

When it is first instantiated the server class does nothing. Before it can 

communicate with any clients, its Setup method must be called from VMX’s core 

class. The Setup method is charged with setting several key variables, and 

initiating the first stages of establishing connections. The first thing done in the 

Setup method is to initialise and set a series of variables. This includes initialising 

a new queue that holds packets as they are received, setting the property that 

states whether this instance of RemoteCom is a server to true, and wiping the 

array which states whether the a particular client ID is in use. Once that is done, 

the method moves on to start the process of listening for new client connections. 

To do this, a TcpListener object is instantiated and given the port that it will need 

to listen on when activated (provided in the ServerPort property of RemoteCom). 

The method that accepts new connections as they are made would block the 

program. For this reason VMX puts it into its own thread (listenThread), which is 

instantiated by the Setup method. The listenThread’s task is to handle the process 

of accepting new client connections via the TCPListener object. The listenThread 

is then immediately started. The final act of the Setup method is to set the 

property that states if a RemoteCom object is fully active to true. 

The body of the listenThread is a method is called ListenForClients. The first step 

of ListenForClients is to instruct the TCP listener to start running. The thread then 

loops continually until the server is told to shut down. The first step of the loop is 

Figure 46: RemoteServer class structure. 



153 

 

to check if the maximum number of connected clients has been reached; if it 

hasn’t then a new TcpClient object will be created. This TcpClient object is used 

as a place to store the return value of the TcpListener’s AcceptTcpClient method 

(this is the method that blocks). This method will only return once a connection 

has been established to a new TcpClient. Once this happens a new VMXClient is 

instantiated and passed the returned TcpClient. Then the array of client IDs will 

be searched for an available ID. Once one is found it will be marked as in use and 

the ID will be assigned to the VMXClient object. Following that the VMXClient 

will be added to the list of currently connected clients, and the count of currently 

connected clients will be incremented.  

In order to receive communications from multiple clients, it is necessary to wait 

for new data from each of those clients continuously. The method for reading 

from a client socket is also a blocking method. Thus for every client that connects, 

a new thread must be created to listen for incoming data. The last stage of the loop 

in the ListenForClients method is to establish the new thread, using the method 

HandleClientReceive as its body. HandleClientReceive is responsible for 

receiving incoming data from the client and doing the first stage of processing on 

it. It is then stored in the appropriate VMXClient object. The thread is then 

started. Unlike the ListenForClients method the HandleClientReceive method 

takes a parameter (the VMXClient object), this is passed in with the call to start 

the thread; it provides access to the queue for storing incoming messages. Finally 

the ListenForClients method loops back around to listen for the next incoming 

connection. 

The HandleClientReceive method is similar in structure to the ListenForClients 

method. It starts with a TCPClient (socket) and a queue for storing messages read. 

Once its initialisation is done, the method enters a loop which will continue until: 

the server is shutdown; there is a problem with the connection; or the client closes 

the connection.  

The loop starts by immediately entering a try/catch block. The purpose of this 

block is to catch any exceptions that occur during the communication process so 

the connection and the thread can be safely shutdown. Upon entering the try/catch 

block the routine attempts to read the payload size header from the client socket. 



154 

 

The Read method returns a value, which is the number of bytes that were actually 

read. It will block until some communication is received from the client or the 

connection is terminated. This is why each client must have its own thread on the 

server. The next stage of the HandleClientReceive method determines whether the 

Read method returned because there is new data or because the connection was 

terminated. It does this by checking the number of bytes read; if it equals zero 

then it is known that the Read method returned without reading any data; thus the 

connection must have been terminated. If this is the case then the 

clientDisconnected variable is set to true and the loop is broken. If payload size 

header was actually received then the number of bytes that were read (4) will be 

added to the RemoteCom property for the total number of bytes downloaded. The 

value for the payload size is parsed out and used to determine how many bytes 

need to be read from the socket to reconstruct the incoming packet. A new byte 

array is created to hold the full packet, and then the program enters a loop that 

repeatedly calls the Read method on the socket until enough data has been 

received to fill the array. After each Read call the number of bytes read will be 

added to the total bytes read property of RemoteCom. 

Once the loop completes the try/catch block ends. The message array and the ID 

number of the client from which the packet was received are then placed in a 

simple data structure called QueuedPacket which is added to a queue of all 

packets that have been received by all of the threads that read data from clients. 

The data will remain in that queue until the server is ready to process it. 

When the loop ends, the server is no longer communicating with the client and 

some final tidy up is done. This includes: decrementing the number of connected 

clients, freeing the associated client ID in the array of client ID’s available, 

removing the VMXClient object from the list of currently connected clients, and 

finally closing the TcpClient’s stream. The thread responsible for sending data to 

the client will stop by itself when the TCPClient connection is closed. 

Once a packet is on the queue of received packets, there is still some additional 

processing to be done. This processing is done when a call to the 

GetRemoteClientData method is made from the VMX core class (in the 

program’s main thread). The GetRemoteClientData method is one of the methods 



155 

 

declared by RemoteCom and therefore there is also an implementation of it in the 

client for VMX. GetRemoteClientData takes no parameters but does return a list 

of ClientData objects. Each object in this list represents one packet that has been 

processed.  

The method starts by instantiating the list of ClientData objects that will be 

returned at the end. Next it identifies the number of packets that are currently in 

the queue and need to be processed. This value is stored in a variable called 

‘packetsToRead’. From there the method iterates over each packet in the queue 

until the number of packets that have been processed equals the value stored in 

packetsToRead. The reason for not simply continuing to process packets until the 

queue is empty, is that while the main program thread is doing this processing, 

each of the client threads can be adding new packets to the end of the queue, 

which could result in this method continually processing new packets as they 

came in, and consequently not returning at a reasonable speed (or not returning at 

all). It should be noted that whenever the queue is accessed from any thread, it is 

first locked to prevent concurrent access issues. 

The process of iterating over a packet is fairly complex. It begins by first 

dequeuing a QueuedPacket from the packet queue, and then instantiating a new 

ClientData object. The next step is to extract the Client ID from the QueuedPacket 

structure; this value is immediately stored in the Client ID property of the 

ClientData object. Then the actual information in the byte array is decoded. This 

is done by the ClientData object itself. The byte array is extracted from the 

QueuedPacket and then passed into the ClientData object’s UnpackData method 

which decodes the information from the packet and uses it to populate its various 

properties and variables. 

With all of the data from the packet extracted, the resulting ClientData object is 

added to the list of ClientData objects to be returned by the method. While this 

handles the task of getting data from each client instance of VMX back to the 

server’s core class, the server is also tasked with forwarding this data onto other 

clients. To do this the data must be stored somewhere within the server class itself 

while it waits to be forwarded. The server class uses an array of ClientData 

objects for this purpose. This array is large enough to hold one ClientData object 



156 

 

for each of the clients connected to the server. If a new set of data arrives from a 

particular client before the last set of data from that client is forwarded, then the 

new data will overwrite the old, unsent data. There is one exception to this, Screen 

Texture Data is very infrequently sent, thus if it was overwritten before being 

forwarded to other clients, then there would be a situation where a presenter had a 

image on their display screen that differed from that which each other participant 

in the meeting could see. To prevent this situation, if an old unsent ClientData 

object in the array contains screen texture data, and the new ClientData object to 

replace it does not contain screen texture data, then the screen texture data will be 

copied from the old ClientData object to the new one. This ensures that screen 

texture data is always forwarded to all clients. It is not necessary to do this with 

other kinds of data as they are updated much more frequently, so any data that 

isn’t forwarded will be replaced by newer data before any user would notice. 

After the ClientData object is stored for forwarding the method will continue on 

and loop around to process the next packet if there are more packets that need to 

be processed. If all packets have been processed then the method will end and 

return the list of ClientData to the VMX core where it will be used to update the 

state of the virtual environment. 

The other main responsibility of the server is to send data to all of the clients 

connected to it. This includes data from both the server’s instance of VMX and 

from all of the connected clients. There are two parts to the system for sending 

data to clients. The first part is the Send method of the server. This method is 

responsible for assembling the packets to be sent to each client. The second part 

of the sending system is the collection of threads responsible for actually 

transmitting data to the connected clients. 

The Send method is inherited from the RemoteCom class and requires a 

ClientData object be passed to it as a parameter. In the VMX server this 

ClientData object can be one of two things; it will either contain all of the data 

from the server’s instance of VMX that needs to be transmitted to the clients, or it 

will be blank if the server has nothing of its own to send. If a client program has 

nothing to send, then it will not call the Send method at all. The server cannot 

work like this due to its responsibility for relaying data between each client. It is 



157 

 

likely that the server will have client data to forward, even if it has no data of its 

own to send. 

The first task carried out by the Send method is to check to see if there are any 

connected clients. If there are none, then the send method stops and immediately 

returns. If there are clients connected then will begin to build a packet to send to 

them. To start, a list of bytes called payload is created; this list will be 

progressively appended with the data from each client that needs to be sent. Also 

initialised at this point is the byte that contains the flags that indicate which clients 

have data in the packet (This is the Client Flags byte that was shown on Figure 

40).  

The method will then move on to loop over each entry in the array of ClientData 

objects where data to be forwarded is stored. Each entry will first be checked to 

ensure that it actually contains data (i.e. not a null entry). If data is found the 

PackageData method will be called on that ClientData object to acquire a byte 

array that contains the encoded client data. The byte array is checked to ensure 

that it actually contains something. If it does then the Client Flags byte is 

amended so that the bit for the client that provided the current data is set; the size 

of the byte array is encoded into four bytes and added to the payload byte list; and 

finally the byte array itself is appended to the payload list. The last step of the 

loop is to set the entry in the array of data to forward to be null, thus indicating 

that the data for that client has been forwarded. This process is repeated until all 

of the entries in the array of data to forward have been processed. The array of 

client data to forward is only ever accessed by main thread, so there is no risk of 

concurrency issues here. 

Once all of the client data has been added to the payload, the server’s own data 

will be added (if any was provided). The process for adding the server data is 

similar to the process for adding the client data. First the server’s data is packaged 

into a byte array. If the resulting byte array actually contains data, then the 

server’s flag is set in the Client Flags byte, the size of the array is encoded and 

added to the payload, and finally the byte array itself is added. 

At this stage of the full length of the packet, not including the four byte Packet 

Length field that goes at the start of the packet is calculated. This value is equal to 



158 

 

the size of the other fields that go at the top of a server packet (Client ID, 

Presenter ID, and Client Flags) plus the current size of the payload list. This value 

will be used for the Packet Length field. Next another byte array is created, large 

enough to store the entire packet (Packet Length field included). The byte array 

will serve as the final packet. First the Packet Length is encoded and stored. Next 

a value for the Client ID is added, this value is just a place holder as it will be 

changed for each client that the packet is sent to (to match that client’s own ID). 

Next the ID of the current presenter will be added. This value is taken from a 

public, static variable in the VMX core class which is set by the user in control of 

the VMX server. After that, the Client Flags byte is added to the array. The final 

step of building the packet is to copy the contents of the payload list into the byte 

array. 

With the packet built, the Send method moves onto its last stage. It iterates over 

all of the clients that are currently connected to the server. For each, it created a 

new copy of the packet that was just built. The Client ID field of the copied 

version of the packet is then amended to be equal to the ID of the client that is 

currently being processed by the loop. The copied packet is then added to queue 

of packets to be sent to that client. Once all of the clients have been processed the 

Send method ends. 

The responsibility of actually delivering these packets to each client falls to the 

second part of the data sending system. Originally the task of sending data to 

clients was a part of the Send method. This meant that the main program thread 

would have to carry out the process of writing the packets to the TCP sockets for 

each client. Under normal operation this worked well, however trouble would 

arise if there was a problem with the connection to a client. The TCP socket’s 

write method is a blocking method. This meant that if some problem occurred on 

the client or with the connection to that client, or a client socket’s output buffers 

were full, then the entire server would freeze, preventing any data from being sent 

to any client. To rectify this problem the system was changed so that each client 

would be assigned a thread on the server that was exclusively responsible for 

sending packets to that client. This means that if something goes wrong sending 

data to one client, then the operation of the server would not be affected and other 

clients would continue to get their data. 



159 

 

Each client send thread runs the code in a method called HandleClientSend. 

HandleClientSend takes one parameter: the VMXClient object for the client for 

which the thread is responsible. The method itself is fairly simple. It continually 

runs through a loop. On each iteration of the loop it first checks if the queue of 

packets to send in the VMXClient object has any packet in it. If it does not, then 

the thread will sleep for 10ms and then loop back to check again. If there is a 

packet to send, then it will be dequeued. The TCPClient object that manages the 

connection to the client will be accessed through the VMXClient object, and its 

write method will be called. This will send the packet to the client. Once this is 

done the method will loop back to the start. If a problem occurs with the 

connection to the client, then the loop will terminate and the thread will exit. 

5.8.7 Client 

RemoteClient is the class that is responsible for handling the network 

communications for an instance of the VMX program that is running in client 

mode (i.e. is not hosting a server). It has a similar structure to the RemoteServer 

class, inheriting the same methods and variables from RemoteCom. While it is 

similar to RemoteServer, it is simpler as it is required to manage only one remote 

connection (the one to the server).  

RemoteClient has only two instance variables on top of those it receives from 

RemoteCom. These are the TcpClient object that is responsible for 

communication with the server, and the Thread that is used to listen for 

communications from the server. The 

TcpClient object is used somewhat 

differently in the RemoteClient class 

compared to RemoteServer’s use of it. In 

RemoteClient the TcpClient object is 

used to establish the connection to the 

server and is instantiated at setup. In this 

way it serves a purpose that resembles the 

function of the TcpListener object in the 

server. Unlike the server the client object 
Figure 47: RemoteClient class structure. 



160 

 

only ever uses one extra thread; this is simply because the client has only one 

remote computer from which to monitor communications (the server). 

Like RemoteServer, after instantiating RemoteClient it is necessary to call the 

Setup method before it can be used for communications. The Setup method for the 

client is carries out two main functions. The first is to establish a TCP connection 

to a VMX server. This is done by instantiating a new TcpClient object. The 

TcpClient object’s constructor takes two arguments, the address of the computer 

to connect to, and the port to connect on. The ServerAddress and ServerPort 

properties provided by RemoteCom are used for these parameters. Once the 

connection is established, a new thread is created based on a method called 

ReadFromServer. The purpose of the thread is to receive and process packets 

from the server. Once instantiated the thread is immediately started. The final act 

of the Setup method is to set the Active property inherited from RemoteCom to 

true, thus notifying the VMX core that it is ready to send and receive data. 

The first stages of the ReadFromServer method are the same on the client as they 

are on the server. First a loop is entered that will continue until the connection to 

the server is terminated. The first step of the loop is to call the Read method on 

the TCP connection to the server. The Read method will be repeatedly called until 

four bytes are read; these four bytes represent the encoded Packet Length field of 

the packet. If the Read method ever returns with zero bytes read then the 

connection to the server has been terminated and the thread that is listening to 

communications from the server will exit. Once the Packet Length is known a 

similar series of commands reads in the rest of the packet data. Once read, the 

packet is added to the queue of newly read packets and the method will then loop 

back around to await the next packet. 

The packets in the received packets queue are processed by the main thread of the 

VMX program. This occurs when the VMX core makes a call to the client class’s 

GetRemoteClientData method. This method is inherited from RemoteCom; it is 

similar to the equivalent method in the server class except that each packet that it 

must decode is in the server packet format (see Figure 40), and it does not need to 

store any data to be forwarded later. The method starts in the same way as in the 

server implementation checking if there are any packets on the received packets 



161 

 

queue. If one is available then it will be dequeued and decoded. The decoding 

process starts by reading off the Client ID stored in the packet. This value is 

immediately stored in a static variable in the VMX core class called CurrentID 

(this is how the server gives a client their assigned ID). The next value to be taken 

out of the packet is the Presenter ID which is stored in another static variable in 

the VMX class called PresenterID. Next the Client Flags are read from the packet. 

The method then enters a loop that will on each iteration extracts and decodes the 

data for a single client. The loop continues until the end of the packet is reached 

(i.e. all of the client data blocks are read). On each iteration of the loop, four bytes 

are first taken from the packet. These bytes are converted to an integer that gives 

the size of the next block of client data. That block is then copied out of the packet 

and passed to the UnpackData method of a new ClientData object. This decodes 

the data block and populates the ClientData object’s properties and variables with 

the results. The final step of the loop is to determine which Client ID should be 

assigned to the new ClientData object. This is done by looking at the Client Flags 

byte that was read in earlier. Client data blocks for are stored in the packet in a 

specific order, with data from clients with lower IDs first. The Client Flags byte 

has a bit for each possible Client ID; this enables the method to determine the 

pool of Client IDs assigned to the clients that have data in the packet. When 

reading in client data blocks, the method will assign the next lowest available ID 

to that data block. Once the appropriate ID is stored into the ClientData object, the 

object will be added to a list of all of the ClientData objects that have been 

decoded from the packet. The loop will then go back to the start to decode the 

next data block. When the loop ends the method will finish by returning the list of 

ClientData objects back to the VMX core where they will be used to update the 

program state. 

RemoteClient provides an implementation of RemoteCom’s send method that is 

far simpler than the RemoteServer’s counterpart method. The Send method takes 

a ClientData object from the core VMX class that contains the data that VMX 

needs to send to the server. This data is encoded with ClientData’s PackageData 

method and added to the packet to be sent. The length of this data is then 

appended to the front of the packet (forming the Packet Length header) and the 

packet is sent. 



162 

 

  



163 

 

Chapter 6: Usability Trial 

Throughout the project informal testing was done to refine individual aspects of 

the software. Chapter 5 detailed many techniques that were tried, and then 

replaced or refined. The goal of the testing described in this chapter was to 

evaluate the software in a practical setting. This meant that is was necessary to 

perform a more formal user test to acquire feedback on the VMX. The experiment 

was designed to follow an ordinary meeting format, using the VMX software 

instead of having the participants face-to-face. To get detailed feedback, at the end 

of their meeting, the participants were asked to fill out a questionnaire that asked 

questions relating to their experience using the software. The experiment required 

and was given ethical consent, details on this and more material on the experiment 

itself can be found in Appendix II. 

This chapter starts by giving an overview of the experiment itself, including a 

description of exactly what was involved and how it was intended to progress. 

The chapter will then move on to talk about the outcomes of the experiment, 

including details of feedback received from the participants and the observations 

of the researcher present during the experiments. This part of the chapter will also 

include brief notes of what could be done to address some of the issues that were 

identified in the feedback from users; these notes will be expanded upon in 

Chapter 7 and Chapter 8. 

6.1 Experiment Design 

The basic format of the experiment called for a group of people to use the 

software to hold a meeting. It was intended that the meeting would be ‘real’, that 

is to say that it would likely have taken place even if it was not part of the 

experiment. The group of participants for the meeting would be made up of 

people who had a reason to meet with each other. 

The meeting would involve two main phases. In the first phase, the VMX 

software would be used by a participant in the experiment to perform a 

presentation to the other participants who would serve as an audience. In the 



164 

 

second phase, all of the participants would sit around the virtual table and have a 

discussion (about the presentation that was given). 

Before the experiment could begin, the appropriate equipment needed to be set up. 

In order to use VMX, a participant must have had, at a bare minimum, an network 

connected computer with an attached Kinect device, along with the software 

necessary to run a Kinect device, and the software to run a .net framework 

application. In order to perform a presentation using the display screen, a 

participant was required to have a second (large) physical screen attached to their 

computer and positioned behind them as was shown earlier in Figure 32. 

VMX itself has no built in way to transmit audio. This means that if participants 

of a meeting were to talk to each other, then another application needed to be 

used. An application called TeamSpeak was selected for this task. TeamSpeak is a 

piece of freely available software that allows people to connect to a server on the 

Internet, and have an audio conversation with other people on that server. Team 

Speak is often used by people who are playing a video game together, and so is 

designed to be able to run in the background behind a full screen application using 

3D graphics; this made it suitable for use with VMX. Most participants used the 

Kinect’s onboard microphone array to capture their voice, and were equipped with 

a wired headset for sound playback (using ordinary speakers would have caused 

audio feedback with the microphone array). The participant who was presenting 

was provided with a wireless headset instead so they could move around freely 

while doing their presentation. 

In order to ensure that people are only communicating by using the virtual 

meeting software and Team Speak, the participants in the experiment were all in 

separate rooms. The participants were instructed to connect to a designated VMX 

server (controlled by the researcher), and a Team Speak server (provided by the 

researcher). Once everyone was connected the experiment would begin. 

At the beginning of the meeting, the researcher would explain to the participants 

the features of the virtual meeting software by using the software itself to do a 

presentation. The features covered included: how to use the manual and the 

automatic camera controls; the ability to adjust the sizes of the heads of avatars in 

the scene; how to use gestures to control the display screen when presenting; and 



165 

 

how to update what was shown on the display screen. Along with the 

demonstration of the software’s features, the researcher also gave an explanation 

of the various parts of the virtual environment, including the various display 

screens and most importantly, the other avatars in the scene and how they moved 

and acted with respect to their users’ own movements. Because the software is 

running throughout the introductory presentation, participants would be 

encouraged to experiment with their controls during the presentation. Once the 

researcher had completed their presentation, the participants were invited to ask 

any last questions that they began holding their own meeting. 

When the participants were ready to begin their meeting, the researcher would (in 

avatar form) sit down at the virtual table where they would remain for the duration 

of the experiment to observe the participants while they carried out their meeting. 

The experiment would continue with the participants performing presentation 

and/or sitting at the virtual table having a discussion. The meeting would go on 

until the participants were finished. 

After the meeting, all of the participants would be asked to fill out a questionnaire. 

The questionnaire would be handed out to the participants before they began their 

meeting. This was done to give the participants the chance to see what kinds of 

things would be asked, thus giving the participants the opportunity to think about 

their answers while they were using the software. The questionnaire contains 

questions about the participant’s experiences using the software.  

The questionnaire was split into five sections. Each section had questions about a 

particular part of the program. There were sections about: the features of the 

VMX software; the experience of giving a presentation; the experience of the 

meeting in general; how the virtual meeting software compared to other methods 

of holding a meeting; and a final section for general comments. A copy of the full 

questionnaire can be seen in Appendix II. 



166 

 

6.2 Outcomes 

The experiment was held between five people (with the researcher observing as a 

6
th

 participant). It involved one participant giving a presentation to the others, 

followed by a discussion of that presentation between all of the participants. 

This section looks at the observations that were made by the researcher during the 

course of the experiment. It also discusses the feedback that was received from the 

participants of the experiments on their questionnaire forms. Identifying both the 

successful and unsuccessful elements of the program, and giving consideration 

about how to address the problems encountered. 

 

Figure 48: The meeting in progress. 

6.2.1 The Avatars 

The first trouble that was encountered with avatars was the obstruction of view 

caused by the heads of the avatars. Participants in the meeting commented on their 

inability to easily see past their neighbours at the table to see other participants 

further down, and in some cases to see the virtual display screen. The fact that the 

back of an avatar’s head is transparent did alleviate the severity of this problem, 

but it did not fully solve it. Some participants reported that they used the manual 

camera controls as a means to get around this problem, especially when trying to 



167 

 

watch a presentation. No one reported attempting to shrink avatars’ heads to see 

past them. Possible solutions for this could include, making the avatars’ head even 

less visible from behind, or investigating different ways to arrange avatars in the 

environment, to minimize the chance that they would cause an obstruction. Figure 

49 shows the problem in practice, the avatars in the foreground are partially 

obstructing the virtual display screen. 

 

Figure 49: The presentation in progress. 

In tests of the VMX system that were run before the experiment was carried out, a 

problem regarding the amount of data that was being sent across the network was 

identified. This necessitated a restriction on how detailed the face texture for an 

avatar could be. In the experiment this resulted in a lower than ideal resolution for 

the face textures (specifically 35 x 35 pixels). It was still possible to see and 

recognise people’s faces at this resolution, but participants reported some 

difficulty in seeing the facial expressions of others in the meeting. This was 

particularly true of the presenter, while they were performing their presentation. 

The experiment setup (shown in Figure 50) illustrates a possible reason for the 

presenter’s trouble with this. It shows the area in which the presenter did their 

presentation during the experiment. The real world screen appears on the far right 

of the image, this is where the presenter was standing while they were giving the 



168 

 

presentation. On the far left of the image the monitor on which the presenter’s 

audience appears can be seen. The presenter was standing a significant distance 

away from this monitor (approximately two metres), meaning that their audience 

would have appeared quite small, compounding the difficulty in making out facial 

expressions. Despite having trouble making out facial expressions, participants 

did note that they were able to see if a person’s lips were moving from looking at 

their face texture. One participant also reported being able to see in which 

direction people’s eyes were looking. The presenter did not attempt to change the 

size of their audience’s avatar’s heads to get a better view of their faces. Doing so 

may have helped the situation; however there was no way for the presenter to this 

from where they were standing, so they would to have had to return to their 

keyboard. This could have resulted in several trips back and forth to settle on an 

appropriate head size for the viewing distance.  

 

Figure 50: Presenter's experiment setup. 

Other participant’s views on the usefulness of the head size adjustment feature 

were mixed. Most attempted to use the feature and reported that they felt it might 

be of some use, but only one noted that they actually used it beyond simply trying 

it out. The reason that they reported for this was to see the faces of speakers more 

clearly, especially when that speaker’s avatar was far away in the virtual 

environment. 



169 

 

In the questionnaire, the participants were asked what kind of body language they 

were able to see from other participants. No participant reported being able to 

identify minor aspect of body language from other user’s avatars (e.g. body 

posture). However most participants reported being able to recognise when 

somebody was applauding, pointing somewhere in the environment, raising their 

hand to ask a question, or anything that involved significant hand or arm 

movements. At the end of their presentation the presenter asked the other 

participants in the meeting if they had any questions, and instructed them to raise 

their hands if they did. It was clear from their avatars who was doing this and the 

presenter was able to pick those who had0 questions. It should be noted that one 

of the participants stated that they has raised their hand during the meeting and 

that it had gone unnoticed by the presenter. In response to this the presenter noted 

that they had not been paying close attention to their audience’s actions during the 

presentation. It is worth noting that the same issue can arise in a real meeting. It 

might be possible for an avatar to make itself more noticeable to the presenter in a 

virtual meeting. 

A common complaint amongst three of the participants regarding avatar’s body 

language was that it was hard to pick out which avatar movements were 

intentionally caused by users and which were caused by jitter in the skeleton 

position data from the Kinect. Another complaint one user made was sometimes 

avatars appeared positioned in bizarre and unnatural ways; this was likely caused 

by the Kinect misinterpreting its depth data when evaluating joint positions. 

Participants reported mixed results when it came to identifying which way other 

participants were looking in the virtual environment. All participants reported that 

they usually had a good idea of where other users were looking, but some reported 

that it was not always clear. In particular, some participants said that they had 

trouble deciding if someone was looking at them directly or not in some cases. 

Four of the participants stated that they were able to pick out who was talking by 

looking at the speaker’s avatar (though one reported that they could not). The 

main reasons cited by participants for why this was possible were the ability to see 

lip movement on the speaker’s face texture, and hand gestures in the speaker’s 

avatar’s movements. Despite these indicators, multiple participants suggested that 



170 

 

it would still be useful to include a user interface element that show who is 

speaking, either in the form of an icon that appears above the head of a user’s 

avatar, or by modifying their avatar directly somehow  (e.g. altering the shape of 

its head). 

One part of the questionnaire asked participants if they could tell when other 

participants were involved in activities that were not directly related to the 

meeting (e.g. browsing the web, checking emails). Most reported that they did not 

notice anyone else doing any of these activities, though most of those involved in 

the meeting reported that they did in fact engage in activities outside of the 

meeting. There were however two participants that said that they did notice this 

behaviour. One reported that they were able to tell when somebody was doing 

something else because that user’s avatar would appear to reach forward towards 

the virtual table (presumably this was caused by users reaching forward to use 

their keyboard or handle some object in front of them). The other reported that it 

was the direction that a person’s eyes were looking and the movements of their 

head that revealed when a person was not paying attention. 

6.2.2 Virtual Screen 

In the experiment, the gesture recognition system was used by the presenter when 

they were doing a presentation to control the contents of the virtual screen. During 

the course of the presentation a problem with the system immediately became 

apparent. The presenter was standing to the side of the Kinect’s field of view (so 

as not to stand in front of the real world screen). Sometimes the presenter would 

briefly leave the Kinect’s field of view. This would cause the Kinect’s skeleton 

engine to make wildly inaccurate assumptions about the user’s skeleton joint 

positions. These poorly predicted joint positions were sometimes able to trigger 

the gesture recognition system which would cause the image on the screen to be 

accidentally zoomed and scrolled. This problem was compounded by the fact that 

zooming and scroll operations only affect the image on the virtual display screen, 

not the real world display screen. The presenter did have a monitor showing them 

an up to date image of the virtual display screen (to allow them to see what they 

were doing when they actually wanted to use gestures), however it appeared that 



171 

 

they did not normally look at this monitor, so the accidental changes would go 

unnoticed. This suggests that the system should be made to ignore gestures when 

there is reason to believe that joint positions are not accurate. Figure 51 shows the 

display screen and presenter in action; note the accidental zooming that has 

occurred on the virtual screen (parts of the image are cut off). 

 

Figure 51: Real vs. Virtual Environment 

 



172 

 

The presenter expressed that there was some difficulty when using the scrolling in 

zooming gestures, though they also thought that with practice it would become 

easier. During the meeting it was observed that the presenter had some trouble in 

selecting the gesture they actually wanted (i.e. they would change the zoom on the 

image when they meant to scroll it). This suggests that either a new set of gestures 

are needed, or better feedback needs to be incorporated into the existing system. 

One significant observation that was made during the experiment was that due to 

the way the presenter interacted with the screen, the command to transmit the 

screen texture would be more frequent than was necessary. Because of the size of 

the image that must be transmitted, a noticeable pause occurs (for about one 

second) in all client programs when this happens. The pause is caused by the time 

it takes the server to upload the image to the clients, and the time that the clients 

take to decode the image data and convert it to a texture. During their 

presentation, the presenter would often point at the screen and then drop their 

hands to their side; sometimes they would do this repeatedly, this would trigger 

the screen texture to update. The result was a quick succession of pauses in the 

rendering of 3D graphics on each of the clients as new screen textures arrived (a 

single pause would last approximately one second). There a possible solution to 

the issue would be to improve the code that converts images to textures to operate 

more efficiently, using compression to decrease the amount of data that is needed 

to send the screen image could also help. An alternative solution would be to 

change the mechanism for triggering a screen image transmission instruction to 

make it harder to trigger unintentionally.   

The “laser pointer” feature that allows a presenter to point at specific locations on 

the virtual presentation received mostly positive feedback from those participants 

that commented on it. During their presentation, the presenter commented at one 

point that they needed two laser pointers – one for each hand. This happened 

when the presenter was attempting to use both hands to point at two different 

places on a graph for comparison.  

During the meeting an unexpected use for the virtual screen was developed by the 

participants. One participant suggested that the screen be used to keep notes of 

important points made in the discussion phase of the meeting. This use of the 



173 

 

screen was successful; however the interface for using the display screen was not 

designed for it, and consequently was clumsy to use. A person had to be put into 

presentation mode (i.e. placed at the front of the virtual meeting room, in control 

of the screen) during the discussion phase, and type the notes manually onto the 

screen. That person would have to go over to the real world screen and tap it to 

trigger transmission of the updated screen image to other users after each note was 

written. This suggests that it would be desirable to create a new interface element 

to allow participants to collaboratively modify the contents of the screen during a 

discussion in a meeting. 

6.2.3 Camera Controls 

There was a wide array of preferences among the participants about how and 

when they used the manual and automatic camera controls. Two participants 

decided to forgo use of the manual controls entirely, others found uses for both 

types of camera controls, and some preferred the direct control offered by the 

manual camera. 

A common theme among the participants that used both kinds of camera was a 

preference for using the automatic camera during the discussion phase of the 

meeting, and the manual camera during the presentation phase of the program. 

Those participants stated that the reason for preferring the manual camera during 

the presentation is that it allowed them to select a place where they had a clear 

view of the presenter and virtual display screen. The reason they gave for using 

the automatic controls during the discussion phase was that it was useful for 

changing who they were looking at around the table at any given time. 

A common criticism made by two participants was that the automatic camera 

controls were not very stable. This was likely a consequence of two factors. The 

first being that the controls were overly sensitive, small movements in a user’s 

position would cause large movements in the camera’s view. The second being 

that jitter in the Kinect’s estimation of joint positions can cause the camera to 

shake about slightly. One participant stated that their struggles with the automatic 

controls broke their immersion in the experience. After the experiment one 

participant suggested that a button to freeze the position of camera at any given 



174 

 

time would have been useful. This can actually already be achieved by the 

switching the camera into manual control mode, and then not actually using the 

manual controls; the camera will remain where ever it was before the mode was 

switched. However this use of the manual camera mode was not considered 

before the experiment so was never suggested to the participants. The negative 

reactions to the automatic controls were not shared by all participants with some 

stating that they found them easy to use, intuitive and immersive. One participant, 

who otherwise liked the automatic controls, reported that they would have liked a 

better way to trigger the automatic camera to zoom in. 

The manual camera controls were not used by all participants (two didn’t use it at 

all), but one preferred it at all times. Commonly cited advantages were that the 

camera was more stable when this mode was used, and that the added control 

allowed participants to get a better view of what they wanted to look at. Some 

participants suggested alternate control methods for the manual camera. A 

common suggestion was to move the control for the camera’s direction from the 

mouse to the arrow keys on the keyboard; this would have the secondary benefit 

of freeing the mouse up for other uses in the program (e.g. interacting with a 

GUI). One participant also suggested using explicit gestures (along the lines of 

what is used to control the image on the presentation screen) to control the 

camera. 

6.2.4 Comparison to Other Types of Meetings 

When compared with other ways of holding remote meetings (video conference, 

teleconference, non-Kinect virtual meeting) all participants reported that the 

experience of using VMX was as good or better. In general participants seemed to 

feel more comfortable in the virtual meeting, often reporting that the experience 

felt more “relaxed”, “fun”, and “informal” than a video conference or 

teleconference. Participants also described the experience as more “immersive” or 

“engaging” than other forms of remote meeting. One participant, who had been 

involved in the Second Life experiments in “Virtual Worlds as Meeting Places” 

stated that they felt that the experience of meeting in VMX was significantly 

better then Second Life, citing the more natural controls and interface in VMX 



175 

 

giving them the feeling of “being there”. That participant also said there was a 

feeling of having a shared space with the other participants, a feeling not echoed 

in video conferences. 

Comparisons to real world meetings were not as favourable. No participant felt 

that their experience using VMX was as good as holding a real life meeting. 

However some participants felt that with additional development and 

improvements that the VMX meetings could become comparable to real life 

meetings. 

 



176 

 

  



177 

 

Chapter 7: Conclusion 

The overall goal of this project was to use the Kinect to improve the experience of 

participating in a virtual meeting. In the opening chapters of this document, a 

wide variety of areas where improvements could be made were identified. This 

chapter starts by looking at the improvements and features that were implemented 

during the project, considering the value of each in terms of how successful it was 

at fulfilling its intended purpose. The chapter will then move on to discuss in 

broader terms what was achieved in terms of the core goal of the project: to 

explore how the Kinect can be used to improve the experience of participating in a 

virtual meeting. 

The user avatars used in virtual meetings were identified as the largest area for 

improvement. The list of existing problems with avatars that were discussed in 

Chapter 2 included: lack of a means to confirm the identity of a person controlling 

an avatar; difficult and cumbersome to use controls for manipulating avatars; 

limited ways for expressing body language; and limited non-verbal 

communication in general. 

The lack of ability to identify the user behind an avatar was identified in Virtual 

Worlds as Meeting Places. It stemmed from the fact that avatars in Second Life 

appear the same regardless of who is controlling them. VMX addressed this 

problem by incorporating a video feed of a user’s face (acquired from the Kinect 

device) onto their avatar’s head. This was immediately successful in solving the 

problem by allowing all participants in a meeting to visually identify the each 

other. 

The incorporation of a user’s face onto their avatar also partially addressed the 

problem of a lack of means for non-verbal communication. The idea being that the 

video feed allows participants to pick out details of a user’s facial expression. 

Participants in the usability trial reported that they were able to pick out various 

details of other participants faces, including the direction their eyes were looking, 

and movements of their lips. This was despite the low resolution of the face 

textures, suggesting that the facial video feeds, even with limited detail, do have 

the ability to successfully to allow non-verbal communication. 



178 

 

The other aspect of non-verbal communication, body language, was also 

addressed in VMX. It was in this area that the abilities of the Kinect proved most 

useful to the project. The avatars in VMX were animated using the Kinect’s 3D 

skeleton position data of the users controlling them. This meant that a large part of 

the position of an avatars body was taken directly from the position of the user. 

The result was that avatars can emulate the body language of the user with no 

special effort on the user’s part. In the usability trial participants reported that they 

were successfully able to see certain aspects of body language, particularly when 

that language involved large movements. The sometimes erratic movements in the 

positions of skeleton joints as determined by the Kinect did limit the ability of 

users to see finer details of other users’ movements. From this, it is clear that 

animating avatars using this method improved the ability of users to communicate 

non-verbally, though there is still room for improvement in handling inaccuracies 

in the Kinect’s data.  

The use of Kinect data to control avatar’s movements also solved the problem of 

the clumsy mechanisms for controlling avatars that were available in Second Life. 

One of the participants of the usability trial for this project had previously used 

Second Life to participate in a virtual meeting. They characterised the experience 

of trying to control Second Life avatar as “struggling with the interface to a 

puppet theatre”. That participant and others reported that they found controlling 

VMX’s avatars with the Kinect straightforward; no participants suggested that 

they encountered any trouble whatsoever in getting their avatar to do what they 

wanted. This evaluation indicates that this application of the Kinect to control 

avatar movements was successful in overcoming the existing difficulties with 

avatar control in virtual meetings. This use of the Kinect is perhaps the most 

successful of all of the uses explored in this project. 

One aspect of an avatar’s movement was not (directly) determined from the 

Kinect’s skeleton position data: the direction in which an avatar’s head faces at 

any given time. Instead this is set from the current direction of an avatar’s user’s 

view of the virtual environment. The primary reason for doing this was to add an 

additional element to the avatar’s body language: an indication of what a user was 

looking at in the virtual environment. In existing virtual meeting software, and 

also in video conferencing this is not always clear. The results of the usability trial 



179 

 

showed that this feature was reasonably successful, with all users reporting that 

they were able to tell where another user was looking in most situations. 

Significantly, one user cited this feature as improving their sense of immersion in 

the meeting. The sense of a consistent spatial relationships between participants 

and the ability to directly evaluate where participants were looking within the 

space, gave a sense of ‘being there’. 

Overall the implementation of avatars in VMX is probably its most successful 

element. The data that the Kinect device provides was very well suited to 

improving avatars and this is shown in the positive response that the user avatars 

received from the participants of the usability trial. The avatars in VMX were able 

to address all of the key problems that were identified earlier to a degree. The 

largest criticism of the avatars was their erratic movements, caused by jitter in the 

skeleton joint position data from the Kinect. While work could be done on VMX 

to reduce the impact of this jitter, it is likely that future iterations of the Kinect 

hardware and software will work to improve the accuracy of the data the Kinect 

provides. Indeed improvements were made to the skeletal tracking system in both 

the update from the Beta 1 to the Beta 2 version of the Kinect SDK (Microsoft, 

2011) and the update from the Beta 2 version to the official release (Microsoft, 

2012). 

Beyond avatars, this project incorporated another means of simplifying the control 

mechanisms of virtual meeting software using Kinect. This was in the form of the 

automatic camera controls. These controls were designed with the intention of 

reducing the need of the user to interact with their mouse and keyboard during the 

meeting, freeing them to pay attention to the events of the meeting. The controls 

directed the user’s view of the virtual environment based on skeleton position 

data. The user was able to look left and right in the environment (from their 

avatar’s point of view) and zoom in and out using only subtle body movements. 

As was seen in Chapter 6, there were mixed feelings among participants about the 

usefulness of this feature. The feedback that was given indicated that the feature 

was partially successful in allowing hands free control of where the user was 

looking, but that there is still room for improvement. The periodic instability of 

the camera’s view was of particular concern to the participants. Part of the cause 

of this instability is the aforementioned jitter in the Kinect skeleton position data, 



180 

 

so this feature is also likely to be improved by future updates to the Kinect 

hardware and software. 

Overall the automatic camera controls in VMX were reasonably successful in 

reducing the attention that users needed to give to the programs controls. Most 

users appeared to find it easy to use during the trial. The fact that during the 

usability trial some participants were able to happily use the automatic camera 

controls through the entire meeting and never needed to resort to using the manual 

controls is an encouraging sign. It suggested that with the right improvements it 

may be possible to get the automatic controls to the point where they are useful 

enough to remove the need to include manual controls at all. The success of the 

automatic camera controls can be embodied by one participant’s description of 

them as being “easier to use, even when not thinking about it”. 

This project also aimed to explore ways to incorporate the Kinect to improve the 

experience of giving a presentation to an audience in a virtual meeting. Areas 

where there appeared to be room for improvement included the ability of a 

presenter to gesticulate to their audience and the limited options where it came to 

utilising visual aids. 

The user’s ability to directly control their avatars movements with their body as 

discussed earlier immediately offered a way for a presenter to gesticulate. This 

functionality was as successful at addressing this issue as it was at allowing 

participants’ body language to be reflected by their avatars, and was subject to the 

same limitations (jitter in the Kinect’s reported joint positions) as earlier 

described. 

The key component for providing a presenter with the ability to use visual aids is 

the virtual display screen. The virtual display screen has a number of features that 

extend its versatility. These include: the capability of displaying an image to all of 

the participants in a meeting; the capability for the user to zoom in and pan across 

the image on the display screen with hand gestures; and the facility to be used 

with a real world counterpart which the user can interact with by pointing, or 

drawing with their fingers as if it were a whiteboard. 



181 

 

During the usability trial a participant performed a presentation. They used the 

display screen to give a slide show to the audience. From this it was possible to 

see that for the purpose of allowing visual aids to be used, the display screen was 

successful. The presenter was able to speak and gesture to the slides in the virtual 

environment, and the audience was able to watch what was going on, as if they 

were seeing the presentation in person. 

The gesture controls for manipulating the image shown on the display screen 

proved to be partially successful for helping the user when giving a presentation. 

During the usability trial the presenter took advantage of the functionality several 

times. The feedback from the presenter did reveal a problem however; the 

presenter found it difficult to use the gesture accurately. While they did also say 

that it would likely become easier with time and practice, it does still suggest that 

there is room for improvement in making the gestures easier to use and more 

intuitive. The difficulties with the gestures could have arisen from the similarity 

of the different gestures for zooming and panning, or possibly the lack of 

feedback that was available to the user about what gesture they had activated (in 

the usability trial the presenter only had a small monitor depicting the changes 

they were making to the display screen image available, and were unable to see 

the colour coded avatar hands described in Chapter 5). 

The ability for the user to point at a position on the real world screen and for that 

to be reflected by their avatar pointing at the same position on the virtual screen 

was one of the more successful areas of the project. The feature was used 

extensively in the usability trial by the presenter, and no problems were reported 

with it by any participant (though further enhancements relating to it were 

suggested). Those participants that did comment on it were pleased with it as a 

presentation tool. From a technical stand point, the feature was successful in 

solving a limitation of the real world to virtual screen relationship (as described in 

Section 5.6.3 ). 

One feature that was never truly successful was implementing a way for a user to 

treat the presentation screen as a whiteboard, using the Kinect to track their finger 

movements across the screen to determine where they were ‘drawing’. The idea 

for the feature was suggested in Virtual Worlds as Meeting Places as a possible 



182 

 

enhancement to virtual meetings in Second Life. In the end the technical 

difficulties of getting the Kinect to report the position of the end of a user’s finger 

with consistent accuracy proved too difficult to overcome and made it impossible 

to draw anything accurately. This highlights one of the key limitations with the 

current Kinect technology: the limited degree of accuracy in the skeleton tracking 

system.  

Ultimately, most of the problems with existing virtual meeting applications that 

were targeted by this project were solved, though with varying levels of success. 

It was almost invariably the aforementioned lack of accuracy in the skeleton 

tracking system that led to trouble in completely eliminating the targeted issues. 

The limited accuracy prevented subtle body language from being picked up by 

users; it led to periodic breaks in users’ immersion through unusual, inconsistent 

and improbable joint position estimation; and it prevented the whiteboard 

capability of the virtual display screen from being usable. Despite the problems, 

the lack of accuracy was not significant enough to prevent the use of the Kinect in 

many areas. The success of many of the feature that have been covered in this 

chapter show that there is most certainly potential for motion controllers such as 

the Kinect to be used to improve virtual conferencing. 

Part of the questionnaire in the usability trial sought feedback from the 

participants as to how they felt VMX compared to other forms of meeting. The 

comments that were received give the clearest indicators of the how successful the 

use of the Kinect is in making virtual meetings a good way to meet with others. 

When asked about how virtual meetings in VMX compared to video conferencing 

and teleconferencing the participants frequently described the experience of being 

involved in the meeting as feeling more ‘fun’, ‘relaxed’ or ‘informal’. This 

suggests that the participants felt more comfortable in the meeting, focusing on 

the meeting itself more than the software being used to facilitate it. This idea is 

further supported with participants, throughout their questionnaires, commonly 

reporting feeling immersed when using the software and certain features. The 

feedback that was received in this regard validates the idea that virtual meetings 

are worth holding at all, it indicates that there are real advantages to virtual 

meetings when compared against other forms of remote meetings. 



183 

 

Information was also sought in the usability trial about how participants felt VMX 

compared to real life meetings. The feedback received showed that while 

apparently an improvement on remote meetings, VMX still has a long way to go 

before it can be as good as a meeting in person. This clearly reveals that the 

experience of virtual meetings in VMX is not totally immersive. There are still 

many avenues of exploration for VMX however (which will be discussed in 

Chapter 8) so there is still potential for virtual meetings to become more 

competitively matched against real life meetings. 

One of the valuable aspects of the some of the participants in the usability trial is 

that they were also present at the experiments held in Virtual Worlds as Meeting 

Places. This meant that they were able to give clear feedback about how the 

experiences between virtual meetings in VMX and in Second Life compared. The 

feedback that was given was universally in favour of VMX. The Kinect enabled 

controls were described as being less clumsy and easier to use than their 

counterparts in Second Life. It is this that gives the clearest indicator of success in 

this project. Most of the objectives that led to the features that were chosen for 

VMX stemmed from problems and limitations that were encountered in Second 

Life. VMX’s favourable comparison with Second Life for holding virtual 

meetings clearly demonstrates that VMX was successful in developing ways to 

address the issues that Second Life presented. 

Using Motion Controllers in Virtual Conferencing set out to apply the newly 

accessible technology that was made available by the Kinect to improve the 

experience of holding a virtual meeting between participants across the Internet. 

Over the course of the project VMX was developed and tested to find out if the 

Kinect could be successfully used in this way.  

The work that was done over the course of the development of VMX clearly 

shows that it is possible to apply the motion controllers to create new features for 

virtual meetings, and the informal testing and usability trial have demonstrated 

that these new features can provide profound improvements to the experience of 

virtual meetings. It has been demonstrated that the ability of the Kinect’s skeleton 

tracking system to allow the user to control their avatar with their own body 

movements is both intuitive and functional. Freeing the user from needing to use 



184 

 

the keyboard and mouse in the control of their avatar, and in the control of their 

view of the virtual environment has successfully increased the sense of immersion 

that users experience while participating in a virtual meeting, allowing them to 

focus more attention on the events of the meeting and less on manipulating the 

software they are using to facilitate it. VMX has utilised the Kinect to allow users 

to give a presentation in the virtual world by directly performing that presentation 

in the real world in front of the device. VMX has also demonstrated that the 

Kinect can be used to give users the ability to control the virtual environment 

using gestures.  

All of these new applications clearly demonstrate that the core goal of this project: 

to improve the experience of virtual meetings with the Kinect device, has been 

successfully achieved and that the use of motion controllers can most definitely 

improve virtual meeting software. 

  



185 

 

Chapter 8: Future Work 

Many uses for the Kinect device in the context of virtual meetings have been 

investigated throughout this project, however there are still many more potential 

avenues of exploration. This chapter will discuss some of these possible lines of 

future investigation. The features and improvements that are discussed come in 

two forms: potential tweaks and improvements that were identified from problems 

that arose during user test experiment; and areas of exploration that are natural 

progressions from what has already being done in this project. 

8.1 Screen Depth 

Currently, the distance from the Kinect device to the real world presentation 

screen is loaded into VMX through the configuration file (where it must be set 

manually by the user). It is not straightforward to reliably retrieve this information 

automatically at runtime due to the fact that the location of the screen is only 

determined in Kinect colour image space (for reasons discussed in Chapter 5). A 

system that could detect the depth of the screen would increase the robustness of 

the system against movement of the Kinect device or of the screen. It would also 

allow for more precise detection of the closeness of the user’s hand to the screen. 

This could be potentially be used to enhance the whiteboard functionality of the 

display screen, only drawing when the user physically touches the screen, or 

perhaps changing the weight of the lines drawn based on how close their finger 

was to the screen. 

There are a few possible ways that could be explored towards finding a solution to 

this problem. The simplest of these would be to enforce restrictions on what can 

be used as a real world screen. Requiring that some specific part of the screen 

(e.g. the border) must be non-reflective would allow the development of an 

algorithm that could analyse the Kinect depth image to find the screen instead of 

analysing the colour image data. The depth of the screen could then be found 

directly from its position data. 

Another solution would be to exploit the fact that even on a reflective screen, the 

Kinect is able to detect the depth of the parts of the screen that face the camera 



186 

 

head on (see Figure 31 and Section 5.6.2 ). An algorithm could be developed that 

would attempt to estimate where a accurate depth value for the screen was on the 

depth image, and then retrieve that value. The greatest difficulty with this 

approach would be verifying the correctness of the result. 

8.2 Avatar Improvements 

The user avatars in VMX provide a wide range of areas for further work, 

particularly with respect to their appearance, and the information they convey 

through that appearance. An avatar’s head and hands are especially interesting as 

they are the areas where the Kinect is most limited in picking out important details 

(facial expressions, finger positions etc.). 

8.2.1 Avatar Hands 

One suggestion that was made by a participant in the experiment was to improve 

the hands of the avatars in VMX. Currently hands are represented by spheres and 

give no information about a user’s fingers. As discussed in Section 5.5.2 the 

Kinect SDK does not provide finger positions, and current techniques for 

acquiring this information are computationally expensive. 

One solution to this would be to apply the same algorithm that picks out a users 

face on the Kinect colour video image to pick out their hands. The idea would be 

to show live video of a users hands on their avatar. This would allow all 

participants to see what a user was doing with their fingers. 

There would also be a potential secondary benefit to doing this in that would 

allow a user to show other participants real world objects that they were holding. 

These objects could serve as visual aids in a discussion or presentation.  

8.2.2 Avatar Heads 

The current heads used by avatars have a number of drawbacks. One drawback is 

that they are quite large and can obstruct users’ views of things in the virtual 

environment. Another drawback is that it is not possible to see a user’s face from 



187 

 

a side on view. Both of these drawbacks could be addressed by incorporating 

depth data from the Kinect when generating an avatar’s face. 

The current avatar heads are large and circular. This contributes to the problem of 

view obstruction. As it stands the heads show more data than they need to. The 

simple algorithm for extracting user face textures picks up a lot of the background 

behind the user, which is then displayed on the avatar’s head. The Kinect depth 

data can be used to determine the precise boundaries of a user’s head on the 

colour video image. This information could be used to give an accurate 

“cardboard cut out” of the user’s head and face. If this “cardboard cut out” was 

used in place of the current circular head, the head would be smaller, and less 

prone to causing view obstructions. 

This “cardboard cut out” approach would not address the fact that an avatar’s face 

is not visible from the side. To solve this, the depth data from a user’s head could 

be used to extrude the flat “cardboard cut out” into a realistic face shape. This 

would give an avatar’s head the appearance of being a 3D floating mask that 

reflects the appearance and facial expression of the user it represents. Because the 

face would then have a 3D shape, it would be visible from the side. This approach 

essentially makes use of the Kinect as a 3D scanner; such a use has already been 

demonstrated as being feasible (University of California, 2011). 

8.3 Further Exploitation of Virtual Reality 

Further work could be done in finding ways of utilising the virtual world to make 

it possible to do things that could not be done in a real world meeting. As it stands 

only a small number of features of VMX make use of this fact. There are many 

other features that were considered for inclusion that ultimately were not 

implemented in this project. 

8.3.1 Personal Display Screens 

One such feature would allow any user to make use of the display screen, without 

standing up. The idea would have been to have a user 'call' the display screen to 

them. The screen be scaled down and would fly over to sit behind that user at the 



188 

 

table, the user could put what they liked on the screen and gesture to it (with or 

without a real world counterpart for reference). Other users at the table would see 

the small display screen behind the person using it at the table so would 

simultaneously be able to see the user and their screen at the same time without 

looking at the location of the main display screen.  

There is of course no requirement that the main display screen be used for this 

purpose. A smaller display screen could simply appear behind any user who 

needed it, leaving the main display screen where it normally is. Under this model 

there could be as many of these screens at one time as there are users. This would 

allow users to display whatever they wished next to themselves throughout a 

meeting. This could include things like illustrative diagrams of what they might 

be talking about, a website that they were referencing, or anything else they 

wished. 

8.3.2 Always Visible Faces 

Another possible feature could give the user the option to force all of the avatars 

in their instance of the virtual environment to look directly at the virtual camera. 

This would mean that a user could guarantee a clear view of all of the faces of all 

of the participants in the meeting, regardless of where participants were actually 

looking. This feature could be further expanded to force avatars heads into 

different locations if one head was obstructing the view of other heads, for 

example if one user's avatar was sitting between a second user's camera and a 

third user's avatar, then the head of the third user's avatar could be repositioned so 

that it appeared above the first user's avatar. The result would be the appearance 

of a slightly disembodied head floating some distance above its body.  

8.3.3 Meeting Table Shape 

In the experiment, the meeting table had rectangular shape with participants 

sitting along two sides, as shown in Figure 52. This shape serves as a compromise 

between being suitable for seeing and talking to other participants around the 

table, and for viewing a presentation. In practice the compromise does mean that 

the table shape was not perfect in either circumstance. During presentations, 



189 

 

participants sitting the furthest away from the presentation screen can have their 

view of the presentation obscured by the participants in front of them. During 

discussions participants who are sitting on the same side of the table but at 

opposite ends can have trouble seeing each other if there is someone else sitting 

between them. 

 

Figure 52: Current meeting table shape 

Because the meeting is in a virtual environment, there is no reason why the shape 

of the table must stay the same between discussion phases and presentation 

phases. This provides the basic idea for a system that could solve the problems 

with the current table shape. Figure 53 shows what might be considered an ideal 

table for discussions. The table is circular meaning that all participants should be 

able to get a good view of all other participants. This circular shape is not very 

good for presentations however, as participants nearer the screen are facing in the 

wrong direction and can also obscure the presenter and screen from the view of 

the participants on the far side of the table. 



190 

 

 

Figure 53: Circular table design 

Figure 54 shows how the table shape could be changed during a presentation. This 

shape allows all of the participants to directly face the presentation screen, and 

also prevents any participant from obscuring the view of any other participants. 

 

Figure 54: Spilt table design 

Animating the change between table shapes could help ensure that a user’s sense 

of immersion in the environment is not lost. 



191 

 

8.4 Audio 

This project makes no use of the Kinect's microphone array or audio output. In 

practical use during the experiments, a third party application was used to send 

voice data between participants in the meeting. However, if audio data was 

captured by and sent through the VMX application then a host of new features 

could be explored. 

One such feature could be like that seen in Kinected Conference as described in 

Chapter 2. The feature in question tracked the length of time for which user talked 

during the meeting. Whenever the user was talking a timer appeared above their 

head in the video feed. A similar feature could be implemented in VMX, with the 

difference that the timer would appear above the head of the virtual avatar, not on 

the video feed from that user (i.e. not on their face texture). 

Another simple feature could be to emphasize who was talking with some form of 

indicator.  This could be something that appeared over a user's avatar's head when 

they were talking, or maybe their avatar could change colour; this feature was 

explicitly requested by two participants in the usability trial. Another way to 

emphasize who was talking would be to use 3D sound positioning within the 

virtual environment, this would mean that if someone in the meeting was talking 

and that person was sitting to the left of another participant in the meeting, that 

other participant would here the speaker’s voice as coming from their left (using 

stereo sound). This would be a natural way of indicating to a user what direction 

they should look in to see who was talking.  

8.5 Large Conferences 

This project only looked at small scale meetings between groups of less than ten 

people. In Chapter 2 the use of Second Life to hold large scale conferences was 

discussed. Further expansion of VMX to allow meetings of this scale would make 

it possible to investigate the value of Kinect control in that kind of situation. 

The biggest likely hurdles that would be encountered in a large virtual conference 

are the technical problems of limited network bandwidth and limited CPU time 

for decoding face textures. Even the current small scale meetings in VMX are 



192 

 

taxing on system resources. Some improvement to compression and 

encoding/decoding of textures would help, but there are other elements distinctive 

to large conferences that provide opportunities to reduce system resource 

requirements. Specifically, in a large conference it can be expected that at any 

given time, the majority of the participants would only be watching what is going 

on. There would probably be an individual or a small group doing a presentation 

in front of a large audience. There would be little need for the audience to be 

sending video of their faces to other conference participants. Instead, audience 

members could have simple 3D modelled heads. Those heads could still be 

oriented to show where each audience member was looking. Only those who were 

addressing the audience would transmit face textures. Kinect skeleton data does 

not use much data, so it would likely be possible to have the entire audience of a 

conference fully animated, just like an ordinary meeting. Another alternative 

would be to keep face textures for audience members, but greatly reduce the 

frequency at which they update. 

8.6 Interactive Objects in the Virtual Environment 

A final area of interest to future work on using Kinect in virtual meeting software 

is the integration of interactive objects into the virtual environment. This would 

allow users to collaboratively work with objects in the virtual world. There would 

also be potential applications in terms of making the experience of using the 

software more immersive. There would be a few hurdles in the implementation of 

such a system however. 

An example of how this could be used would be a meeting of people planning an 

event like a concert and needing to decide how to lay out various amenities in the 

space they have. The participants in such a meeting could have simple models of 

various objects such as a stage, boundary fences, amenities etc. and they would all 

be able to interact with these models and arrange them on the virtual meeting table 

however they see fit. Another example could be a teamwork exercise where the 

participants of the meeting are tasked with cooperating to build a tower out of 

blocks as high as possible without it falling down. 



193 

 

It would be necessary to come up with a way for user to pick up objects in the 

virtual environment. If the virtual objects were subject to a physics simulation 

within the virtual environment, then users could simply be given the ability to 

knock objects around with their avatars. In this system they could potentially pick 

objects up by squeezing them between two hands. There are a few problems with 

this however. The first lies in the way physics simulations typically work when it 

comes to preventing objects from colliding with each other. When the simulation 

detects that two objects are colliding, it will apply a restoring force that works to 

push the objects apart (Dean, 2010). This power of this force tends to depend on 

the degree to which the objects overlap. If a user wasn’t careful about how close 

together they brought objects there could be the potential for them to be launched 

out of their grasp as high speed. While amusing, this would not be very 

productive.  

Another other potential problem lies in the accidental movement of objects in the 

virtual environment. With data from the Kinect having the exhibiting significant 

anomalies when the position of joints is poorly estimated, there is the chance that 

a user might inadvertently send an object flying.  

For the reasons above it would probably be desirable to incorporate some form of 

mechanism for allowing users to only manipulate object in the environment when 

they demonstrate intent to do so, such as by closing and opening their hand in a 

grasping motion to grab and release objects. As discussed earlier in this document, 

there is no support within the Kinect SDK for detecting gestures, or for reporting 

the positions of individual fingers. Consequently, it would be necessary to 

develop an algorithm that could detect this kind of hand gesture directly from the 

Kinect’s depth stream data. 

Aside from allowing users to pick up objects it would also be desirable to provide 

them with a way to rotate these objects. Seemingly, the most natural way to do 

this would be to have the user rotate the object as they would in the real world, i.e. 

turn the objects by turning their hand while they were holding it. This would be 

subject to the same problem as above however, in that there is no way to detect 

this kind of motion using the default capabilities of the Kinect SDK. 



194 

 

The virtual nature of the objects that would be being manipulated opens an 

opportunity for object manipulation that does not exist in the real world. Users 

would be able to do things such as scale objects up and down (perhaps using a 

gesture where the user grabs the object between two hands and pulls them apart or 

pushes them together in order to make the object bigger or smaller respectively). 

There would also be the opportunity to do things such as duplicate already 

existing objects in the virtual space, or objects that represented scale models of 

real world things (such as buildings) could be given physical properties matching 

the full size object, opening the door for realistic simulations to be performed in 

the virtual environment. 

As mentioned earlier, a potential use of virtual objects is to make the virtual 

meeting more immersive. To have the experience be more immersive means to 

make the way a user interacts with the software when performing a certain action 

in the virtual world seem more like the way they would perform the same action 

in real life. To give an example, say in a meeting someone wished to distribute a 

document like a memo or report to the other participants in the meeting. Instead of 

transmitting a digital copy of the document to the other participant via email or 

something similar, they could upload a copy into the virtual meeting program and 

it could be applied as a texture to a virtual object shaped like a piece of paper. The 

person who is distributing this document could then pass out this bit of paper, 

perhaps using the object duplication feature mentioned above to hand out copies 

of the document to the other participants in the meeting. The participants could 

then use a grasping gesture to pick the object up of the table and have their avatar 

look down so they could see the virtual document on their screen and read it. If 

the text on the paper was too small for a user to read clearly, they could use the 

ability to scale objects to make the paper bigger and the text on it easier to read. 

One major consideration that would need to be made with regard to any virtual 

object manipulation using real world body movements revolves around matters of 

scale; the question of whether real world movements should translate into virtual 

movements on a 1:1 scale. To illustrate why this needs to be considered, imagine 

a situation where a user wanted to have their avatar pick up an object that was on 

the other side of the virtual table. Ideally the user would perform a gesture where 

they act as if they are really reaching over the table to grab the object, their avatar 



195 

 

would do the same movement and the object would be picked up. But a problem 

arises if the user’s real world surroundings don’t permit such an action; for 

instance, what if the object is one metre in front of the user’s avatar in the virtual 

environment, but in the real world the user has a wall eighty centimetres in front 

of them? It can even be that the same problem could stem not from there being an 

physical object in the way, but from the user needing to move outside the Kinect’s 

effective range for skeletal tracking. In this case there would need to be some 

mechanism for allowing the user to pick up this object without performing a full 

one metre reach forward. There are a number of ways to approach this problem. 

One is to provide a way for users to perform motions that will be exaggerated by 

their avatars, thus allowing a user to do a small reach forward while having their 

avatar to a large reach forward. This approach would raise the question of whether 

the user’s actions should always be exaggerated. If they were, this could make it 

difficult for user’s to perform precise movements; and if they weren’t there would 

need to be a mechanism for allowing the user to indicate when they wished for a 

movement to be exaggerated, and by how much. 

Another interesting approach to the reach and grab problem would be to take 

advantage of the virtual nature of the environment to give the users’ avatars 

‘telekinetic’ powers. A user could look an object they want to manipulate in the 

virtual world, and perhaps perform a beckoning gesture with their hand to draw it 

closer. Similarly, a flick of the hand could send the object flying away. Other 

more pedestrian methods of solving this problem might involve forgoing gestures 

entirely and having users make use of the keyboard and mouse to select and 

manipulate out-of-reach objects. 

 

  



196 

 

  



197 

 

Appendix I 

This appendix lists the questions that were asked in the questionnaire given to 

participants of the usability trial that was carried out as a part of this project. 

Section 1: Kinect Controls 

Did you adjust the size of avatars’ heads during the meeting?   

If yes why did you choose/need to do it? Is there anything that you could think of 

to improve this ability? 

 Did you prefer using the automatic camera controls or the manual camera 

controls?  

What were the reasons for your preference (if any)? 

Did your preference of camera control (Automatic/Manual) change between when 

somebody was presenting at the front of the room and when everyone was sitting 

around the table? 

If yes, was there a particular reason for this? 

Do you have any other comments about the camera controls? 

Were you sitting in a chair that can be swivelled to the left and right easily (e.g. an 

office chair)?  

 

Section 2: Presenting 

Only answer the questions in this section if at some point during the meeting you 

made a presentation in front of the display screen. If you did not, go to Section 3. 

Did you utilise gestures to control the display screen? 

Do you have any comments on the gesture controls (e.g. were there any particular 

difficulties? Would you have preferred a different form of control?)  

Were you able to see the faces of your audience in the meeting clearly while 

presenting? 



198 

 

If no, what was the reason that prevented you from having a clear view of other 

participant’s faces? 

Were you able to see the body language or facial expressions of the other 

participants (e.g. could you tell if they were looking at you or other participants, 

or performing actions like applauding etc.)? 

If yes, what kinds of things did you see? 

If no, what (if anything) could you see the other participants doing? 

 

Section 3: Meeting 

During the meeting were you able to tell where other people were looking in the 

virtual meeting room? Could you tell when they were looking at you?  

Could you see who was speaking by looking at their avatar and face? 

If so, what things could you see that made it clear who was speaking? 

Was it possible to tell when a speaker was using body language and gesturing to 

other participants? 

If yes, what kinds of actions did you see?  

If no, what (if anything) could you see their avatar doing? 

 During the meeting, were you able to notice if other participants were not paying 

attention to the meeting and instead doing something else in the real world (e.g. 

reading, playing a game, browsing the internet etc.)?  

If so what did you notice that made it apparent they were doing this? 

Did you do any real world activities besides watching and participating in the 

meeting during the experiment? 

 

 

 



199 

 

Section 4: Other Kinds of Meetings 

Have you ever participated in a meeting where everyone was not in the same 

location before, like a video conference, a teleconference, or a virtual meeting in a 

different piece of software (e.g. Second Life)? 

If you have tried any of these, did you notice any advantages or disadvantages 

when compared to using the software in this experiment? 

Have you been involved in face to face meetings in real life? 

If so, how do the compare to using the software in this experiment? 

 

Section 5: Final Questions 

Do you have any other comments about how the software was to use (e.g. any 

difficulties, suggestions, silly or unhelpful controls etc.)  

Would you be willing to be contacted by email by the researcher for additional 

clarification of your answers to this questionnaire if necessary? 

If so, please provide your preferred contact email address: 

  



200 

 

  



201 

 

Appendix II 

A copy of the letter giving ethical consent for the usability trial that was 

conducted as a part of this project can be found on the following page 

  



202 

 

  



203 

 

  



204 

 

  



205 

 

References 

Al Qahtani, S. H. (2010). Virtual Worlds as Meeting Places. Hamilton: The 

University of Waikato. 

Ashby, A. (2009, 02 27). IBM Saves $320,000 With Second Life Meeting. 

Retrieved 02 15, 2012, from Engage Digital: 

http://www.engagedigital.com/blog/2009/02/27/ibm-saves-320000-with-second-

life-meeting/ 

Cangeloso, S. (2012, 02 01). Kinect for Windows SDK is released, gesture apps 

on the way. Retrieved 02 16, 2012, from Geek.com: 

http://www.pcworld.com/article/230445/kinect_for_windows_sdk_beta_available

_now_to_download.html 

Clayton, S. (2011, 11 04). Technet. Retrieved 02 16, 2012, from Beta 2 of Kinect 

for Windows SDK released: 

http://blogs.technet.com/b/next/archive/2011/11/04/beta-2-of-kinect-for-windows-

sdk-released.aspx 

Dean, J. (2010). Live Construction in Computer Games. Hamilton: University of 

Waikato: Department of Computer Science. 

DeVincenzi, A., Yao, L., Ishii, H., & Raskar, R. (n.d.). Kinected Conference | 

MIT Media Lab. Retrieved 01 31, 2012, from 

http://kinectedconference.media.mit.edu/ 

DeVincenzi, A., Yao, L., Ishii, H., & Raskar, R. (2011). Kinected conference: 

augmenting video imaging with calibrated depth and audio. New York: ACM. 

Foxlin, E., Harrington, M., & Pfeifer, G. (1998). Constellation: a wide-range 

wireless motion-tracking system for augmented reality and virtual set 

applications. SIGGRAPH '98. New York: ACM. 

Gohring, N. (2010, 07 30). Mundie: Microsoft's Research Depth Enabled Kinect. 

Retrieved 02 14, 2012, from 

http://www.pcworld.com/businesscenter/article/202184/mundie_microsofts_resea

rch_depth_enabled_kinect.html 



206 

 

Grootjans, R. (2009). XNA 3.0 Game Programming Recipes: A Problem-Solution 

Approach. Apress. 

Hinchman, W. (2011, 06 20). Kinect for Windows SDK beta vs. OpenNI. 

Retrieved 02 14, 2012, from http://labs.vectorform.com/2011/06/windows-kinect-

sdk-vs-openni-2/ 

Joystiq. (2010, 12 10). PrimeSense releases open source drivers, middleware that 

work with Kinect. Retrieved 02 14, 2012, from 

http://www.joystiq.com/2010/12/10/primesense-releases-open-source-drivers-

middleware-for-kinect/ 

Li, C. (2009). HLSL Introduction. Retrieved 02 16, 2012, from Neatware: 

http://www.neatware.com/lbstudio/web/hlsl.html 

Linden Labs. (n.d.). Downloads | Second Life. Retrieved 02 15, 2012, from 

Second Life: http://secondlife.com/support/downloads/ 

Linden Labs. (2003, 6 23). Second Life. San Francisco, California, USA. 

Microsoft. (n.d.). Getting Started with XNA Game Studio Development. Retrieved 

02 15, 2012, from MSDN: http://msdn.microsoft.com/en-

us/library/bb203894.aspx 

Microsoft. (2011). Kinect for Windows SDK Documentation. 

Microsoft Kinect SDK vs PrimeSense OpenNI. (n.d.). Retrieved 02 14, 2012, from 

http://www.brekel.com/?page_id=671 

Microsoft. (2011). Kinect Sensor. Retrieved 01 10, 2012, from MSDN: 

http://msdn.microsoft.com/en-us/library/hh438998.aspx 

Microsoft. (2012, 01 31). Microsoft Kinect For Windows SDK - V1.0 Release 

Notes. Retrieved 03 12, 2012, from Microsoft.com: http://www.microsoft.com/en-

us/kinectforwindows/develop/release-notes.aspx 

Microsoft. (2004, 3 24). Microsoft: Next Generation of Games Starts With XNA. 

Retrieved 02 15, 2012, from Microsoft.com: 

https://www.microsoft.com/presspass/press/2004/mar04/03-24xnalaunchpr.mspx 



207 

 

Microsoft. (2009, June). Project Natal 101. Retrieved 01 18, 2012, from 

Microsoft: http://download.microsoft.com/download/A/4/A/A4A457B3-DF5D-

4BF2-AD4E-963454BA0BCC/ProjectNatalFactSheetMay09.zip 

Microsoft. (2011, 11). Readme for Kinect for Windows SDK - Beta 2 release. 

Retrieved 03 12, 2012, from Microsoft.com: http://www.microsoft.com/en-

us/kinectforwindows/develop/readme.htm 

Microsoft. (2010). XNA Game Studio Documantation. 

Murray, D., & Basu, A. (1994). Motion Tracking with an Active Camera. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, Volume 16 Issue 5 , 

449-459. 

Nykamp, D. Q. (n.d.). The cross product. Retrieved 02 15, 2012, from Math 

Insight: http://mathinsight.org/cross_product 

Ogre. (2012, 1 18). Free Resources. Retrieved 2 14, 2012, from 

http://www.ogre3d.org/tikiwiki/Free+Resources 

Ogre. (n.d.). Licensing. Retrieved 14 02, 2012, from 

http://www.ogre3d.org/licensing 

Oikonomidis, I., Kyriazis, N., & Antonis, A. A. (2011). Efficient Model-based 3D 

Tracking of Hand Articulations using Kinect.  

OpenNI. (2011). OpenNI/SampleAppSinbad. Retrieved 02 14, 2012, from GitHub: 

https://github.com/OpenNI/SampleAppSinbad 

OpenNI.org. (2010, 12 21). PrimeSense™ Establishes the OpenNI™ Standard 

and Developers’ Initiative to Bring the World of Natural Interaction™ to Life. 

Retrieved 02 14, 2012, from 

http://www.openni.org/News/PrimeSenseEstablishestheOpenNIStandardandD.asp

x 

Peckham, M. (2011, 06 16). Kinect for Windows SDK Beta Available Now to 

Download. Retrieved 02 16, 2012, from PCWorld: 

http://www.pcworld.com/article/230445/kinect_for_windows_sdk_beta_available

_now_to_download.html 



208 

 

Plunkett, L. (2008, 09 19). So How Many People Actually PLAY Second Life? 

Retrieved 02 18, 2012, from Kotaku: http://kotaku.com/5052067/so-how-many-

people-actually-play-second-life 

PrimeSense. (2011). PrimeSense Natural Interaction. Retrieved 02 14, 2012, from 

http://www.primesense.com/technology/nite3 

Schroeder, R. (2002). The Social Life of Avatars. London: Springer. 

Sidenbladh, H., Black, M., & Fleet, D. (2000). Stochastic Tracking of 3D Human 

Figures Using 2D Image Motion. Computer Vision - ECCV 2000 (pp. 702-718). 

Springer. 

Stott, L. (2011, 11 04). Kinect SDK Beta 2 Release. Retrieved 02 16, 2012, from 

MSDN: 

http://blogs.msdn.com/b/uk_faculty_connection/archive/2011/11/04/kinect-sdk-

beta-2-release.aspx 

University of California. (2011, 08 01). Researchers turn Kinect game into a 3D 

scanner. Retrieved 03 06, 2012, from Physorg.com: 

http://www.physorg.com/news/2011-08-kinect-game-3d-scanner.html 

Valve Software. (2007). Source - Programming. Retrieved 02 14, 2012, from 

http://source.valvesoftware.com/programming.php 

Zafrulla, Z., Brashear, H., Starner, T., Hamilton, H., & Presti, P. (2001). 

American sign language recognition with the kinect. ICMI '11 Proceedings of the 

13th international conference on multimodal interfaces (pp. 279-286). New York: 

ACM. 

Zhu, R., & Zhou, Z. (2004). A Real-Time Articulated Human Motion Tracking 

Using Tri-Axis Inertial/Magnetic Sensors Package. IEEE Transactions on Neural 

Systems and Rehabilitation Engineering , 295-302. 

Zhu, Y., Dariush, B., & Fujimura, K. (2008). Controlled human pose estimation 

from depth image streams. IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition Workshops, 2008. CVPRW '08. (pp. 1-8). 

Anchorage, AK: IEEE. 


