
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Advanced 3D Computer Vision
Approach to Clinical Motion

Quantification for Neurological Diseases

Diogo Peixoto Pereira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: PhD João Paulo Trigueiros da Silva Cunha

July 25, 2020

c© Diogo Peixoto Pereira, 2020

Advanced 3D Computer Vision Approach to Clinical
Motion Quantification for Neurological Diseases

Diogo Peixoto Pereira

Mestrado Integrado em Engenharia Informática e Computação

July 25, 2020

Abstract

The humans motor capabilities can be seriously compromised by neurological diseases like Parkin-
son and Epilepsy, which in turn worsen their quality of life. Human motion analysis can help to
study and diagnose these diseases by providing information related to the gait and other physi-
cal motions of the patients. There are already systems being used in the fields of Parkinson and
Epilepsy that study and provide very useful information about the neurological impairments of the
patients using the Kinect V2 from Microsoft (RGB-D camera). These systems use one application
to acquire the information from the camera (Kit - KinecTracker) and two other applications that
analyse the data acquired, KiMA (Kinect Motion Analyzer) and KiSA (Kinect Seizure Analyzer).
Until now, the cameras used on the KiT application has been the Kinect V2 and previously the
Kinect V1.

In this thesis, a new system divided into two applications that use the new Azure Kinect from
Microsoft is presented. This system has similar functions to the KiT but his adapted to the new
functionalities of the Azure Kinect. The first application enables the acquisition and visualization
of the images captured by the Kinect, namely the color, depth and infrared (IR) images. The
second application segments the information gathered by the first application. The result is a
portable system that can be used within the clinical context to gather the motion information of
the patients with neurological diseases.

Keywords: Azure Kinect. RGB-D camera. computer vision. movement-related neurological
diseases.

i

ii

Resumo

As capacidades motoras humanas podem ser seriamente comprometidas por doenças neurológicas
como Parkinson e Epilepsia, que por sua vez pioram a qualidade de vida do ser humano. A
análise do movimento humano pode ajudar a estudar e diagnosticar essas doenças, fornecendo
informações relacionadas à marcha e outros movimentos físicos dos pacientes. Já existem sistemas
a serem usados nos campos de Parkinson e Epilepsia que estudam e fornecem informações muito
úteis sobre as deficiências neurológicas dos pacientes, utilisando as capacidades do Kinect V2
da Microsoft (câmara RGB-D). Esses sistemas usam uma aplicação para obter as informações da
câmera (Kit - KinecTracker) e outras duas aplicações que analisam os dados adquiridos, o KiMA
(Kinect Motion Analyzer) e o KiSA (Kinect Seizure Analyzer). Até agora, as câmeras usadas na
aplicação KiT foram o Kinect V2 e anteriormente o Kinect V1.

Nesta tese, é apresentado um novo sistema dividido em duas aplicações que usam o novo
Azure Kinect da Microsoft. Este sistema tem funções semelhantes ao KiT, mas foi adaptado às
novas funcionalidades do Azure Kinect. A primeira aplicação permite a aquisição e visualização
das imagens capturadas pelo Kinect, nomeadamente, as imagens de cor, profundidade e infraver-
melho (IR). A segunda aplicação segmenta as informações adquiridas pela primeira aplicação. O
resultado final é um sistema portátil que pode ser usado no contexto clínico para reunir as infor-
mações de movimento dos pacientes com doenças neurológicas.

Keywords: Azure Kinect. RGB-D camera. computer vision. movement-related neurological
diseases.

iii

iv

Acknowledgements

I would like to express my sincere gratitude to my supervisor PhD João Paulo Cunha for rewarding
my good efforts and for being tough on me when I needed to work harder. To the BRAIN members
for being so welcoming and being always ready to help. A special thanks to the Machine Learning
Researcher Tamas Karacsony for all the technical support during the development of the product.

A special thanks to my family for all the support. To my sister that worked next to me during
the quarantine times. And to my parents for being always their, specially in the last couple of
weeks before the deadline for this thesis.

I would also like to thank my friends Pedro Silva, António Almeida, Gonçalo Moreno, Ana
Eulálio, Ana Gomes, Josefa Fonseca and Roberto Moreira that helped me keep my sanity during
these complicated times. And also a special thanks to my friend Catarina Ribeiro for all the talks
and laughs that we had.

Diogo Peixoto Pereira

v

vi

“ Those who dream by day are cognizant of many things which escape those
who dream only by night”

Edgar Allan Poe

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Thesis Outline . 3

2 State of the art 5
2.1 Diagnosis of Epileptic seizures and Parkinson’s disease 5

2.1.1 Epileptic seizures . 5
2.1.2 Parkinson’s disease . 7

2.2 Motion capture technologies . 7
2.2.1 Motion capture algorithm . 8
2.2.2 Background of motion capture systems 9
2.2.3 Motion capture systems in clinical environments 12

2.3 Kinect evolution . 13
2.3.1 Kinect from XBOX 360 . 13
2.3.2 Kinect V2 . 14
2.3.3 Azure Kinect . 16

3 Azure Kinect and KiT 19
3.1 Azure Kinect . 19

3.1.1 Overview . 19
3.1.2 Azure Kinect SDK . 21

3.2 The KiT decision . 22
3.2.1 The KiT and the hospital environment 22
3.2.2 Azure Kinect Mode Preliminary Tests 24
3.2.3 The KiT problems and the decision . 26

4 Azure KiT development 29
4.1 Development tools . 29
4.2 Azure Kit part 1 . 30

4.2.1 Requirements and Mockups . 30
4.2.2 Development Process . 32

4.3 Azure Kit part 2 . 35
4.3.1 Requirements and Mockups . 35
4.3.2 Development Process . 35

4.4 System Architecture . 39

ix

x CONTENTS

5 Results and Discussion 41
5.1 Azure KiT part one results . 41
5.2 Azure KiT part two results . 43

5.2.1 Data Verification Test . 45
5.3 Discussion . 46

6 Conclusions and Future Work 49
6.1 Obstacles . 49
6.2 Future Work . 50

References 51

List of Figures

2.1 Semiological seizure classification has described in Noachtar and Peters (2009) . 6
2.2 A priori models that represent the human body Vilas-Boas and Cunha (2016) . . 8
2.3 Human motion tracking system using inertial and magnetic sensors Roetenberg

et al. (2009) . 10
2.4 Basic kinect rgb-d architecture . 11
2.5 NeuroKinect architecture . 12
2.6 Setup used for data acquisition using Kinect V1 13
2.7 Kinect device and chip Cruz (2012) . 14
2.8 Specifications comparison between Microsoft Kinect V1 and Kinect V2 Al-Naji

et al. (2017) . 15
2.9 Kinect V2 sensor Al-Naji et al. (2017) . 15
2.10 Azure Kinect features Tesych . 16
2.11 Specifications comparison between Kinect V2 and Azure Kinect Skarredghost

(2020) . 17

3.1 Native color operating modes of Azure Kinect Tesych (2019) 20
3.2 Depth operating modes of Azure Kinect Tesych (2019) 20
3.3 FOV of color and depth cameras Tesych (2019) 21
3.4 KiT operating inside the University of Munich EMU Cunha et al. (2016) 23
3.5 Aspects of the 3Dvideo-EEG system console installed in the routine of University

of Munich EMU Cunha et al. (2016) . 24
3.6 Depth operating modes of Azure Kinect Tesych (2019) 26
3.7 Depth operating modes of Azure Kinect Tesych (2019) 26

4.1 Mockup of the initial window of the Azure KiT 31
4.2 Mockup of the main window of the Azure KiT 31
4.3 Mockup of the configurations window of the Azure KiT 32
4.4 Mockup of the Azure KiT part two . 36
4.5 Architecture of the azure KiT application . 40

5.1 Azure KiT 1 initial window . 41
5.2 Azure KiT 1 main window . 42
5.3 Azure KiT 1 configurations window . 42
5.4 The mkv file recorder by the Azure Kit viewed in the viewer tool provided by the

Azure Kinect . 43
5.5 Azure Kit 2 interface . 44
5.6 The color video separated from the original videos recorded by the Azure KiT 1 45
5.7 The IR video separated from the original videos recorded by the Azure KiT 1 . . 45
5.8 Test done to the azure KiT application that tests a 10 second video 46

xi

xii LIST OF FIGURES

Symbols and Abbreviations

KiT KinectTracker
KiMA Kinect Motion Analyzer
KiSA Kinect Seizure Analyzer
PD Parkinson’s disease
RGB Red Green Blue
RGB-D Red Green Blue and Depth
IR Infrared
UPDRS Unified Parkinson’s Disease Rating Scale
CAMSHIFT Continuous Adaptive Mean Shift
EEG Electroencephalogram
ToF Time of Flight
SL structured-light
AMCW Amplitude Modulated Continuous Wav
WFOV Wide Field of View
NFOV Narrow Field of View
SDK Software development Kit
FOI Field of Interest
FOV Field of View
UMI Inertil Measurement Unit
MKV Matroska Video File
EMU Epilepsy Monitoring Unit
WPF Windows Presentation Foundation
IDE Integrated development environment

xiii

Chapter 1

Introduction

The world we live in is facing constant technological advancements in all areas and it’s hard to

keep up with the pace. The areas of computer sciences and medicine are no different. Combining

both has been the main focus of professionals from both areas in order to provide better health care

to the public. Using computer vision and artificial intelligence in neurological diseases diagnosis

is just another step in this endeavour.

1.1 Context

Neurological diseases have a long history and they were many times misinterpreted and feared due

to their symptoms.

Epileptic seizures is one of the world’s oldest recognized conditions, with written records

dating back to 4000 BC WHO. But the fear and stigma existing around this disease made it com-

plicated for people suffering from it to live healthily and without being ostracized by the public.

In many countries, epilepsy can be counted as a valid reason to ask for a divorce and even in the

United Kingdom and in Northern Ireland, the laws related to this issue were only emended on

1971. Epilepsy is a chronic noncommunicable disease of the brain that affects around 50 million

people worldwide and is characterized by recurrent seizures, which are brief episodes of involun-

tary movement that may involve a part of the body (partial) or the entire body (generalized) WHO

(2006). Since disturbance of the movement of the body of the patient is a major factor on the cor-

rect diagnosis of epileptic seizures it is possible to use computer vision methods to acquire human

motion information and analyse in order to help analyse and diagnose these types of neurological

diseases.

Another disease that affects 4.5 to 19 persons per 100000 population per year is Parkinson’s

disease (PD). This disease is a chronic progressive neurodegenerative disorder characterized by

the presence of predominantly motor symptomatology (bradykinesia, rest tremor, rigidity, and

postural disturbances) WHO (2006). Just like epilepsy, PD is a neurological disease commonly

associated with movement disorders and is usually diagnosed by observation of the patient.

1

2 Introduction

These are just examples of many neurological diseases which cause neurological impairments

and that benefit from motion capture systems.

1.2 Motivation

Studying the movement of the human body is performed in multiple industries and for multiple

purposes Vilas-Boas and Cunha (2016). However, within the clinical context, especially related

to neurological impairments context, although there have been many studies about this topic, per-

forming movement analysis in complex environments such as hospitals is still very complicated

Vilas-Boas and Cunha (2016). So, when analysing patients with neurological diseases, diagnosis

is still mainly based on visual observation and subjective evaluations which is basically qualitative

analysis.

Performing movement analysis is complex because it usually requires precise calibration of

the equipment used details like lighting, noise and occlusion may affect the results making them

inaccurate Roetenberg (2006). That’s why the complex clinical environment is not the best place

to realise these analyses. Another problem comes from the invasive equipment that is required to

perform these analyses which many times requires the patient to use certain equipment in their

bodies.

To tackle these problems mentioned above RGB-D cameras appeared. These cameras capture

RGB images and also depth information. The Kinects from Microsoft are good examples of these

types of cameras that are non intrusive to the human body which is more confortable for the patient

and do not require complex calibration Vilas-Boas and Cunha (2016). The new Azure Kinect is

also an RGB-D camera that will be used to acquire the data needed.

1.3 Objectives

To aid the analysis of neurological impairments this thesis will explore the sensors capabilities of

the Azure Kinect from Microsoft with to see if it is possible and efficient to substitute the previ-

ous Kinect V2 in the application KiT. The KiT is an innovative computer vision application that

acquires the information about human motion characteristics to help the diagnosis and evaluation

of neurological diseases namely PD and epileptic seizures Cunha et al. (2016). If the analysis of

the Azure Kinect and the comparison with the previous version prove that creating a new version

of Kit is a better approach, it will be done. The data that need to be acquired and provided by the

KiT are the RGB, the depth (measures the distance between the camera and the objects) and the

infrared (IR) images. Besides this, the images information such as size, width, height and data

stamps need to also be acquired in order to be processed by the applications KiMA and KiSA.

1.4 Thesis Outline 3

1.4 Thesis Outline

This thesis started of with an introduction in which the background of the idea was presented

and also explaining why this thesis is important and relevant for the present world. Besides the

introduction chapter this thesis also have 5 more chapters that will be outlined below.

On Chapter 2 this thesis presents the state of the art in which epileptic seizures and PD infor-

mation is given. This section also addresses the motion capture algorithms, the systems that use

these algorithms and also the new cameras that are crucial for this thesis.

On Chapter 3 a description of the analysis of the Azure Kinect and its possibilities is given.

Furthermore, this chapter also approaches the KiT and explores the decision to improve it or do a

new one.

Chapter 4 will provide a description of the method involved on the development of the product

and what it entailed. This chapter will first introduce the requirements and the mockups defined

for the product and then give an explanation of process of development of the product.

The chapter 5 will present the results obtained and discuss the achievements.

Finally chapter 4 will conclude the work by addressing the obstacles encountered during the

thesis and the future work to be done.

4 Introduction

Chapter 2

State of the art

This chapter is divided into three parts and gives an explanation about the topics needed to better

approach the objectives of this thesis. In the first part a brief explanation of the two neurological

diseases, in which the KiT e playing a part in acquiring data for analysis, is given. The two diseases

are PD and Epileptic Seizures. The second part explains the background of motion capture systems

and the systems that are already in use in two hospitals, on targeting patients with PD and the other

targeting patients with Epileptic Seizures. The third part of this chapter describes the evolution of

the Kinect over the years until the appearance of the Azure Kinect.

2.1 Diagnosis of Epileptic seizures and Parkinson’s disease

The process of diagnosis in medicine has improved tremendously throughout the course of human

history. The diagnosis of certain neurological diseases is still rather crude since its only based

on patient observation and subjective analysis done by the doctor. However, recent developments

have been made in order to introduce quantitative analysis into the diagnosis and study of these

diseases.

2.1.1 Epileptic seizures

The classification of epileptic seizures is based on clinical observations and detailed reports of

seizure semiology (branch of medicine that studies the signs and symptoms of diseases) by the

patient or other observers Noachtar and Peters (2009). To control the seizures, and therefore

the disease, a clear definition of the seizure type is needed. An important thing to do straight

from the beginning is to make sure that we differentiate an epileptic from a non-epileptic seizure.

Modern video techniques are already utilised in the field to provide a more clear image and detail

on observing patients. However, this still counts as a qualitative analysis since it’s up to the

subjectivity and observation skills of the doctor to determine whether they are seeing a seizure

or something else. Some details may be overlooked which can cause an error on the diagnosis.

5

6 State of the art

Because of this lack of quantitative analysis there are some methods developed to give this kind of

information such has video-recordings O’Dwyer et al. (2007); Cunha et al. (2003). This method

already helped create objective criteria for the analysis of seizure semiology which culminated in

the identification of several seizure types and evolutions Noachtar and Peters (2009).

There are two main systems of seizure classification, one based on semiological criteria and

another based on a priori distinction between focal and generalized seizures and semiological as-

pects in parallel Noachtar and Peters (2009). During an epileptic seizure, some features can be

observed that belong to four categories: sensorial sphere, consciousness, motor sphere and au-

tonomic sphere. Usually symptoms corresponding to multiple of the previous categories occur

during a seizure but only one is predominant. The sensorial characteristics are difficult to measure

and only the patient can describe it. Consciousness characteristics never appear alone and other

types of phenomena are needed to classify the seizure. This being said, the most important charac-

teristics for the present dissertation are the motor one’s since they can be identified and measured

using computer vision equipment.

The motor sphere related characteristics can be divided in two major groups, simple and com-

plex motor seizures. Simple motor seizures are characterized by unnatural and relatively sim-

ple movements Noachtar and Peters (2009) and can be further divided in: myoclonic and clonic

seizures, tonic seizures, epileptic spasms, versive seizures and tonic-clonic seizures. Complex

motor seizures mix movements from different segments of the body that imitate the natural move-

ments Noachtar and Peters (2009). Complex motor seizures can then be divided in hypermotor,

automotor and gelastic seizures In fig. 2.1, we can see the semiological seizure classification as

described above.

Figure 2.1: Semiological seizure classification has described in Noachtar and Peters (2009)

2.2 Motion capture technologies 7

Joining together all these characteristics that can appear in an epileptic seizure it’s easy to

notice the complexity of this disease and the difficulty in doing an accurate diagnosis.

2.1.2 Parkinson’s disease

Studies from Canada and the United Kingdom show that clinicians diagnose PD incorrectly in near

25% of the patients WHO (2006). This is very problematic since we have seen the large scope

of this disease on previous sections. The diagnosis of PD is made exclusively on a clinical basis

and is based on unified rating scales that focus on the observation of the patient. Therefore this is

a qualitative analysis that relies on the subjectivity of the doctor and his capability to identify the

disease.

Over the years there have been many scales for PD diagnosis but there was no universal scale

that everyone could use. That’s where the Unified Parkinson’s Disease Rating Scale (UPDRS)

comes into play. The UPDRS was developed with the cooperation of elements from the different

existing scales to unify the diagnosis process of PD. This new scale is divided in four parts that

were derived from the other scales which are: Part I (Non-Motor Aspects of Experiences of Daily

Living (nM-EDL)), Part II (Motor Aspects of Experiences of Daily Living (M-EDL)), Part III

(Motor Examination) and Part IV (Motor Complications) UPDRS (2003). As you can see, the

motor deficiencies are a major part of the correct diagnosis of PD. This scale is considered as a

fast and easy to use tool in PD’s diagnosis and it becomes even faster by letting the patient do

a self-administration of the first and second part of the UPDRS. This is only viable due to the

personal nature of those two parts that clearly rely on the experiences of the patient and this way

the neurologists can focus their efforts in the third and fourth part of the scale UPDRS (2003).

By analysing the second and third part of the diagnosis process of PD using UPDRS you

notice the importance of detecting the smallest details in the patient motor capabilities and how

using video recordings and later analysis using computer vision technologies could help in detect-

ing them. There are already some motion capture systems that provide quantitative analysis to

this area. One of those being a system that uses the Kinect V1 to study the gait of the patients.

However, it was stated on the paper that explained this system that further tests needed to be made

to validate the discoveries Rocha et al. (2014).

2.2 Motion capture technologies

The human motion has been a focus of studies since Aristotle first addressed the issue in is

book The Motum Animalium Roetenberg (2006). However, motion capture technologies, although

present before, were only improved considerably with the development of photography and cin-

ematography Vilas-Boas and Cunha (2016). The introduction of video camera technologies has

further improved the way we study human gait and other important human movements. Due to

8 State of the art

the high applicability of motion capture technologies in several areas of study their evolution has

been fast and steady.

2.2.1 Motion capture algorithm

One of the crucial parts of motion capture technologies is the algorithm used that can be gener-

alised and divided in three main components: extraction of the human body structure, tracking the

movement of these structural elements and the recognition of movements Vilas-Boas and Cunha

(2016); Aggarwal and Cai (1999). The extraction part of the algorithm is what will be the focus

of this thesis since the KiT will be the only application worked on.

The extraction part can be further divided into two different approaches, one which uses an a

priori model of the human body and another with no pre-determined model.

The first one is based on the segments of the human body and uses stick-figures, cylinder or

contours to emulate the body parts. The model based on stick-figures considers that the human

body is divided in joints that are grouped in subparts (head, torso, hip, arms and legs) Chen (1992).

The example present on fig. 2.2 image A exemplifies this model and has 14 joints and 17 segments.

The model in which the body is divided in cylinders is based on the Walker model. This model

defines local Cartesian coordinate systems for each major articulation of the human body in order

to facilitate the definition of the cylinders Hogg (1983). An example of this model is present

on fig. 2.2 image B. The last model creates contours by means of ribbons. These ribbons are

commonly used to represent 2D shapes and are abstract regions drawn from the outlined picture.

These ribbons are then separated in two sets, one set for the parts of the human body and the other

for the background aroud the body parts Leung (1995). On fig. 2.2 image c you can see this model

only with the set of ribbons that represent the body parts.

Figure 2.2: A priori models that represent the human body Vilas-Boas and Cunha (2016)

2.2 Motion capture technologies 9

The second is based on the knowledge of how our eyes perceive motion. Studies show that

human movement can be addressed by points representations or body contours without even as-

suming any a priori relative stiffness or joint biomechanics of the points or corresponding borders

Johansson (1976). Consequently, some methods based on this were created namely correlation

measurements between points on the body, demand for fixed rotation axes of joint points, iterative

search of the joints through the movement it is being extracted or based on analysis of the optical

flow between successive images Vilas-Boas and Cunha (2016).

The tracking process is used for establishing a correlation between the features extracted from

the scene and the different frames of the movement and is based on ballistic trajectories or Kalman

filters to predict the tracking object position, or use Mean-Shift inspired implementations such as

the popular “Continuous Adaptive Mean Shift” (CAMSHIFT) Vilas-Boas and Cunha (2016). The

number of cameras used for tracking plays a major role in having the best results and usually

multiple cameras are only necessary when 3D imaging is necessary.

Recognition is usually associated with face recognition but it is also important in the identifi-

cation of certain processes like frontal or backward movement. The algorithms for recognition that

are used to identify these kinds of movements are based on phase space theory, motion dynamics

constraints, and pattern recognition techniques Vilas-Boas and Cunha (2016).

2.2.2 Background of motion capture systems

The motion capture systems provide the data for the algorithms previously mentioned and are

classified based on the sensors used and on the source of the signal that is received by the systems.

Motion capture systems can be divided in Inside-out (sensors are placed on the body to detect

natural or artificial external source), Inside-in (sensors and the sources are placed on the human

body), Outside-in (external sensors that detect artificial or natural sources attached to the body)

and Outside-out (computer vision based system). Another parameter that differentiates motion

capture systems is the input signal of the sensors used which will determine the nature of the data

recorded that can provide, for example, muscle activity information or inter-limb coordination.

This new parameter can further classify motion capture systems as inertial, acoustic, mechanical,

magnetic, optical and computer-vision based. Each of these systems belong to one of the classes

previously mentioned in this section Vilas-Boas and Cunha (2016).

Inertial systems belong to the Inside-in class that utilise on-body sensors (gyroscopes, ac-

celerometers and magnetometers) that are used to measure many kinematic components of mo-

tion. Gyroscopes measure the angular velocity of the of the body part to which it is attached.

There are three types of gyroscopes from which the vibrating mass gyroscope was one of the most

popular due to its lower size and weight compared to its peers Grimaldi and Manto (2010). The

accelerometers however, uses Newtons second law as basis to measure the acceleration along the

sensitive axis of the sensor Grimaldi and Manto (2010). The reliability of the accelerometers made

it possible for them to be used within clinical context namely in analysing patients with PD. These

systems were very disadvantageous in the past due to the big exoskeleton that was necessary to be

10 State of the art

used by the user and the difficulty of calibration. Nowadays it has evolved to the point that it can

be used outside of a laboratory environment Vilas-Boas and Cunha (2016).

Acoustic systems can be Outside-in or Inside-out and are tracking systems that use ultrasonic

pulses to determine the position of the body. The signal can be easily disturbed so unless there is

a clear line of sight, this system should not be used Vilas-Boas and Cunha (2016).

Magnetic systems use magnetic field theory to produce 3D positions of the human body and

rotational information. This is an Outside-in system that doesn’t cause any problem to the human

body but can be easily disrupted by any electric or magnetic interferences in the surroundings

Vilas-Boas and Cunha (2016).Another problem that comes with these systems is the fact that they

are expensive and low accuracy. On the bright side, these systems do not suffer from any occlusion

problems because the human body is transparent to magnetic fields Gabriel et al. (1996). On fig.

2.3 you can see an example of an inertial and magnetic human motion tracking sensor.

Figure 2.3: Human motion tracking system using inertial and magnetic sensors Roetenberg et al.
(2009)

Mechanical systems are Inside-in systems and they make use of an exoskeleton to directly

track body joint angles using the attached sensors, which provide occlusion free information of

body posture Vilas-Boas and Cunha (2016). There are some good examples of these types of

sensors namely the plantar pressure assessment that provides information about the foot and ankle

functions during gait Orlin and McPoil (2000); Abdul Razak et al. (2012).

Video recordings have been present for a long time in medicine and the diagnosis of many

diseases is made by observation of those recording. However, without a quantitative analysis

of the data recorded, this method is purely qualitative and dependent on the observation skill of

the doctor. So the optical systems were created to improve this technique. These systems are

marker-based and are, therefore, part of the Outside-in class. The idea is to use either reflective

2.2 Motion capture technologies 11

or light-emitting markers that are identified by the cameras and are used to recreate a 2D or 3D

image (dependent on the number of cameras) of the movement captured. These systems have some

difficulties attached, namely the calibration, post-processing time, non-portability and problems

related to occlusion Vilas-Boas and Cunha (2016).

Finally, we have the marker-less Outside-out new systems that can reliably measure a wide

range of parameters from human motion such as 3D body shape and disambiguate poses. These

systems are commonly known as Computer vision based systems. A good example of the uti-

lization of this new technology is the RGB-D cameras that have already been tested on the field

and are giving very good results. A study has been made that uses the capabilities of the RGB-D

camera to study epileptic seizure of a patient by monitoring his bed 24/7 Cunha et al. (2016). As

it was said before, this technology, without the usage of any kind of other sensors, was able to

extract body motion information 87.5% faster and the images acquired had an average correla-

tion with 3D motion trajectories of 84,2%. These systems can be divided based on the way they

construct the 3D image. We have time of flight (ToF), which measures the depth of a scene by

quantifying the changes that an emitted light signal encounters when it bounces back from objects

in the scene, and structured-light (SL) systems, which the working principle is the projection, into

the 3D scene, of a known light pattern viewed by the camera Vilas-Boas and Cunha (2016). An

example of the architecture of these kinds of systems can be scene on fig. 2.4, in which a kinect

camera is viewed and the steps of the recognition process is depict.

Figure 2.4: Basic kinect rgb-d architecture

12 State of the art

2.2.3 Motion capture systems in clinical environments

The motion capture systems have suffered tremendous improvement through the years especially

when related to the medical field. At the moment there are many systems used to study and

diagnose epileptic seizures and the PD that use the capabilities of RGB-D cameras and the Kinect

V1 and V2 to better capture the images that would then be analysed with the help of other medical

means of examination Cunha et al. (2016).

The first system worth mentioning and analysed is the NeuroKinect employed on the detection

of epileptic seizures that was developed and used in the University of Munich Cunha et al. (2016),

INESC TEC and the Institute of Electronics and Informatics Engineering of Aveiro (IEETA).

This system operates with an RGB-D camera (Microsoft Kinect), that sends the information to a

computer running a KiT (software developed using the Kinect Software Development Kit v1.5)

and is synchronized with an electroencephalogram (EEG) video system to acquire the data of

the patient Cunha et al. (2016). The editing, storage and analyse of the data are done using the

KiMA software (the architecture of the system can be seen on fig. 2). This system can provide

sets of motions of interest which allow the discrimination between seizures arising from temporal

and extra-temporal brain areas Cunha et al. (2016) which is crucial to the differentiation between

seizures and therefore contributing for a better diagnose of this disease. Another important detail

is that this system provides 3D imaging analyses which is a step forward compared to the original

2D imaging which is usually used in the clinical context.

Figure 2.5: NeuroKinect architecture

There are also motion capture systems used to study PD and two of them are systems based

on a Kinect V1 RGB-D camera and the kinect V2. The process to acquire data is very similar

to the one used in epileptic seizures, in which the KiT is used to acquire the skeleton data of the

patient. The data acquired need to be manually selected since the camera as a particular range

in which it works better and then the gait cycles are identified. This is done based on the depth

information that is received at the same time as the skeleton is acquired (Schema on fig. 3). After

this process many parameters are computed (velocity, accelerations, distances ...) for each gait

2.3 Kinect evolution 13

cycle and they are then used to distinguish between non-PD patients and PD patients Rocha et al.

(2014). The second generation (Kinect V2) however, due to the new capabilities of the camera,

such as, higher depth fidelity, infrared capabilities and the possibility to track more joints, made

it more appropriate for the assessment of PD. One of the reasons is that it permits the usage of

more gait parameters important for the diagnosis of PD. Finally it is important to say that this new

system as an advantage over the old kinect V1 because it is more adaptable to new and different

scenarios Rocha et al. (2015).

Figure 2.6: Setup used for data acquisition using Kinect V1

2.3 Kinect evolution

For the scope of this dissertation, we will focus on the RGB-D cameras that were developed by

Microsoft. The reason why this is so is because this thesis is focused on the works done in the

fields of PD and Epileptic seizures in the hospitals of Porto and Munich that previously used the

Kinect V1 and after that the Kinect V2. Therefore this section will focus on the evolution of this

cameras until the Kinect V2 camera.

2.3.1 Kinect from XBOX 360

The first Kinect was made by Prime Sense in collaboration with Microsoft and came with the

gaming platform XBOX 360, own by Microsoft, as a peripheral device. This Kinect was equipped

with with a RGB camera and an IR emitter and camera Cruz (2012). An image of the Kinect

can be viewed on fig. 2.7. These two cameras made it possible to acquire complementary color

images and depth information per pixel of the image, which brought many advantages in the fields

of computer graphics, image processing, computer vision and so on. An example of the usage of

this camera in computer vision and image processing is using it to identify peoples by their faces

named Kinect Identity. This technology was developed for the XBOX 360 and with time it learns

the faces of the players so that it can identify who is the player 1 and 2 during games by their faces

Leyvand (2011). Within medical context there are also studies conducted using this camera that

proved to be very successful such as a respiratory monitoring system using the Kinect (Xia and

14 State of the art

Siochi (2012)) and also a sleep monitoring system that uses the depth information provided by the

Kinect to detect sleep eventsYang (2014).

The great advancement of this new camera was the technology behind the depth sensor (IR

emitter and camera), which was developed by group of researchers from Prime Sense (Zalevsky

et al. (2013)). This sensor used the structured light method to measure the depth Cruz (2012),

which was already explained in the section 2.2.2. Due to the increase in popularity of this Kinect

for the XBOX 360, a version for Windows was later released for developers and researchers to use

Cruz (2012). The resolution and other characteristics of this Kinect can be viewed in fig. 2.9 in

comparison to its successor the Kinect V2.

Figure 2.7: Kinect device and chip Cruz (2012)

2.3.2 Kinect V2

The second generation of the Kinect was the Kinect V2 which had some improvements in compar-

ison to the previous version and also a major difference in the way the depth is measured. These

advantages come in the form of better performance and accuracy, as well as a wider field of view

due to this new way to measure depth Al-Naji et al. (2017). In Kinect V2 the depth is calculated

using the ToF tecnhology that was described on the section 2.2.2 of this chapter. A study has been

made that compares the two technologies (ToF and SL) using the Kinect V2 and the Kinect and

explains in which environments each technology works better Sarbolandi (2015). In fig. 2.8 you

can see the major differences between the two Kinects. As you can see, Kinect V2 has a wider

field of view and better resolution for both the RGB camera and IR camera without lowering the

frames per second (fps). Another thing worth notice is the increase in the number of joints that

can be defined and the maximum number of skeletal tracking in the Kinect V2..

This Kinect comes equipped with an RGB camera, an IR sensor and projector that provide

three types of frames, color, ir and depth. Besides these frames the Kinect V2 comes also equipped

with a body tracking software that can reconstruct a 3D body and provide skeletal tracking, joint

2.3 Kinect evolution 15

Figure 2.8: Specifications comparison between Microsoft Kinect V1 and Kinect V2 Al-Naji et al.
(2017)

tracking and human recognition using the depth and color frames as basis Al-Naji et al. (2017).

Overall the Kinect V2 is a better, more robust, version of the Kinect from Microsoft. Kinect V2

can be seen on fig. 2.9.

Figure 2.9: Kinect V2 sensor Al-Naji et al. (2017)

As mentioned in section 2.2.2 the application KiT was firstly programmed for the first version

of the Kinect but later adapted to be used with the Kinect V2. This application reads the infor-

mation from the Kinect and separates each of the frames (color, depth and IR) in different files to

be further processed by the other software (KiMA and KiSA). The KiT also has a mode for gait

analysis which retrieves the joints and skeletal tracking of the person being analysed.

16 State of the art

2.3.3 Azure Kinect

The last instalment of the Kinect series is the Azure Kinect. And as you can see in fig. 2.10 the

new Azure Kinect was downsized and it is much more practical. The features of the camera are

also present on the image.

Figure 2.10: Azure Kinect features Tesych

The Azure Kinect made serious improvements in the depth camera by implementing the Am-

plitude Modulated Continuous Wave (AMCW) ToF principle (Tesych) that is based on the paper

published in 2018 that cover the continuous wave ToF principle. Cameras using this principle emit

light with an amplitude modulated light source that is deflected when it encounters an object. The

delay between the the emission of the light and the reflection is used to calculate distance between

the camera and the object making it possible to create the depth image Bamji (2018). This camera

gives two types of images, a depth-map and a clean IR reading (which the result depends on the

amount of light on the scene). The capabilities of the camera are quite good with 1-Megapixel ToF

imaging chip with advanced pixel technology which enables higher modulation frequencies and

depth precision, automatic per pixel gain selection enabling large dynamic range allowing near

and far objects to be captured cleanly and low systematic and random errors. It’s important to

notice that all modes can be run at up to 30 fps with exception of the Wide Field of View (WFOV)

unbinned mode that runs at a maximum frame rate of 15 fps Tesych.

The differences between the Kinect V2 and the Azure Kinect are quite significant, as you can

see in fig. 2.11. The Audio and Motion sensors have been improved and a gyroscope was added.

However for the scope of this thesis only the RGB and Depth camera are the one’s that need to be

looked at. Focusing on the RGB camera it can be seen the the max resolution was improved and

the fps are still 30. It’s important to note that this is not the only resolution available, as it will be

shown on chapter 3. The same goes for the depth camera in which it can be notice that 1024*1024

resolution only with 15 or less fps. This mode corresponds to the WFOV unbinned mode that was

mentioned above. These are the main differences and what will be the focus of this thesis.

2.3 Kinect evolution 17

Figure 2.11: Specifications comparison between Kinect V2 and Azure Kinect Skarredghost (2020)

18 State of the art

Chapter 3

Azure Kinect and KiT

This chapter will be divided into two parts. The first part will have an in-depth analysis of the

colour and depth camera to understand the conditions in which they work and what modes work

better with each other. The second part will focus on the problems of the previous KiT as well

as the compatibility with the Azure Kinect. Then the best modes of operation will be chosen in

accordance to the specifications given by the Hospitals in which the KiT is currently functioning

so that the best performance can be achieved. This study will result in deciding whether to update

the old KiT so that it can work with the Azure Kinect, or make a new KiT specifically for the new

camera and for the objective of this thesis.

3.1 Azure Kinect

This section will present an overview of the hardware capabilities of the Azure Kinect as well as

the functionalities available within the software development kit (SDK) that comes with it.

3.1.1 Overview

As described in chapter 2 the Azure Kinect comes equipped with a color camera and a depth

camera. The color camera has six native operating modes in which the images are produced

directly by the camera. These operating modes produce color images in three formats: MJPEG,

YUY2 and NV12. However, due to the fact that the YUY2 and NV12 formats only work for the

lowest resolution, they won’t be addressed in this thesis. Besides these three formats, the Azure

Kinect can also produce images in BGRA format but it needs the host CPU to convert the original

image in MJPEG to this format Tesych (2019). So it is not a native mode. There is another

problem that this format has that will be addressed in this chapter that will dismiss this format

from the scope of this thesis. Another thing to take into account is that the mode with resolution

4096x3072 only achieves a frame rate of 15 which is not optimal to study neurological diseases

in which the smallest detail can’t be overlooked. And if 30 fps is not achieved, some information

19

20 Azure Kinect and KiT

may be lost due to loss of frames. The characteristics of the color camera can be observed in fig.

3.1.

Figure 3.1: Native color operating modes of Azure Kinect Tesych (2019)

The depth camera also has different modes of operation. They can be divided in three groups:

narrow field of view (NFOV), wide field of view (WFOV) and Passive IR. For this project, Passive

IR will be dismissed since this mode turns of the iluminators of the camera and depends only on

the ambient illumination of the space in which the camera is instaled. Another distinction between

the modes is that both the NFOV and WFOV modes can be binned or unbinned. The binned modes

are less precise then the other modes because the reduce the resolution of the images by combining

two adjacent pixels into one bin. Like the color camera high resolution mode, the depth camera

also has a mode that can only achieve 15 fps (WFOV unbinned) so it will be discarded for this

project due to the same reason mention on the previous paragraph. The last thing to notice is the

field of interest (FOI) that is way bigger in the WFOV mode. These modes and their characteristics

can be seen on fig. 3.2.

Figure 3.2: Depth operating modes of Azure Kinect Tesych (2019)

The only thing that is missing is understanding how the fields of view (FOV) of both cameras

are positioned depending on the modes selected. In fig 3.3 a representation of the FOV of the

3.1 Azure Kinect 21

cameras can be observed. From the observation it can be seen that the WFOV mode is not that

compatible with this project since there is a need for a good overlap of pixels between the color and

depth images. From this point of view the best option would be a NFOV unbinned mode with a

color camera mode with an aspect ratio of 4:3 for better overlap between images, better resolution

and precision. However, a color camera mode with aspect ratio of 16:9 can’t be overlooked since

the overlap is only bad on the corners of the images. And those corners are usually discarded on

the processing part done by the KiMA and KiSA applications.

Figure 3.3: FOV of color and depth cameras Tesych (2019)

3.1.2 Azure Kinect SDK

The Azure Kinect comes equipped with a couple of tools and a SDK. The tools encompass a

viewer, that lets you play a previously recorder file and can also show the images captured by the

camera in real time, a recorder, that lets you record the type of images that you want with the

format you choose, and a firmware tool to update your system.

The Azure Kinect SDK is the software provided by Microsoft that gives you access to the

device configurations and the the hardware of the sensors so that you can develop your own code

for the Azure Kinect. This version has some major differences compared to the previous version.

In the Kinect V2 SDK you had access to the color and depth frames, as well as the body tracking

frames in the same function. Basically you had one function two access both parts and it would

provide synchronised frames. Now, the Azure Kinect SDK, separated these in two SDKs, the Sen-

sor SDK and the Body Tracking SDK. Therefore, obtaining synchronised frames of both parts is

more complicated. However, the color, depth and IR frames can still be obtained in a synchronised

way. For the scope of this thesis the focus will be on the Sensor SDK.

The Sensor SDK has many core functionalities that are related with the hardware that com-

poses the Azure Kinect. The cameras provide the images that can then be accessed by the SDK

and can also be either transformed or saved. The Inertil Measurement Unit (UMI) can be accessed

22 Azure Kinect and KiT

to get the samples related to the motion of the device provided by the accelerometer and the gy-

roscope. And the microphones can also be accessed. But what really matters in this project is

the images acquired by the cameras. With the Sensor SDK we can change the color format and

resolution, change the depth mode, select the frame rate, retrieve only the synchronised frames

and even manage many Azure Kinects at the same time. This last function won’t be addressed in

this project. One interesting feature of this SDK is that it lets you transform the depth image into

the color image and vice versa. This way you can have, for example, two images with the same

dimensions in which one is a simple color image and the other is the transformation of the depth

image into the color image. The last feature, and one that will also be used on this project, is the

possibility to record the three images in a matroska file video (mkv) file. This file will contain

instances of each type of image, with additional information beyond the image. It will save also

the width, height, size, data stamp and other useful information. The file can be opened with a

normal video player and you will see only the color video but if you use the viewer tool you can

see the three frames in video. However, there is one color format that is not supported by this

recorder function, the BGRA format. The thing that makes this function powerful is the fact the

you also have access to a playback function that loads the mkv files and gives you access to the

instances of the images and all the information within. This will prove crucial for this project.

3.2 The KiT decision

In this section a simple review of the key concepts behind the KiT will be presented in order

to better understand how the Azure Kinect can be integrated (or not) into the code and also the

circumstances of the Hospitals in which the KiT is integrated. After that simple preliminary test

was made to see how the camera worked using different combinations of the color camera and

depth camera modes to see which one should be used in the environment that the KiT is placed.

In the end it will be decided whether to continue using the original KiT or make a new one.

3.2.1 The KiT and the hospital environment

The KiT is an application that connects to the Kinect hardware, reads the information provided

be it and then export it to specific files that can be later processed by other software applications

like KiMA and KiSA, so that it can help analyse and diagnose neurological diseases. If we use

the terms presented in the chapter 2, the KiT belongs to the extraction part of the motion capture

algorithm. However this application also has some tracking process since it accesses the body

tracking module of the Kinect V2 to extract the body skeleton and joint for further processing. For

this project the focus will be on the extraction of the images and their exportation to files.

The flow of the application is pretty easy to understand. In order to start acquiring the frames,

the application should receive some input from the user. First comes the information related to

where to save the frames and the name of the session. Next you should select in the preferences

3.2 The KiT decision 23

the frames that you would like to save. It can be any combination between color, IR, depth, body

and/or body index frames. Finally you have the option to select which frames you want to see

while acquiring. This way you can keep track of what is being acquired at the same time that it

is done. After receiving all this input the application can start acquiring the data. As mentioned

in the previous section, the Kinect V2 provides all the frames in a multi frame reader so the KiT

just saves each frame in a queue of their own to be dealt in a different thread each. Each frame

that is acquired can be shown in the KiT interface and saved in the correspondent file that will

be exported for processing in other applications. The input that the user made at the beginning is

responsible for selecting the frames saved and shown on the interface. The frames shown can be

selected while the camera is acquiring as shown on fig. 3.4. This figure is an image of the KiT

working in the University of Munich Epilepsy Monitoring Unit (EMU) and is actually showing

the skeletal body image acquired from the Kinect V2. As you can see by the image, the body

tracking software of the Kinect V2 is not very precise because the woman has her left arm up, but

the left arm of the skeleton is not. These are the main concepts behind the KiT software.

Figure 3.4: KiT operating inside the University of Munich EMU Cunha et al. (2016)

The KiT application is not only being used in the epilepsy unit functioning but also in a PD unit

in the São João University Hospital in Porto (Portugal) that also implements this application. In

both cases the KiT was introduced to help the analysis of the diseases. The previous examinations

that were done by the doctors continue to exist and the KiT just provides new information to the

system. The idea that is used is that when a seizure is identified by the exams, the doctor can

use the information captured by the KiT in that moment and compare it with their own exams.

This information that was captured by the KiT was processed by the KiMA or KiSA software

24 Azure Kinect and KiT

in order to be used. In fig. 3.5 we can se the EMU system functioning in which the EEG that

detects seizures is compared to the images acquired by the KiT after being synchronised. The

most important factor for the KiT to function correctly in these environments is to know the space

available for saving all this information acquired. The KiT has access to a buffer of 10 TB of data

for saving purposes. This is important for the tests conducted using the Azure Kinect in the next

section, because it will help to decide the best approach for the KiT application.

Figure 3.5: Aspects of the 3Dvideo-EEG system console installed in the routine of University of
Munich EMU Cunha et al. (2016)

3.2.2 Azure Kinect Mode Preliminary Tests

The test done to the Azure Kinect is supposed to test the real frame rate acquired by the device

in the different modes, as well as see the space occupied in disk by the images provided by the

device. After getting the images a calculation using the 10 TB of memory available in the hospitals

to get the time that the Kit can be functioning without running out of space. This preliminary test

is a simple program in C that has the following flow:

• Start the Azure Kinect Device

• Configure the device to the mode being tested

• Start the cameras

• Get the images

3.2 The KiT decision 25

• Save the images in files

This program was made using the C language since the source code of the Azure Kinect SDK

is also written in C. This program is very standard and uses just the functionalities of the SDK for

starting the devices and cameras with the correct configurations. As an example, if you want to

configure the device to work at 30 fps, use the color format MJPEG with a resolution of 1280*720

and the depth mode NFOV Unbinned, you should do the following:

1 k4a_device_configuration_t config = K4A_DEVICE_CONFIG_INIT_DISABLE_ALL;

2 config.camera_fps = K4A_FRAMES_PER_SECOND_30;

3 config.color_format = K4A_IMAGE_FORMAT_COLOR_MJPG;

4 config.color_resolution = K4A_COLOR_RESOLUTION_720P;

5 config.depth_mode = K4A_DEPTH_MODE_NFOV_UNBINNED;

6 config.synchronized_images_only = true;

Listing 3.1: Azure Kinect device configuration in C

The last configuration makes it only possible to receive synchronised images from the device.

This being said, there were some configurations that were left out due to certain reasons. For the

color format, only the MJPEG and BGRA formats were tested since the other two (YUY2 and

NV12) only worked in the lowest resolution. The color resolution 4096x3072 was also left out

of the test because it only worked at a maximum of 15 fps. The depth mode WFOV Unbinned

was also not tested because of the same fps issue. The test was divided in two parts, one centered

around the color format MJPEG and the other on the BGRA format, because these formats were

the cause of the major differences in the frame rate of the device.

In the fig. 3.6 you can see the test results for the color format MJPEG. Looking into the results

it can be seen that in this format the fps is very close to the 30 that was expected and only when the

device was configured to the resolution that used the aspect ratio 4:3 would the value be slightly

lower. The test also showed what was the configuration that had the best duration and the one with

the worst. These durations were obtained by calculating the amount of images that could be saved

on the entire 10TB disk and based on the frames per second obtained by each configuration. The

best duration was achieved with the 720p color resolution and the NFOV 2x2 Binned depth mode.

The worst duration was the 2160p resolution and the NFOV Unbinned depth mode.

The BGRA color format test results can be observed in the fig. 3.7. The results of this format

were a very different from the previous. The fps in this mode was lower then 30, even if not by a

great margin, and the resolution with aspect ratio of 4:3 was closer to the 15 fps mark than the 30.

This result may be caused by the fact that BGRA images are converted from the MJPEG native

format provided by the device. This means that before the images are acquired, the host CPU

processes the original images in order to provide the BGRA images, which causes the fps to be

lower. Another problem with this format is the size of the files. As it can be seen in the image, the

size of the color images is so big that even in the lowest resolution, the KiT can only work for a

day without running out of space.

26 Azure Kinect and KiT

Figure 3.6: Depth operating modes of Azure Kinect Tesych (2019)

Figure 3.7: Depth operating modes of Azure Kinect Tesych (2019)

3.2.3 The KiT problems and the decision

There is one last thing to consider before making a decision regarding the KiT and the Azure

Kinect, the current problems that the KiT has, which are:

• The frame rate of the application drops from time to time which causes loss of important

information

• The files in which the frames are saved (binary files) have some issues that cause the infor-

mation to be sometimes rewritten and as a result, loss of information

• The format in which the information is save is very complicated, which causes difficulties

in reading the data in the KiMA and KiSA software.

These problems were identified through the years of utilization of the application by the su-

pervisor of this thesis, and by a Machine Learning Researcher at INESCTEC. In view of all the

3.2 The KiT decision 27

information gathered in the previous sections and chapters, and with the information regarding the

problems of the KiT decisions have been made.

The first decision made was to create a new KiT for acquiring the color, depth and IR frames.

This decision was made due to two key factors. The loss of valuable data due to frame rate drops

and and the binary files and also due to the new feature of the Azure Kinect SDK that lets you

record the captures directly from the camera without frame drops. This last reason was also the

one that molded the new KiT. Basically, to correct the frame drops, it was decided that the new KiT

will be divided in two parts, or better said, two distinct applications. One part will just produce the

recording video and show it in real time to the user, so that the program won’t lose processing time

with saving each image into files and all the additional information that caused the frame drops.

The second part will open the video file (mkv file) using the Azure Kinect SDK and will seperate

each type of frames (color, depth and IR) into separate files and create an additional file with the

complementary information regarding each frame.

The Second decision was related to the main configuration that would be used for the device.

Looking into the color format, the MJPEG format was chosen for three reasons. The size of

the files were more appropriate since more then one day would be preferable. The frame rate

is much more stable than the BGRA format. But the most important reason is that the BGRA

format is not supported by the recording function of the SDK because it is not a native mode of

the Azure Kinect. The depth mode selected was the NFOV Unbinned manly because the other

two modes were binned and lost half of the information as mentioned in the beginning of this

chapter. Therefore the depth and IR images acquired have better resolution which is great for the

processing done by KiMA and KiSA. The last configuration chosen was the 720p color resolution

so that the KiT could function nonstop for more than two days without running out of space. This

configuration corresponds to the test V6 in the fig. 3.6.

These were the decisions made with the information gathered on the last chapters. In the next

chapter the development methods applied in the making of the Azure KiT will be discussed.

28 Azure Kinect and KiT

Chapter 4

Azure KiT development

This chapter will be divided in three parts that will explain the process of development of the Azure

KiT and also the programming language and tools used in the development. The first section will

describe the tools and the other two sections will explain the development of each part of the KiT.

The last section will present the system architecture of the application developed.

4.1 Development tools

The programming language chosen for this project was C], which is a multi-paradigm program-

ming language, using the WPF (Windows Presentation Foundation) framework. This combination

was chosen for two reasons. The previous KiT was already made using this technology and it

provided a good graphic interface for the user. And also because a library in C] for the SDK was

already made and the functionalities needed for the project were available.

To use C] and the WPF framework, the IDE (integrated development environment) Visual

Studio was chosen, because all three technologies were developed by Microsoft making it easier

to use and get support when needed.

In addition to these technologies three nuget packages belonging to the NuGet Gallery were

used. The NuGet Gallery is a package manager for .Net and it gives access to many libraries with

useful functions NuGetGallery (2020). The first nuget package that was used was the K4AdotNet

package which is a library that provides the functions to work with the Azure Kinect devices using

C] bibigone and baSSiLL (2020). Another package used was the Extended.Wpf.Toolkit that pro-

vides many WPF controls that are not present on the original framework Xceed (2020). The last

package used was the Accord.Video.FFMPEG.x64 which contains a bundle of classes and meth-

ods to handle video files using FFMPEG Accord.NET (2017). This last package was specifically

for 64 bit applications because the Azure Kinect SDK doesn’t work with 32 bit applications.

29

30 Azure KiT development

4.2 Azure Kit part 1

In this section, the process of development of the first part of the Azure KiT will be presented,

starting with the definition of the requirements for the application followed by the mockups of the

user interface and the development process of the program.

4.2.1 Requirements and Mockups

The definition of the requirements for this part of the KiT was agreed upon by the candidate and

the supervisor. The main focus of this part of the KiT was to provide a clear interface to the

users and to correctly produce the mkv file with the color, depth and IR frames. The requirements

were divided in three groups one for each simple window interface that the user had access. The

windows are: initial window for the definition of the session, main window for the recording and a

configuration window to let the user change the device configurations if needed. The requirements

are as follows:

1. Initial Window

• Get the folder in which the user wants to save the mkv file

• Get the name of the session in order to separate from other sections that may have

already been recorded in the same folder or even to save on the same session if the

user wants it so.

• Start the session and move to the main window

2. Main Window

• The main window should have a screen to show the color image at the same time that

it is being recorded

• While being recorded the user should know that the images are getting acquired

• The video recorded should be split in 2 minutes videos to facilitate the access to the

videos in the times of the day needed and to not loose all the content if the Kit stops

working.

• A button to start the recording

• A button to stop the recording

• A button to get access to the configurations window

3. Configurations Window

• Let the user select the color format

• Let the user select the color resolution

4.2 Azure Kit part 1 31

• Let the user select the depth mode

• Let the user select the frame rate

• Let the user select the duration of the videos recorded

• Let the user confirm the selected options

Mockups were made for each of these windows. In fig. 4.1 the mockup for the initial window

is presented. As it can be seen the user can select the folder and the name of the session before

starting it.

Figure 4.1: Mockup of the initial window of the Azure KiT

The main window can be observed in fig. 4.2. In the mockup you can see the screen that will

show the real time color image and the buttons for the functions required in the requirements.

Figure 4.2: Mockup of the main window of the Azure KiT

32 Azure KiT development

The configurations window can be observed in fig. 4.3. The configuration window gives the

user the option to change the configurations as demanded by the requirements as well as a button

to confirm the new configurations.

Figure 4.3: Mockup of the configurations window of the Azure KiT

4.2.2 Development Process

Having defined the requirements and mockups the development process of the program can be

started. The first thing to look at when programming with the WPF framework is that you have

windows that communicate between themselves and that contain elements that can have events

associated. So the first thing developed was the layout of the three windows with the elements that

were defined in the previous section. After this, the events for each element were created and the

link between the windows was established.

In this part of the Azure Kit the main window was the core window, so it was the one that

called the other windows. When the program starts the main window calls the initial window with

the dispatcher and is hidden until the initial window ends the work it is supposed to do.

The work that the initial window needs to do is pretty simple, it just needs to select or create

a new folder (if it doesn’t exist yet) for the images to be saved in. The code that is shown on the

listing 4.1 is what is used in the initial window.

1 // Create a Folder Browser

2 String folderName = null;

3 WinForms.FolderBrowserDialog dlg = null;

4 dlg = new WinForms.FolderBrowserDialog();

4.2 Azure Kit part 1 33

5 dlg.SelectedPath = System.AppDomain.CurrentDomain.BaseDirectory;

6

7 // Show open file dialog box

8 WinForms.DialogResult showResult = dlg.ShowDialog();

9

10 // Check if the directory exists

11 !Directory.Exists(folderName)

12

13 // Creates a new directory if it doesn’t

14 Directory.CreateDirectory(folderName);

15

16 // Saves the name of the directory if it exist and can be opened

17 Directory.GetAccessControl(folderName);

Listing 4.1: Select the folder where the recording files are saved

After the initial window was completed the main window became the focus of the develop-

ment. And this is where the K4AdotNet package. As mentioned before, this package provides the

same functions that the Azure Kinect SDK provides but in C] language. When the main window is

loading, the Kinect device is opened and configured with the modes chosen on the chapter 3. Next

the recording event was made. This event would be activated when the user clicked on the record

button. This event can be broken down in three main activities. The first activity was creating

the recording file using the SDK functions, to where the captures obtained by the Kinect will be

recorded. The second part was creating an event that would trigger when the 2 minutes (unless

another video duration was selected) have passed in order to create a new recording file. The video

division purpose is to make sure that the data being acquired is saved and not lost. If the data was

being saved in only one file and the application stopped working due two external reasons or lack

of this space, all the information might get lost. This way if it happens only the file being used at

the time is lost. A sample of this second activity can be seen on the listing 4.2.

1 // Create a timer for 2 minutes

2 Timer saveTimer = new Timer(1000 * 2 * 60);

3

4 // Generate the event

5 saveTimer.Elapsed += saveTimer_Elapsed;

6 saveTimer.Start();

7

8 // Event function

9 private void saveTimer_Elapsed(object sender, ElapsedEventArgs e)

10 {

11 // File name has the day an time

12 currentDate = DateTime.Now;

13 this.file_name = this.folderName + "/" + currentDate.ToString("

yyyyMMdd_HHmmss") + ".mkv";

34 Azure KiT development

14 // Create the new file with the SDK functions

15 this.recorder[this.recorder_counter + 1] = new Recorder(this.file_name

, this.device, this.config);

16 this.recorder[this.recorder_counter + 1].WriteHeader();

17 this.recorder_counter++;

18 this.recorder[this.recorder_counter - 1].Dispose();

19 }

Listing 4.2: Timer and event responsible for the creation of the recording files

The last activity is receiving each capture, show the color frame on the screen and save the

captures to the file. receiving the capture can be done using the nuget package that it is being used.

To show the color image the buffer of the color image (that contains the raw image data) needs to

be transformed into a bitmap source to be then shown on the screen. In listing 4.3 is the sample

of the code responsible for showing the image on the screen. Note that this is not the only way to

show an image from the image buffer. After showing the color image the full capture can be saved

and disposed to give space to the next capture.

1 // Verify if the color image was obtained

2 if (capture.ColorImage != null)

3 {

4 // Create an intermediate byte array buffer to save the image

5 var color = capture.ColorImage;

6 innerBuffer1 = new byte[color.SizeBytes];

7 Marshal.Copy(color.Buffer, innerBuffer1, 0, innerBuffer1.Length);

8

9 // Create and show the bitmap source

10 using (var stream = new MemoryStream(innerBuffer1))

11 {

12 colorImageKinect.Source = BitmapFrame.Create(stream,

BitmapCreateOptions.None,BitmapCacheOption.OnLoad);

13 }

14 }

Listing 4.3: Show the color image on the screen

Only the configuration is left and this one has a very simple job. It only receives the input of

the user related to the configurations of the device and changes it if the user confirms it. With this

the Azure KiT part one is completed and the next part can be addressed.

4.3 Azure Kit part 2 35

4.3 Azure Kit part 2

This section follows the same pattern as the previous one. First the requirements and mockups

are presented to give an overview of the Azure KiT part 2 and then a section dedicated to the

development process of this program is given.

4.3.1 Requirements and Mockups

For this part, besides the candidate and the supervisor, another person helped to define the re-

quirements. This person is a Machine Learning Researcher at INESCTEC and is working with

the KiMA software so he was the on that made the decisions related to the type of files created

and exported in this part so that the process work of the KiMA software could be facilitated. The

main function of this part of the KiT is to receive the video files recorded during the KiT part one

functioning and separate the video in three videos, one for each type of frame (color, depth and

IR). Another important point is that the user will select the start and end time of the seizure in

order for the program to only separate the files that belong in that time period. This part only has

one window so the requirements are the following:

• Get the session where the recorded videos were saved

• Select the new folder in which to save the files

• Select the start time of the seizure

• Select the end time of the seizure

• Select the type of frames to be saved

• Start the processing of the data

For these requirements the mockup made is in fig. 4.4.

4.3.2 Development Process

The development process of this part of the Azure KiT was similar to the previous part except

for the fact that it only has one window. This time, for the elements present in the layout of

the window, one of them came from the nuget package Extended.Wpf.Toolkit. The element in

question was the start and end date. These dates needed to be composed of a day and time of

the day, and there is no element like this in the original WPF framework. This package provided

a date time picker that did this job easily. During the development the was an element that was

36 Azure KiT development

Figure 4.4: Mockup of the Azure KiT part two

added due to necessity that was the session name for the saving folder since there can be multiple

different seizures in the same session. And it is important to separate the information. After the

layout of the main window was made, the next step was to process the information given has an

input. When the user clicks on the start processing button an event should start to do this process.

This event started by selecting the video files that needed to be processed based on the start and

end date. However, the folder contains many videos, so it is necessary to find the one’s that are

the target of the processing. To do this first all the names of the video files were copied to a string

array and then the program should find the files that contained the start and end date within their

videos. because the day and time were part of the name of the files it was very easy to do, has it

can be seen in the code sampled present in the listing 4.4.

1 //Copy the file names to the string

2 string[] videoFiles = Directory.GetFiles(this.videosFolder, "*.mkv").

Select(System.IO.Path.GetFileName).ToArray();

3

4 //Some useful counters

5 int firstFilePosition = 0;

6 int lastFilePosition = 0;

7 int filePosition = firstFilePosition

8

9 if (this.startDate.CompareTo(this.endDate) < 0)

10 {

11 for (int i = 0; i < videoFiles.Length; i++)

12 {

13 //clean the names of the files

4.3 Azure Kit part 2 37

14 videoFiles[i] = videoFiles[i].Substring(0, videoFiles[i].Length -

4);

15 }

16 for (int i = 0; i < (videoFiles.Length - 1); i++)

17 {

18 if (!this.startFound)

19 {

20 if (this.startDate.CompareTo(videoFiles[i + 1]) < 0)

21 {

22 if (this.startDate.CompareTo(videoFiles[i]) >= 0)

23 {

24 this.startFile = videoFiles[i];

25 this.startFound = true;

26 firstFilePosition = i;

27 }

28 else

29 {

30 return;

31 }

32 }

33 }

34 if (this.startFound)

35 {

36 // similar to the code of the start file

37 }

38 }

39 }

Listing 4.4: find the start and end file

After this is done the last nuget package mentioned at the beginning of this chapter will be

needed. The Accord.Video.FFMPEG.x64 package was used to save the frames into a video file

format. This format would prevent the data from being overwritten has it happened with the

previous version of the KiT. This package enabled the creation of video files with a stream of

bitmaps with a predetermined format and size (width and height). After creating one videos file

for each format, the mkv files recorded by the Azure KiT one that were selected before this process

should be opened, one at a time in chronological order. To open these files and access the captures

containing the three types of frames, the playback function of the SDK (using the K4AdotNet

package) was used. Next comes the process of saving each frame. The color frame had to be

converted into a bitmap in order to be saved into the new video file, like the sample on the listing

4.5.

1 // Receiving the color frame

2 K4AdotNet.Sensor.Image color = this.currentCapture.ColorImage;

38 Azure KiT development

3 // Only enters if the save color option was selected on the interface

4 if (colorframesEnabled)

5 {

6 //Create an intermediate Byte array buffer

7 innerBuffer = new byte[color.SizeBytes];

8 Marshal.Copy(color.Buffer, innerBuffer, 0, innerBuffer.Length);

9 Bitmap bmp;

10

11 //Transform the buffer into a bitmap

12 using (var stream = new MemoryStream(innerBuffer))

13 {

14 BitmapEncoder enc = new BmpBitmapEncoder();

15 enc.Frames.Add(BitmapFrame.Create(stream, BitmapCreateOptions.None

, BitmapCacheOption.OnLoad));

16 using (MemoryStream outStream = new MemoryStream())

17 {

18 enc.Save(outStream);

19 bmp = new System.Drawing.Bitmap(outStream);

20 }

21 }

22

23 //To open the video file the width and height of the frames is

required

24 // so the first frame needs to be identified

25 if (firstColorFrame)

26 {

27 streamColor.Open(this.colorFileName, color.WidthPixels, color.

HeightPixels, 30, VideoCodec.Default);

28 firstColorFrame = false;

29 }

30

31 //Write frame to the stream

32 streamColor.WriteVideoFrame(bmp);

33 bmp.Dispose();

34 }

Listing 4.5: Saving the color frames

The depth and IR images were a little bit different because of the way the raw data is saved.

In these types of images, each pixel is a 2 Byte little endian unsigned depth data. For the depth

image, each pixel corresponds to the distance (in millimeters) from the camera to the object and

for the IR image, each pixel corresponds to the brightness level. The problem here is that the

K4AdotNet package only has two types of conversion of the buffer. It can either convert to a byte

array or a short array. So, in order not to lose any information and convert the buffer to a ushort

array the code present in the listing 4.6 was done.

4.4 System Architecture 39

1 //create the buffers

2 byte[] depthIntermediateBuffer = new byte[depth.WidthPixels * depth.

HeightPixels * 2];

3 ushort[] grayScaleDepthData = new ushort[depth.WidthPixels * depth.

HeightPixels];

4 depth.CopyTo(depthIntermediateBuffer);

5 int counterShort = 0;

6

7 //Convert each two bytes of the buffer into a ushort value for the array

8 for (int index = 0; index < depthIntermediateBuffer.Length - 1; index =

index + 2)

9 {

10 grayScaleDepthData[counterShort] = BitConverter.ToUInt16(

depthIntermediateBuffer, index);

11 counterShort++;

12 }

Listing 4.6: Saving the color frames

This was the example for the depth image but the same is applied for the IR image. The rest

of the code is similar to the color frame. The only difference is the that in order to not lose any

information the bitmap created had to be in the format Grayscale 16 (Images composed with 16

bits per pixel). The last part of this application was to save the information of each frame (width,

height, size and timestamp) into a text file.

After this being done, the development of the Azure KiT was completed.

4.4 System Architecture

The architecture of the system is very simple as it can be seen in fig.4.5. This system is divided

in two applications, which were explained previously in this chapter. The first application, azure

KiT 1, receives the stream of frames captured by the Azure Kinect device and also the information

of the user has an input in order to produce the mkv multiframe video files that contain the color,

depth and ir frames exactly how they are captured by the device. The video file is then passed to

the azure KiT application two for further processing. In this part the videos recorded are chosen

by the user (not every file might be needed) and then they are separated in videos containing only

one type of frames. The videos are: color video file, depth video file and ir video file. Along with

these files a text file is produced that contains the information related to the frames recorded, like

the size and timestamps.

40 Azure KiT development

Figure 4.5: Architecture of the azure KiT application

Chapter 5

Results and Discussion

In this chapter the results of the development of the Azure KiT will be presented. Images of the

interface and of the results of the both programs will also be presented. This chapter is divided in

three sections, one for each part of the Azure KiT and another for the discussion of the results.

5.1 Azure KiT part one results

The Azure KiT part one development resulted in a WPF application with three windows. Each

window is very similar to the mockups made in the beginning of the development phase. In fig. 5.1

the initial window can be observed. As it was defined in the requirements, this window receives

the target folder and name of the session before starting it.

Figure 5.1: Azure KiT 1 initial window

In fig. 5.2 The main window of the Azure KiT one is presented showing the application

running and acquiring the images. While the images are being acquired, a text saying the data is

being acquired appears so that the user knows what is happening. the configurations button in the

41

42 Results and Discussion

main window will open the configurations window (fig. 5.3) and is only enable when the Azure

KiT is not recording.

Figure 5.2: Azure KiT 1 main window

Figure 5.3: Azure KiT 1 configurations window

After the Azure KiT application is terminated, the videos recorded during the process can

be accessed in the folder selected by the user on the initial window. As it was explained on the

5.2 Azure KiT part two results 43

chapter 3 the videos can be opened with a normal video player. However, only the color images

will be played. To see the video with the three types of images the Azure Kinect has a viewer tool,

that is installed with the SDK, that can show these recordings. The viewer tool showing the videos

recorded can be seen on the fig. 5.4.

Figure 5.4: The mkv file recorder by the Azure Kit viewed in the viewer tool provided by the
Azure Kinect

These are the results of the Azure KiT part one application. Next comes the processing of this

videos, which is done by the azure KiT part two.

5.2 Azure KiT part two results

The Azure KiT part two as an easier interface compared two the part one. This part is responsible

for receiving the folder with the videos recorded in the Azure Kit part one and separate the frames

into three video files, one for each type. However not all the videos are necessary. Only the videos

that correspond to the time periods in which the patient being monitored by the has seizures matter.

So the user must input the start and end date of the seizure. The last input needed from the user is

the frames that they want to acquire from the recorded videos. Sometimes you just want to get the

IR frames and so the application doesn’t need to lose time doing unnecessary processing. In fig.

5.5 the interface of the Azure Kit part two is shown.

44 Results and Discussion

Figure 5.5: Azure Kit 2 interface

After the application ends the process, the video files are recorded using the frames retrieved

from the original video files and can be opened using a normal video player. The color video can

be observed on the fig. 5.6. One thing to notice is that although the IR and depth videos can be

opened the visibility is very limited, specially in the case of the depth video (images are almost

completely black). This is because the videos use the Gray scale 16 bit format in which each pixel

corresponds to an ushort value (values range from 0 to 65535) that are then transformed into a

shade of grey. So without a mask to change the brightness or without colorizing the images it is

difficult to really see something. On the fig 5.7 is an image of the IR video being played on a

normal video player in a moment that the image can be perceived. The images were saved this

way because the requirements asked for raw images and using masks would change the values of

the pixels. The last file created is a text file that contains the information of each frame acquired

(width, height, image size and datastamps). These files are now prepared to be inserted in the

KiMA and KiSA software for further analysis.

5.2 Azure KiT part two results 45

Figure 5.6: The color video separated from the original videos recorded by the Azure KiT 1

Figure 5.7: The IR video separated from the original videos recorded by the Azure KiT 1

5.2.1 Data Verification Test

With the development of the Azure KiT application completed there are some tests that need to

be done in order to verify the data produced by the application. To do that a simple application

was developed that could analyse the data and find out whether it was correctly segmented into the

different types of frames and if there are any frames missing.

This test main objective is to compare the data from the multiframe video recorded by the

first application (Azure KiT part one) with the color, depth and ir videos made from it. The

test opens the multiframe video using the azure kinect SDK and also the three videos using the

Accord.Video.FFMPEG.x64 package. The number of frames obtained from each video file is

accounted in order to see if no frame is missing. While the frames as being obtained they are

transformed into a bitmap to see whether they have the same size or not. In the end, any discrep-

ancy with the number or the size of the frames is noted. In fig. 5.8 the test result done to a 10

second video is demonstrated. The number of frames accounted for were 299 that shows a frame

rate of 30 fps (29.9) which is what was expected by the azure kinect device. This test also shows

that all the frames obtained from the videos add the correct size and no frame was missing.

46 Results and Discussion

Figure 5.8: Test done to the azure KiT application that tests a 10 second video

5.3 Discussion

The results presented on the previous sections of this chapter represent what was achieved of

the requirements established on the chapter 4. In the Azure KiT part one almost everything was

achieved with success. The video files were correctly saved, as proven by the ability to open them

with the viewer tool of the Azure Kinect. The interface provides the necessary tools for the users

to correctly utilise the application. The application also correctly shows the color image at the

same time that the images are being received from the Kinect device. The only point that this

application may be lacking is showing the depth or IR image as well as the color image that is

already being shown, like the KiT for Kinect V2 did. Right now the application shows that the

color camera is working correctly but the state of the images acquired by the depth camera is

unknown. However this is not a great problem since the configurations of the device were set to

only capture the images that were synchronised, so if there is a problem with the depth camera,

the color image won’t be acquired as well.

The Azure Kit part two was equally successful to the part one and even improved the quality

of the data acquired when in comparison to the KiT for Kinect V2. This application achieved all

the requirements presented in chapter 4. The interface of the application, however, is a little bit

different than the mockup presented. Besides asking the user for the folder where the videos were

recorded in the first application and the folder where the program should save the files processed in

this application, the user should also specify the name of the session because many seizures can be

5.3 Discussion 47

identified in a session and this will help in differentiating them. The rest of the interface is equal

to what was depicted on the mockup. When the application terminates processing the videos,

four files are created, on for each image type and the last one is the text file containing important

information about each frame. As it was mentioned before, the frames come in triples because

they are always synchronised, so the information on the text file is also organised in triples. Each

line with the information related to the three frames that were acquired simultaneously. The thing

to notice here is that in the previous KiT, the data was saved in binary files that were difficult to

read and the information wasn’t always correct (problems documented on chapter 3). However,

now the information is saved in video files that can be easily opened and that can also be accessed

with multiple programming languages without any problem.

To summarise, both the applications were completed with different degrees of success but in

the end, the product that is generated by them goes along what was expected of the requirements

defined for it.

48 Results and Discussion

Chapter 6

Conclusions and Future Work

The main objective of this thesis was to understand if the new generation of the Kinect from Mi-

crosoft (Azure Kinect) could be introduced into the existing systems that monitor the patients with

neurological diseases that affect their normal movement. The two systems that were introduced,

one in the field of epilepsy and the other in PD, both used the application KiT which utilised the

functions of the Kinect V2 from Microsoft. The KiT, despite the problems described in this thesis,

was already a very mature application since it started with the first Kinect developed by Microsoft.

However, the Azure Kinect proved to be very different from its predecessors which doesn’t mean

that it is bad. Although those differences were some of the reasons to create a new KiT from

scratch, the new possibilities created by the SDK of the Azure Kinect were also crucial in this

decision. The possibility to record and then playback the files is exactly what the KiT needed in

order to tackle some of the problems that were verified through the years.

With the development of a new KiT set in stone came new difficulties that were not expected

in this thesis but overall the objective was achieved. Even though the results deviate from what

was expected at the beginning, an application that gathers the necessary information for the appli-

cations that needed them was created. So it can be said that with some adjustments this application

can potentially be inserted into the clinical environment alongside the previous KiT or alone.

6.1 Obstacles

During this thesis there were many obstacles that appeared and needed to be tackled. Some were

resolved and actually opened new paths, others weren’t and changed the way the work was being

planned and done. Some of these obstacles should be addressed if future work is done with the

results obtained in this thesis. The obstacles were the following:

• The fact that the Azure Kinect SDK separated the color, depth and IR frames from the body

frames made it very difficult to integrate into the existing KiT since in the Kinect V2 those

frames could be obtained simultaneously and synchronised.

49

50 Conclusions and Future Work

• When dealing with the Azure Kinect device, the lack of experience in the field of signal

processing and computer vision made more difficult to tackle some problems that appeared

along the way.

• The programming language, the frameworks and the packages were all new technologies

which added to the creation of an application that dealt with hardware that was introduced

less then one year before the start of this thesis, proved to be very difficult and impacted the

results of this thesis.

• The Azure Kinect device also only works with 64-bit programs which caused some con-

straints during the development process of the applications. Many of the libraries available

were old and were made for 32-bit programs which normaly is not a problem due to the fact

that the programs can function in both modes.

6.2 Future Work

Motion capture systems are already inserted in the clinical context and although they have already

presented very promising results (chapter 2), they haven’t yet reached their full potential. The work

being done using the Kinects from Microsoft and the software KiT, KiMA and KiSA are great and

are walking towards the goal of achieving a better understanding of neurological diseases. Each

new advancement brings new information about these diseases that help to better diagnose and

treat the patients that suffer from them.

This thesis presented a new tracking application using the Azure Kinect, based on the previous

applications that worked with older versions of the Kinect and it still doesn’t do everything that

those applications did. There is always space for improvement and the application developed

during this thesis is the same. In the first part of the application developed, showing the depth

image could give much more feedback to the user and would assure them that the data was being

acquired correctly. Although the color camera already assures that the images are being acquired,

if the depth camera has problems (pixels that are not acquired correctly for example) it won’t

be known until the video is seen. The second part of the application should also let the user

set multiple starts and end dates so that the user doesn’t need to be constantly looking at the

application, waiting for it to finish the process before typing the next set of dates.

In the future trying to integrate the body tracking SDK of the Azure Kinect into this application

should also be considered since this is the big module of the KiT that is not currently in the Azure

KiT developed in this Thesis. This way the gait analysis process present in the KiT could be

integrated using the Azure Kinect.

References

M. d. C. Vilas-Boas J. M. Fernandes A. P. Rocha, H. M. P. Choupina and J. P. S. Cunha. System
for automatic gait analysis based on a single RGB-D camera. PLoS ONE, 13, 2018.

Abdul Hadi Abdul Razak, Aladin Zayegh, Rezaul K Begg, and Yufridin Wahab. Foot plantar
pressure measurement system: A review. Sensors, 12(7):9884–9912, 2012.

Accord.NET. Accord.video.ffmpeg.x64 3.8.2-alpha, 2017. URL https://www.nuget.org/
packages/Accord.Video.FFMPEG.x64/3.8.2-alpha.

Jake K Aggarwal and Quin Cai. Human motion analysis: A review. Computer vision and image
understanding, 73(3):428–440, 1999.

Ali Al-Naji, Kim Gibson, Sang-Heon Lee, and Javaan Chahl. Real time apnoea monitoring of
children using the microsoft kinect sensor: a pilot study. Sensors, 17(2):286, 2017.

Swati; Thompson Barry; Elkhatib Tamer; Wurster Stefan; Akkaya Onur; Payne Andrew; God-
baz John; Fenton Mike; Rajasekaran Vijay; Prather Larry; Nagaraja Satya; Mogallapu Vishali;
Snow Dane; McCauley Rich; Mukadam Mustansir; Agi Iskender; McCarthy Shaun; Xu
Zhanping; Perry Travis; Qian William; Chan Vei-Han; Adepu Prabhu; Ali Gazi; Ahmed
Muneeb; Mukherjee Aditya; Nayak Sheethal; Gampell Dave; Acharya Sunil; Kordus Lou;
O’Connor Pat Bamji, Cyrus S.; Mehta. [ieee 2018 ieee international solid - state circuits con-
ference - (isscc) - san francisco, ca, usa (2018.2.11-2018.2.15)] 2018 ieee international solid
- state circuits conference - (isscc) - impixel 65nm bsi 320mhz demodulated tof image sen-
sor with 3m global shutter pixels and analog binning. 2018. ISBN 978-1-5090-4940-0. doi:
10.1109/ISSCC.2018.8310200.

bibigone and baSSiLL. K4adotnet 1.4.0, 2020. URL https://www.nuget.org/packages/
K4AdotNet/.

G. R. Bradski. Real time face and object tracking as a component of a perceptual user interface.
In Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV’98 (Cat.
No.98EX201), pages 214–219, Oct 1998. doi: 10.1109/ACV.1998.732882.

H.-J. Chen, Z.; Lee. Knowledge-guided visual perception of 3-d human gait from a single image
sequence. IEEE Transactions on Systems Man and Cybernetics, 22, 1992. doi: 10.1109/21.
148408.

Djalma; Velho Luiz Cruz, Leandro; Lucio. [ieee 2012 xxv sibgrapi conference on graphics,
patterns and images tutorials (sibgrapi-t) - ouro preto, brazil (2012.08.22-2012.08.25)] 2012
25th sibgrapi conference on graphics, patterns and images tutorials - kinect and rgbd im-
ages: Challenges and applications. 2012. ISBN 978-0-7695-4830-2,978-1-4673-5091-4,. doi:
10.1109/SIBGRAPI-T.2012.13.

51

https://www.nuget.org/packages/Accord.Video.FFMPEG.x64/3.8.2-alpha
https://www.nuget.org/packages/Accord.Video.FFMPEG.x64/3.8.2-alpha
https://www.nuget.org/packages/K4AdotNet/
https://www.nuget.org/packages/K4AdotNet/

52 REFERENCES

João Paulo Silva Cunha, Hugo Miguel Pereira Choupina, Ana Patrícia Rocha, José Maria Fer-
nandes, Felix Achilles, Anna Mira Loesch, Christian Vollmar, Elisabeth Hartl, and Soheyl
Noachtar. Neurokinect: A novel low-cost 3dvideo-eeg system for epileptic seizure motion
quantification. Plos One, 11(1), 2016. doi: 10.1371/journal.pone.0145669.

JP Silva Cunha, C Vollmar, Zj Li, J Fernandes, B Feddersen, and S Noachtar. Movement quan-
tification during epileptic seizures: a new technical contribution to the evaluation of seizure
semiology. In Proceedings of the 25th Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (IEEE Cat. No. 03CH37439), volume 1, pages 671–673.
IEEE, 2003.

Pietro; Cortelazzo Guido M Dal Mutto, Carlo; Zanuttigh. [SpringerBriefs in Electrical
and Computer Engineering] Time-of-Flight Cameras and Microsoft KinectTM ||, volume
10.1007/978-1-4614-3807-6. 2012. ISBN 978-1-4614-3806-9,978-1-4614-3807-6. doi:
10.1007/978-1-4614-3807-6.

C Gabriel, S Gabriel, and E Corthout. The dielectric properties of biological tissues: I. litera-
ture survey. Physics in Medicine and Biology, 41(11):2231–2249, nov 1996. doi: 10.1088/
0031-9155/41/11/001. URL https://doi.org/10.1088%2F0031-9155%2F41%2F11%
2F001.

Giuliana Grimaldi and Mario Manto. Neurological tremor: sensors, signal processing and emerg-
ing applications. Sensors, 10(2):1399–1422, 2010.

David Hogg. Model-based vision: a program to see a walking person. Image and Vision Comput-
ing, 1, 1983. doi: 10.1016/0262-8856(83)90003-3.

G. Johansson. Spatio-temporal differentiation and integration in visual motion perception. Psy-
chological Research, 38, 06 1976. doi: 10.1007/bf00309043.

M.K.; Yee-Hong Yang Leung. First sight: A human body outline labeling system. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 17, 1995. doi: 10.1109/34.385981.

C.; Yi-Chen Wei; Jian Sun; Baining Guo Leyvand, T.; Meekhof. Kinect identity: Technology and
experience. Computer, 44, 2011. doi: 10.1109/mc.2011.114.

Soheyl Noachtar and Astrid S. Peters. Semiology of epileptic seizures: A critical review. Epilepsy
Behavior, 15(1):2–9, 2009. doi: 10.1016/j.yebeh.2009.02.029.

NuGetGallery. Nuget gallery: Home, 2020. URL https://www.nuget.org/.

Rebecca O’Dwyer, Joao P Silva Cunha, Christian Vollmar, Cordula Mauerer, Berend Feddersen,
Richard C Burgess, Alois Ebner, and Soheyl Noachtar. Lateralizing significance of quantita-
tive analysis of head movements before secondary generalization of seizures of patients with
temporal lobe epilepsy. Epilepsia, 48(3):524–530, 2007.

Margo N Orlin and Thomas G McPoil. Plantar Pressure Assessment. Physical Therapy, 80(4):
399–409, 04 2000. ISSN 0031-9023. doi: 10.1093/ptj/80.4.399. URL https://doi.org/
10.1093/ptj/80.4.399.

Ana Patricia Rocha, Hugo Choupina, Jose Maria Fernandes, Maria Jose Rosas, Rui Vaz, and Joao
Paulo Silva Cunha. Parkinsons disease assessment based on gait analysis using an innovative
rgb-d camera system. 2014 36th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 2014. doi: 10.1109/embc.2014.6944285.

https://doi.org/10.1088%2F0031-9155%2F41%2F11%2F001
https://doi.org/10.1088%2F0031-9155%2F41%2F11%2F001
https://www.nuget.org/
https://doi.org/10.1093/ptj/80.4.399
https://doi.org/10.1093/ptj/80.4.399

REFERENCES 53

Ana Patricia Rocha, Hugo Choupina, Jose Maria Fernandes, Maria Jose Rosas, Rui Vaz, and Joao
Paulo Silva Cunha. Kinect v2 based system for parkinsons disease assessment. 2015 37th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2015. doi: 10.1109/embc.2015.7318601.

Hugo; Fernandes Jose Maria; Rosas Maria Jose; Vaz Rui; Silva Cunha Joao Paulo Rocha, Ana
Patricia; Choupina. [ieee 2014 36th annual international conference of the ieee engineering
in medicine and biology society (embc) - chicago, il (2014.8.26-2014.8.30)] 2014 36th annual
international conference of the ieee engineering in medicine and biology society - parkinson’s
disease assessment based on gait analysis using an innovative rgb-d camera system. 2014. ISBN
978-1-4244-7929-0. doi: 10.1109/embc.2014.6944285.

Daniel Roetenberg. Inertial and magnetic sensing of human motion. s.n., 2006.

Daniel Roetenberg, Henk Luinge, and Per J. Slycke. Xsens mvn: Full 6dof human motion tracking
using miniature inertial sensors. 2009.

Damien; Kolb Andreas Sarbolandi, Hamed; Lefloch. Kinect range sensing: Structured-light versus
time-of-flight kinect. Computer Vision and Image Understanding, 5 2015. doi: 10.1016/j.cviu.
2015.05.006.

M. Shah, K. Rangarajan, and P. . Tsai. Motion trajectories. IEEE Transactions on Systems, Man,
and Cybernetics, 23(4):1138–1150, July 1993. ISSN 2168-2909. doi: 10.1109/21.247894.

Skarredghost. All you need to know on azure kinect, Jan 2020. URL https://skarredghost.
com/2019/02/25/all-need-know-azure-kinect/.

Tesych. Azure kinect dk depth camera, https://docs.microsoft.com/pt-pt/azure/kinect-
dk/depth-camera. URL https://docs.microsoft.com/pt-pt/azure/Kinect-dk/
depth-camera.

Tesych. Azure kinect dk hardware specifications, 2019. URL https://docs.microsoft.
com/en-gb/azure/Kinect-dk/hardware-specification.

UPDRS. The unified parkinsons disease rating scale (updrs): Status and recommendations. Move-
ment Disorders, 18(7):738–750, 2003. doi: 10.1002/mds.10473.

Maria Do Carmo Vilas-Boas and João Paulo Silva Cunha. Movement quantification in neurologi-
cal diseases: Methods and applications. IEEE Reviews in Biomedical Engineering, 2016.

WHO. Epilepsy, world health organization, https://www.who.int/en/news-room/fact-
sheets/detail/epilepsy. URL https://www.who.int/en/news-room/fact-sheets/
detail/epilepsy.

WHO. Neurological disorders: public health challenges. World Health Organization, 2006.

Xceed. Extended.wpf.toolkit 4.0.1, 2020. URL https://www.nuget.org/packages/
Extended.Wpf.Toolkit/.

Junyi Xia and R Alfredo Siochi. A real-time respiratory motion monitoring system using kinect:
proof of concept. Medical physics, 39(5):2682–2685, 2012.

https://skarredghost.com/2019/02/25/all-need-know-azure-kinect/
https://skarredghost.com/2019/02/25/all-need-know-azure-kinect/
https://docs.microsoft.com/pt-pt/azure/Kinect-dk/depth-camera
https://docs.microsoft.com/pt-pt/azure/Kinect-dk/depth-camera
https://docs.microsoft.com/en-gb/azure/Kinect-dk/hardware-specification
https://docs.microsoft.com/en-gb/azure/Kinect-dk/hardware-specification
https://www.who.int/en/news-room/fact-sheets/detail/epilepsy
https://www.who.int/en/news-room/fact-sheets/detail/epilepsy
https://www.nuget.org/packages/Extended.Wpf.Toolkit/
https://www.nuget.org/packages/Extended.Wpf.Toolkit/

54 REFERENCES

Gene; Chan Kevin; Stankovic Vladimir Yang, Cheng; Cheung. [ieee 2014 ieee international con-
ference on multimedia and expo workshops (icmew) - chengdu, china (2014.7.14-2014.7.18)]
2014 ieee international conference on multimedia and expo workshops (icmew) - sleep mon-
itoring via depth video compression analysis. 2014. ISBN 978-1-4799-4717-1. doi:
10.1109/icmew.2014.6890645.

Zeev Zalevsky, Alexander Shpunt, Aviad Malzels, and Javier Garcia. Method and system for
object reconstruction, March 19 2013. US Patent 8,400,494.

	Front Page
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Thesis Outline

	2 State of the art
	2.1 Diagnosis of Epileptic seizures and Parkinson's disease
	2.1.1 Epileptic seizures
	2.1.2 Parkinson's disease

	2.2 Motion capture technologies
	2.2.1 Motion capture algorithm
	2.2.2 Background of motion capture systems
	2.2.3 Motion capture systems in clinical environments

	2.3 Kinect evolution
	2.3.1 Kinect from XBOX 360
	2.3.2 Kinect V2
	2.3.3 Azure Kinect

	3 Azure Kinect and KiT
	3.1 Azure Kinect
	3.1.1 Overview
	3.1.2 Azure Kinect SDK

	3.2 The KiT decision
	3.2.1 The KiT and the hospital environment
	3.2.2 Azure Kinect Mode Preliminary Tests
	3.2.3 The KiT problems and the decision

	4 Azure KiT development
	4.1 Development tools
	4.2 Azure Kit part 1
	4.2.1 Requirements and Mockups
	4.2.2 Development Process

	4.3 Azure Kit part 2
	4.3.1 Requirements and Mockups
	4.3.2 Development Process

	4.4 System Architecture

	5 Results and Discussion
	5.1 Azure KiT part one results
	5.2 Azure KiT part two results
	5.2.1 Data Verification Test

	5.3 Discussion

	6 Conclusions and Future Work
	6.1 Obstacles
	6.2 Future Work

	References

