398 research outputs found

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    Efficient Pedestrian Detection in Urban Traffic Scenes

    Get PDF
    Pedestrians are important participants in urban traffic environments, and thus act as an interesting category of objects for autonomous cars. Automatic pedestrian detection is an essential task for protecting pedestrians from collision. In this thesis, we investigate and develop novel approaches by interpreting spatial and temporal characteristics of pedestrians, in three different aspects: shape, cognition and motion. The special up-right human body shape, especially the geometry of the head and shoulder area, is the most discriminative characteristic for pedestrians from other object categories. Inspired by the success of Haar-like features for detecting human faces, which also exhibit a uniform shape structure, we propose to design particular Haar-like features for pedestrians. Tailored to a pre-defined statistical pedestrian shape model, Haar-like templates with multiple modalities are designed to describe local difference of the shape structure. Cognition theories aim to explain how human visual systems process input visual signals in an accurate and fast way. By emulating the center-surround mechanism in human visual systems, we design multi-channel, multi-direction and multi-scale contrast features, and boost them to respond to the appearance of pedestrians. In this way, our detector is considered as a top-down saliency system. In the last part of this thesis, we exploit the temporal characteristics for moving pedestrians and then employ motion information for feature design, as well as for regions of interest (ROIs) selection. Motion segmentation on optical flow fields enables us to select those blobs most probably containing moving pedestrians; a combination of Histogram of Oriented Gradients (HOG) and motion self difference features further enables robust detection. We test our three approaches on image and video data captured in urban traffic scenes, which are rather challenging due to dynamic and complex backgrounds. The achieved results demonstrate that our approaches reach and surpass state-of-the-art performance, and can also be employed for other applications, such as indoor robotics or public surveillance. In this thesis, we investigate and develop novel approaches by interpreting spatial and temporal characteristics of pedestrians, in three different aspects: shape, cognition and motion. The special up-right human body shape, especially the geometry of the head and shoulder area, is the most discriminative characteristic for pedestrians from other object categories. Inspired by the success of Haar-like features for detecting human faces, which also exhibit a uniform shape structure, we propose to design particular Haar-like features for pedestrians. Tailored to a pre-defined statistical pedestrian shape model, Haar-like templates with multiple modalities are designed to describe local difference of the shape structure. Cognition theories aim to explain how human visual systems process input visual signals in an accurate and fast way. By emulating the center-surround mechanism in human visual systems, we design multi-channel, multi-direction and multi-scale contrast features, and boost them to respond to the appearance of pedestrians. In this way, our detector is considered as a top-down saliency system. In the last part of this thesis, we exploit the temporal characteristics for moving pedestrians and then employ motion information for feature design, as well as for regions of interest (ROIs) selection. Motion segmentation on optical flow fields enables us to select those blobs most probably containing moving pedestrians; a combination of Histogram of Oriented Gradients (HOG) and motion self difference features further enables robust detection. We test our three approaches on image and video data captured in urban traffic scenes, which are rather challenging due to dynamic and complex backgrounds. The achieved results demonstrate that our approaches reach and surpass state-of-the-art performance, and can also be employed for other applications, such as indoor robotics or public surveillance

    Temporal Signature Modeling and Analysis

    Get PDF
    A vast amount of digital satellite and aerial images are collected over time, which calls for techniques to extract useful high-level information, such as recognizable events. One part of this thesis proposes a framework for streaming analysis of the time series, which can recognize events without supervision and memorize them by building the temporal contexts. The memorized historical data is then used to predict the future and detect anomalies. A new incremental clustering method is proposed to recognize the event without training. A memorization method of double localization, including relative and absolute localization, is proposed to model the temporal context. Finally, the predictive model is built based on the method of memorization. The Edinburgh Pedestrian Dataset , which offers about 1000 observed trajectories of pedestrians detected in camera images each working day for several months, is used as an example to illustrate the framework. Although there is a large amount of image data captured, most of them are not available to the public. The other part of this thesis developed a method of generating spatial-spectral-temporal synthetic images by enhancing the capacity of a current tool called DIRISG (Digital Imaging and Remote Sensing Image Generation). Currently, DIRSIG can only model limited temporal signatures. In order to observe general temporal changes in a process within the scene, a process model, which links the observable signatures of interest temporally, should be developed and incorporated into DIRSIG. The sub process models could be categorized into two types. One is that the process model drives the property of each facet of the object changing over time, and the other one is to drive the geometry location of the object in the scene changing as a function of time. Two example process models are used to show how process models can be incorporated into DIRSIG

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years. These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Design and validation of decision and control systems in automated driving

    Get PDF
    xxvi, 148 p.En la última década ha surgido una tendencia creciente hacia la automatización de los vehículos, generando un cambio significativo en la movilidad, que afectará profundamente el modo de vida de las personas, la logística de mercancías y otros sectores dependientes del transporte. En el desarrollo de la conducción automatizada en entornos estructurados, la seguridad y el confort, como parte de las nuevas funcionalidades de la conducción, aún no se describen de forma estandarizada. Dado que los métodos de prueba utilizan cada vez más las técnicas de simulación, los desarrollos existentes deben adaptarse a este proceso. Por ejemplo, dado que las tecnologías de seguimiento de trayectorias son habilitadores esenciales, se deben aplicar verificaciones exhaustivas en aplicaciones relacionadas como el control de movimiento del vehículo y la estimación de parámetros. Además, las tecnologías en el vehículo deben ser lo suficientemente robustas para cumplir con los requisitos de seguridad, mejorando la redundancia y respaldar una operación a prueba de fallos. Considerando las premisas mencionadas, esta Tesis Doctoral tiene como objetivo el diseño y la implementación de un marco para lograr Sistemas de Conducción Automatizados (ADS) considerando aspectos cruciales, como la ejecución en tiempo real, la robustez, el rango operativo y el ajuste sencillo de parámetros. Para desarrollar las aportaciones relacionadas con este trabajo, se lleva a cabo un estudio del estado del arte actual en tecnologías de alta automatización de conducción. Luego, se propone un método de dos pasos que aborda la validación de ambos modelos de vehículos de simulación y ADS. Se introducen nuevas formulaciones predictivas basadas en modelos para mejorar la seguridad y el confort en el proceso de seguimiento de trayectorias. Por último, se evalúan escenarios de mal funcionamiento para mejorar la seguridad en entornos urbanos, proponiendo una estrategia alternativa de estimación de posicionamiento para minimizar las condiciones de riesgo
    corecore