942 research outputs found

    Multiword expressions at length and in depth

    Get PDF
    The annual workshop on multiword expressions takes place since 2001 in conjunction with major computational linguistics conferences and attracts the attention of an ever-growing community working on a variety of languages, linguistic phenomena and related computational processing issues. MWE 2017 took place in Valencia, Spain, and represented a vibrant panorama of the current research landscape on the computational treatment of multiword expressions, featuring many high-quality submissions. Furthermore, MWE 2017 included the first shared task on multilingual identification of verbal multiword expressions. The shared task, with extended communal work, has developed important multilingual resources and mobilised several research groups in computational linguistics worldwide. This book contains extended versions of selected papers from the workshop. Authors worked hard to include detailed explanations, broader and deeper analyses, and new exciting results, which were thoroughly reviewed by an internationally renowned committee. We hope that this distinctly joint effort will provide a meaningful and useful snapshot of the multilingual state of the art in multiword expressions modelling and processing, and will be a point point of reference for future work

    Ontology-based Prediction of Compound Relations : A Study Based on SUMO

    Get PDF
    This paper explores the interaction between conceptual structure and morpho-syntax. In particular, we show that ontology-based conceptual classification can be used to predict internal relations in compounds. We propose an ontology-based approach to predict the semantic relation between the two component words in Mandarin VV compounds. A Mandarin VV compound is classified according to the eventive relation between the two simplex verbs. These relations specify how the eventive meanings of the two simplex verbs combine to form the meaning of the compound. The three types of eventive relations that we deal with in this paper are: coordinate, modificational, and resultative. Since the way in which two events combine with each other depends upon their event types, we hypothesize that the eventive relations can be predicted by the conceptual classified event types of the two simplex verbs. An approach of ontology-based prediction is proposed based on this hypothesis. The assignment of ontology classification for each simplex verb is based on SUMO and Sinica BOW. The correlation between the ontology class of each verb position and each eventive type is trained and scored based on a manually tagged lexical database. We encode the ontology information of each VV compound in a 3-tuple based on these correlation scores. This 3-tuple is represented as a three-dimensional vector and used to predict the eventive type of new VV compounds. Our classification experiment on unknown VV compounds yields good recall and precision

    A standard tag set expounding traditional morphological features for Arabic language part-of-speech tagging

    Get PDF
    The SALMA Morphological Features Tag Set (SALMA, Sawalha Atwell Leeds Morphological Analysis tag set for Arabic) captures long-established traditional morphological features of grammar and Arabic, in a compact yet transparent notation. First, we introduce Part-of-Speech tagging and tag set standards for English and other European languages, and then survey Arabic Part-of-Speech taggers and corpora, and long-established Arabic traditions in analysis of morphology. A range of existing Arabic Part-of-Speech tag sets are illustrated and compared; and we review generic design criteria for corpus tag sets. For a morphologically-rich language like Arabic, the Part-of-Speech tag set should be defined in terms of morphological features characterizing word structure. We describe the SALMA Tag Set in detail, explaining and illustrating each feature and possible values. In our analysis, a tag consists of 22 characters; each position represents a feature and the letter at that location represents a value or attribute of the morphological feature; the dash ‘-’ represents a feature not relevant to a given word. The first character shows the main Parts of Speech, from: noun, verb, particle, punctuation, and Other (residual); these last two are an extension to the traditional three classes to handle modern texts. ‘Noun’ in Arabic subsumes what are traditionally referred to in English as ‘noun’ and ‘adjective’. The characters 2, 3, and 4 are used to represent subcategories; traditional Arabic grammar recognizes 34 subclasses of noun (letter 2), 3 subclasses of verb (letter 3), 21 subclasses of particle (letter 4). Others (residuals) and punctuation marks are represented in letters 5 and 6 respectively. The next letters represent traditional morphological features: gender (7), number (8), person (9), inflectional morphology (10) case or mood (11), case and mood marks (12), definiteness (13), voice (14), emphasized and non-emphasized (15), transitivity (16), rational (17), declension and conjugation (18). Finally there are four characters representing morphological information which is useful in Arabic text analysis, although not all linguists would count these as traditional features: unaugmented and augmented (19), number of root letters (20), verb root (21), types of nouns according to their final letters (22). The SALMA Tag Set is not tied to a specific tagging algorithm or theory, and other tag sets could be mapped onto this standard, to simplify and promote comparisons between and reuse of Arabic taggers and tagged corpora

    MultiMWE: building a multi-lingual multi-word expression (MWE) parallel corpora

    Get PDF
    Multi-word expressions (MWEs) are a hot topic in research in natural language processing (NLP), including topics such as MWE detection, MWE decomposition, and research investigating the exploitation of MWEs in other NLP fields such as Machine Translation. However, the availability of bilingual or multi-lingual MWE corpora is very limited. The only bilingual MWE corpora that we are aware of is from the PARSEME (PARSing and Multi-word Expressions) EU project. This is a small collection of only 871 pairs of English-German MWEs. In this paper, we present multi-lingual and bilingual MWE corpora that we have extracted from root parallel corpora. Our collections are 3,159,226 and 143,042 bilingual MWE pairs for German-English and Chinese-English respectively after filtering. We examine the quality of these extracted bilingual MWEs in MT experiments. Our initial experiments applying MWEs in MT show improved translation performances on MWE terms in qualitative analysis and better general evaluation scores in quantitative analysis, on both German-English and Chinese-English language pairs. We follow a standard experimental pipeline to create our MultiMWE corpora which are available online. Researchers can use this free corpus for their own models or use them in a knowledge base as model features

    Nlp Challenges for Machine Translation from English to Indian Languages

    Get PDF
    This Natural Langauge processing is carried particularly on English-Kannada/Telugu. Kannada is a language of India. The Kannada language has a classification of Dravidian, Southern, Tamil-Kannada, and Kannada. Regions Spoken: Kannada is also spoken in Karnataka, Andhra Pradesh, Tamil Nadu, and Maharashtra. Population: The total population of people who speak Kannada is 35,346,000, as of 1997. Alternate Name: Other names for Kannada are Kanarese, Canarese, Banglori, and Madrassi. Dialects: Some dialects of Kannada are Bijapur, Jeinu Kuruba, and Aine Kuruba. There are about 20 dialects and Badaga may be one. Kannada is the state language of Karnataka. About 9,000,000 people speak Kannada as a second language. The literacy rate for people who speak Kannada as a first language is about 60%, which is the same for those who speak Kannada as a second language (in India). Kannada was used in the Bible from 1831-2000. Statistical machine translation (SMT) is a machine translation paradigm where translations are generated on the basis of statistical models whose parameters are derived from the analysis of bilingual text corpora. The statistical approach contrasts with the rule-based approaches to machine translation as well as with example-based machine translatio

    An Urdu semantic tagger - lexicons, corpora, methods and tools

    Get PDF
    Extracting and analysing meaning-related information from natural language data has attracted the attention of researchers in various fields, such as Natural Language Processing (NLP), corpus linguistics, data sciences, etc. An important aspect of such automatic information extraction and analysis is the semantic annotation of language data using semantic annotation tool (a.k.a semantic tagger). Generally, different semantic annotation tools have been designed to carry out various levels of semantic annotations, for instance, sentiment analysis, word sense disambiguation, content analysis, semantic role labelling, etc. These semantic annotation tools identify or tag partial core semantic information of language data, moreover, they tend to be applicable only for English and other European languages. A semantic annotation tool that can annotate semantic senses of all lexical units (words) is still desirable for the Urdu language based on USAS (the UCREL Semantic Analysis System) semantic taxonomy, in order to provide comprehensive semantic analysis of Urdu language text. This research work report on the development of an Urdu semantic tagging tool and discuss challenging issues which have been faced in this Ph.D. research work. Since standard NLP pipeline tools are not widely available for Urdu, alongside the Urdu semantic tagger a suite of newly developed tools have been created: sentence tokenizer, word tokenizer and part-of-speech tagger. Results for these proposed tools are as follows: word tokenizer reports F1F_1 of 94.01\%, and accuracy of 97.21\%, sentence tokenizer shows F1_1 of 92.59\%, and accuracy of 93.15\%, whereas, POS tagger shows an accuracy of 95.14\%. The Urdu semantic tagger incorporates semantic resources (lexicon and corpora) as well as semantic field disambiguation methods. In terms of novelty, the NLP pre-processing tools are developed either using rule-based, statistical, or hybrid techniques. Furthermore, all semantic lexicons have been developed using a novel combination of automatic or semi-automatic approaches: mapping, crowdsourcing, statistical machine translation, GIZA++, word embeddings, and named entity. A large multi-target annotated corpus is also constructed using a semi-automatic approach to test accuracy of the Urdu semantic tagger, proposed corpus is also used to train and test supervised multi-target Machine Learning classifiers. The results show that Random k-labEL Disjoint Pruned Sets and Classifier Chain multi-target classifiers outperform all other classifiers on the proposed corpus with a Hamming Loss of 0.06\% and Accuracy of 0.94\%. The best lexical coverage of 88.59\%, 99.63\%, 96.71\% and 89.63\% are obtained on several test corpora. The developed Urdu semantic tagger shows encouraging precision on the proposed test corpus of 79.47\%
    corecore