5,733 research outputs found

    Towards Data-driven Simulation of End-to-end Network Performance Indicators

    Full text link
    Novel vehicular communication methods are mostly analyzed simulatively or analytically as real world performance tests are highly time-consuming and cost-intense. Moreover, the high number of uncontrollable effects makes it practically impossible to reevaluate different approaches under the exact same conditions. However, as these methods massively simplify the effects of the radio environment and various cross-layer interdependencies, the results of end-to-end indicators (e.g., the resulting data rate) often differ significantly from real world measurements. In this paper, we present a data-driven approach that exploits a combination of multiple machine learning methods for modeling the end-to-end behavior of network performance indicators within vehicular networks. The proposed approach can be exploited for fast and close to reality evaluation and optimization of new methods in a controllable environment as it implicitly considers cross-layer dependencies between measurable features. Within an example case study for opportunistic vehicular data transfer, the proposed approach is validated against real world measurements and a classical system-level network simulation setup. Although the proposed method does only require a fraction of the computation time of the latter, it achieves a significantly better match with the real world evaluations

    Using Machine Learning for Handover Optimization in Vehicular Fog Computing

    Full text link
    Smart mobility management would be an important prerequisite for future fog computing systems. In this research, we propose a learning-based handover optimization for the Internet of Vehicles that would assist the smooth transition of device connections and offloaded tasks between fog nodes. To accomplish this, we make use of machine learning algorithms to learn from vehicle interactions with fog nodes. Our approach uses a three-layer feed-forward neural network to predict the correct fog node at a given location and time with 99.2 % accuracy on a test set. We also implement a dual stacked recurrent neural network (RNN) with long short-term memory (LSTM) cells capable of learning the latency, or cost, associated with these service requests. We create a simulation in JAMScript using a dataset of real-world vehicle movements to create a dataset to train these networks. We further propose the use of this predictive system in a smarter request routing mechanism to minimize the service interruption during handovers between fog nodes and to anticipate areas of low coverage through a series of experiments and test the models' performance on a test set

    Random neural network based cognitive-eNodeB deployment in LTE uplink

    Get PDF

    Localisation of mobile nodes in wireless networks with correlated in time measurement noise.

    Get PDF
    Wireless sensor networks are an inherent part of decision making, object tracking and location awareness systems. This work is focused on simultaneous localisation of mobile nodes based on received signal strength indicators (RSSIs) with correlated in time measurement noises. Two approaches to deal with the correlated measurement noises are proposed in the framework of auxiliary particle filtering: with a noise augmented state vector and the second approach implements noise decorrelation. The performance of the two proposed multi model auxiliary particle filters (MM AUX-PFs) is validated over simulated and real RSSIs and high localisation accuracy is demonstrated

    A random walk model of wave propagation

    Get PDF
    This paper shows that a reasonably accurate description of propagation loss in small urban cells can be obtained with a simple stochastic model based on the theory of random walks, that accounts for only two parameters: the amount of clutter and the amount of absorption in the environment. Despite the simplifications of the model, the derived analytical solution correctly describes the smooth transition of power attenuation from an inverse square law with the distance to the transmitter, to an exponential attenuation as this distance is increased - as it is observed in practice. Our analysis suggests using a simple exponential path loss formula as an alternative to the empirical formulas that are often used for prediction. Results are validated by comparison with experimental data collected in a small urban cell

    Development of a modified propagation model of a wireless mobile communication system in a 4G network

    Get PDF
    Pathloss is a key element that causes signal deterioration in the channel as the signal power reduces inversely with propagation distance, this deterioration experienced by the channel is majorly as a result of reflection, absorption, and scattering of the signal. This study however takes into consideration the radio path loss for precise base station (BS), frequency, and power adjustment prediction evaluated over a frequency of 2.3 GHz. With a distance range between 0.1 and 1.5 km for collection of data on the measured received signal strength (MRSS), five empirical models and a modified model were used to validate the measured data to determine their suitability for pathloss prediction at Federal University of Technology, Owerri (FUTO), Imo state, Nigeria. The results shows that the root mean square error (RMSE) for the Okumura-Hata, COST 231-Hata, Ericsson model, Lee, Stanford University Interim (SUI), ECC-33, and modified models are 14.33, 9.73, 25.79, 48.4, 33.76, and 8.31 dB respectively. Additionally, the Ericsson model provided 0.498 dB, the COST 231-Hata recorded 0.733 dB, and the modified model provided 0.453 dB for mean absolute percentage error (MAPE). Therefore, the improved model produces the best results, consequently, be deployed to approximately predict path loss for mobile radio coverage in Owerri, Nigeria

    Artificial neural networks for location estimation and co-cannel interference suppression in cellular networks

    Get PDF
    This thesis reports on the application of artificial neural networks to two important problems encountered in cellular communications, namely, location estimation and co-channel interference suppression. The prediction of a mobile location using propagation path loss (signal strength) is a very difficult and complex task. Several techniques have been proposed recently mostly based on linearized, geometrical and maximum likelihood methods. An alternative approach based on artificial neural networks is proposed in this thesis which offers the advantages of increased flexibility to adapt to different environments and high speed parallel processing. Location estimation provides users of cellular telephones with information about their location. Some of the existing location estimation techniques such as those used in GPS satellite navigation systems require non-standard features, either from the cellular phone or the cellular network. However, it is possible to use the existing GSM technology for location estimation by taking advantage of the signals transmitted between the phone and the network. This thesis proposes the application of neural networks to predict the location coordinates from signal strength data. New multi-layered perceptron and radial basis function based neural networks are employed for the prediction of mobile locations using signal strength measurements in a simulated COST-231 metropolitan environment. In addition, initial preliminary results using limited available real signal-strength measurements in a metropolitan environment are also reported comparing the performance of the neural predictors with a conventional linear technique. The results indicate that the neural predictors can be trained to provide a near perfect mapping using signal strength measurements from two or more base stations. The second application of neural networks addressed in this thesis, is concerned with adaptive equalization, which is known to be an important technique for combating distortion and Inter-Symbol Interference (ISI) in digital communication channels. However, many communication systems are also impaired by what is known as co-channel interference (CCI). Many digital communications systems such as digital cellular radio (DCR) and dual polarized micro-wave radio, for example, employ frequency re-usage and often exhibit performance limitation due to co-channel interference. The degradation in performance due to CCI is more severe than due to ISI. Therefore, simple and effective interference suppression techniques are required to mitigate the interference for a high-quality signal reception. The current work briefly reviews the application of neural network based non-linear adaptive equalizers to the problem of combating co-channel interference, without a priori knowledge of the channel or co-channel orders. A realistic co-channel system is used as a case study to demonstrate the superior equalization capability of the functional-link neural network based Decision Feedback Equalizer (DFE) compared to other conventional linear and neural network based non-linear adaptive equalizers.This project was funded by Solectron (Scotland) Ltd
    corecore