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Abstract—Artificial intelligence (AI)/machine learning (ML)
based cognitive solutions have widely been applied to deal with
downlink inter-cell interference coordination (ICIC) in long-
term evolution (LTE) systems. This paper presents a random
neural network (RNN) based novel framework to improve ICIC
and radio resource management (RRM) in LTE-Uplink system.
The RNN based cognitive engine (CE) is embedded within the
eNodeB which allocates optimal radio parameters to attached
users and also suggests acceptable transmit power to users served
by adjacent cells, in order to reduce inter-cell interference (ICI).
The proposed CE concurrently achieves long-term learning, fast
decision making, and less computational complexity. These three
CE design features are essential for the development and practical
deployment of any real-time cognitive communication system and
most of the existing AI/ML based cognitive solutions in literature
lack them. The performance of RNN based optimization frame-
work is compared with artificial neural network (ANN) and state-
of-the-art fractional power control (FPC) scheme. In six different
test-cases, simulation results have shown an improvement of
53.88%-87.53% in decision making accuracy and a decrease of
44.22% in scheduling delay as compared to ANN. In addition,
throughput gain of 16.13% and 18.62% has been achieved as
compared to ANN and FPC schemes respectively.

I. INTRODUCTION

In LTE uplink system, transmit power is one of the key and
most influential parameters, which can address the challenges
posed by channel fading, ICI, adjacent-channel interference
(ACI), and user equipment (UE) excessive transmission power.
3rd Generation Partnership Project (3GPP) defined FPC for
LTE uplink as an open loop power control (OLPC), which
relies on the assumption that interference generated towards
other cells is mostly because of cell-edge users. However,
generated interference follows a different trend which shows
that the assumption that users experiencing the lowest path-
gain generates most of the interference is not always true [1].
This suggests to adjusting the power in order to compensate
the generated interference rather than the path-gain.

In literature, ICIC and RRM schemes have been extensively
studied and researchers have proposed solutions with variation
in approaches from statistical, analytical, and classical network
optimization schemes to self-organized approaches [2][3]. If
the radio has complete or partial knowledge of operational
electromagnetic environment, user requirements, and param-
eters effecting the reliability of communication, in advance,
then providing services such as autonomous computing and
optimization could be achievable. Therefore, the framework
of cognitive or self-organizing network has been of great

appeal for ICIC and RRM requiring minimum supervision.
To make such design possible, researchers have borrowed
ideas from AI/ML techniques. In [4], the authors proposed
an interference management scheme using cognitive base
stations (CBSs) for LTE and discussed the insufficiency of
traditional interference management schemes for isolated cell
or a multi-cell LTE network. The authors argued that CBSs can
exploit their knowledge of radio-scene to intelligently allocate
resources and to mitigate prohibitive co-channel interference.
The key required feature for such intelligent system is to
have a good learning capability, i.e. the ability to learn well
and behave intelligently, which is critical to the performance
of autonomously deployed cognitive radios (CRs). Training
or exploration is the task by which a CE gets through the
process of learning a desired systems behaviour and capabil-
ities. The training speed, accurate learning, available training
samples, and computational complexity during this task are of
paramount importance to the systems operational performance
and also limiting factors for CR to achieve optimal configura-
tion settings in real-time. Researchers have made great effort
to solve the CE training problems and demonstrated that a CE
can be trained in a reasonable amount of time and effort [5].

In the process of CE exploitation (testing), if the radio does
not know any satisfactory solution to the current problem,
then it will have no other option but to explore (train) again,
which consumes time and energy. To avoid the process of
retraining during radios operation, it is necessary to put the
CE through all expected operating conditions during training
phase. However, it is practically impossible to explore all
possible conditions as a priori. Therefore, it is reasonable
to assume that a CE is going to face an unknown condition
sooner or later and may require retraining. What if in case,
the radio is operating in a critical mission? then it may not
have time to retrain again and again [5]. Consequently, the
capability of long-term learning is of great importance which
enable CEs to adapt themselves with respect to severe change
in environment.

Insufficiency of long-term learning along with the concur-
rent achievement of fast decision making and less complexity
are the major limiting factors of ANN and many other AI/ML
approaches. Researchers have proposed both supervised and
unsupervised learning algorithms for ICIC and RRM. The
authors in [6] proposed a Q-learning based aggregate inter-
ference control scheme and presented a framework which



combined reinforcement learning (RL) and ANN. However,
ANN suffers from limited generalization, slow calculation
rate at run-time, local minima, and over-fitting problems.
Support vector regression for proactive resource allocation
and stochastic-learning based gradient algorithm for adaptive
power control is presented in [7][8]. However, no testing under
CE design requirements is shown. Recently, the authors in [9]
proposed a RL based decentralized solution for joint power
control and cells association in heterogeneous networks. A
game theory based combined power and interference control
framework for LTE-downlink is presented in [10]. The ap-
proaches based on unsupervised learning schemes help CEs
to work in alien environment because of their no a priori
knowledge assumption. However, for realistic applications, the
size of state-space could be so large that learning may take a
long time and even become impossible in a reasonable amount
of time frame. As a result, the generalization over the state-
space is necessary, which is insufficient in RL. A limitation
of the game theory approach is that it requires user-specific
utility parameters, which can not always be acquired in many
situations [2].

To the best of our knowledge, limited work has been
conducted to concurrently achieve aforementioned CE design
features. RNNs inherent properties such as: (a) easy and
efficient computation (b) low complexity of standard learning
algorithm (c) energy-efficient hardware implementation (d)
less dependence on network structure (e) strong generalization
capability even with small training dataset, makes RNN a
better choice for CE design [11]. In our previous work
[12][13], we addressed some of the CE exploration and
exploitation challenges and presented the out-performance of
RNN over ANN and hierarchical RNN over traditional RNN in
terms of generalization, learning efficiency, and computational
complexity. The work in [14][15] further addressed the con-
vergence speed and local minima problems of gradient descent
(GD) based RNN by implementing adaptive inertia weight
particle swarm optimization (AIW-PSO), differential evolution
(DE), and genetic algorithm (GA) training algorithms.

The main contributions of this paper are:
1) Extended our previous research by presenting RNNs

first application to the problem of LTE uplink RRM
and ICIC. When studying the interaction of ICIC with
RRM mechanisms, very often the novelty is the modifi-
cation of one RRM functionality in terms of channel
allocation/frequency reuse pattern. Moreover, most of
the practical implemented methods fail to comply with
LTEs full frequency spectrum usage requirement. This
paper presents a novel and simple framework which
reduces ICI with zero bandwidth loss and jointly tackles
both power and MCS selection. Whereas, most of the
existing literature addressed the issues of power alloca-
tion, modulation and coding scheme (MCS) selection,
and ICIC separately. The traditional FPC method has
been replaced with a closed loop power control (CLPC)
by embedding a CE in eNodeB. This replacement aims
to schedule optimal transmit power and MCS to the

attached user equipments’ (UEs) as well as suggest
acceptable transmit power to the UEs served by neigh-
bouring cells. The user specific power adjustment has a
centralized control at the base station (BS). The mobile
station (MS) feeds back the channel quality informa-
tion (CQI) to the BS, which calculates optimal uplink
transmit power level and instructs the MS to transmit
at that level. The basic idea is to control the power to
compensate for the generated interference to the system
rather than the path-gain.

2) Evaluated the proposed CE with respect to CE design
requirements. Our proposed CR checks the feasibility
and reliability of proposed system in real-time cases,
where there can be training time constraints or where
the retraining is generally not appropriate. The CE was
trained with ANN and RNN using the dataset obtained
from the system model. The training with ANN is to
demonstrate the coped challenges taking its performance
as a reference for RNN.

3) To minimize the cost function we used GD and lev-
enberg marquardt (LM) for training. In literature, re-
searchers have mostly considered only GD as a training
algorithm for RNN and ANN comparisons.

4) The performance improvement of proposed optimization
framework with ANN and RNN has been compared with
state-of-the-art FPC scheme in terms of throughput and
ICI.

II. SYSTEM ARCHITECTURE

A. Model
In Orthogonal Frequency-Division Multiple Access

(OFDMA) systems, ICI can be considered as a collision
between resource blocks (RBs) [16]. Fig.1 illustrates such
collision model and the corresponding ICIC mechanism which
targets to reduce the ICI at colliding RBs by employing power
control strategy. The modelled system has adopted 7-cell
hexagonal layout (2 coexistent-10MHz Evolved Universal
Terrestrial Radio Access frequency division duplexing
systems) with omnidirectional antennas at the centre of each
cell, depicted in Fig.2. The RNN-CE is embedded inside
the reference cognitive-eNodeB (C-eNodeB). MCS and
Powers (P0, P1, P2, P3, P4, P5, P6) are the configuration
parameters or knobs of reference cell and adjacent eNodeB
UEs, which are discussed in detail in Subsection-C and D.
C-eNodeB is responsible for monitoring and configuring
the UE once it is attached and also the management of
radio resources. In addition, make decisions on acceptable
transmit power of UEs served by adjacent eNodeBs. UEs
are responsible for the enforcement of decisions made by
C-eNodeB and sending environmental measurements back to
C-eNodeB.

B. Modelling Assumptions and Calculations
The systems are 100% loaded with frequency reuse of 1/1.

The UEs are deployed randomly according to a uniform geo-
graphical distribution in the whole network region. Moreover,



Fig. 1. ICI caused by collision between resource blocks which are used
simultaneously by several users and corresponding scheduling based on
the experienced CQI and interference in subsequent TTI

Fig. 2. Proposed System Model

wrap around technique is employed in order to remove the
edge effects. The carrier frequencies of victim and external
coexistent systems were set to 2000 MHz and 2010 MHz with
inter-site distance of 750m. OFDMA urban macro propagation
model is used. BS and UE antennas gains were assumed to
be 15 dBi and 0 dBi. 24 RBs per BS and 3 per user were
assumed i.e. 8 UEs per cell. In addition, log-normal shadowing
variance: 10 dB with correlation; minimum coupling loss
(MCL): 70 dB; system bandwidth: 10 MHz; bandwidth of
RB: 180kHz; handover (HO) margin: 3 dB; thermal noise
density: -174dBm/Hz; BS noise figure: 5 dB; UE min and
max transmit power: -30 dBm to 24 dBm were the system
settings. The FPC settings, OFDMA LTE link-to-system level

mapping, adjacent channel leakage ratio/unwanted spectrum
mask were the same as given in Qualcomm STG(08)13 and
3GPP technical specification [17].

At the beginning of simulation (for every snapshot), UEs
were randomly distributed throughout the system area and
assigned a discrete speed value i.e. 0/3/30/100 kms./hr. The
UEs get attached to the most appropriate BS depending on
the HO margin, path-loss, antenna gain, and log-normal fading.
The connected UEs (active) were scheduled for every snapshot
and allocated a certain amount of resources according to the
quality-of-service (QoS) requirement. Every BS goes through
with all MSs on its served mobile list and try adding their
requested sub-carriers until all MSs are served or number of
available sub-carriers exceed the maximum limit. In the latter
case, the BS discards the last MS and tries connecting the
next mobile in line which may have less required number of
sub-carriers. This is equivalent to modelling a round robin
scheduler with a full buffer traffic model.

The signal-to-interference-noise ratio (SINR) and through-
put for each UE with respect to link-to-system-level mapping
is determined as follows:

C(j, k) = Pt(j, k) ∗ pathlosseffective(UEj,k, BSj) (1)

where Cj, k is the received power at jth serving C-eNodeB
from the kth UE, Pt is the transmit power of UE in dBm, and
pathlosseffective is the effective path-loss which considered
MCL as defined in [17].

The combined ICI and ACI at the victim reference cell is
calculated as follows:

I(j, k) = Iinter(j, k)+Iext(j, k)+Nt(thermal−noise) (2)

where Iinter(j, k) is the ICI coming from the UEs of adjacent
cells operating on same frequency sub-carriers and is calcu-
lated as follows:

Iinter =

NCell∑
l≡1,l 6=j

pt(l, k)∗

pathlosseffective(UEl,k, BSj)

(3)

Iext(j, k) is the ACI coming from the UEs on adjacent
channels in coexistent LTE system. ACI is the combination of
Iunwanted (unwanted emission in adjacent band) and Iblocking
(blocking effect of receiver) and is calculated as:

Iext =

NExtCell∑
m≡1

k∑
v≡1

iRSSblocking(UEm,v, BSj)∗

iRSSunwanted(UEm,v, BSj)

(4)

The bit-rate for all uplink users is collected as follows:

Bit− rate =
Nscper−UE

Ntotal−sc
(x bps

Hz
)SINR ×BWMHz (5)

where Nscper−UE
and Ntotal−sc are the number of allocated

sub-carriers to each UE and total number of sub-carriers
available at each BS. The x bps

Hz
is the spectral efficiency with

respect to calculated SNIR and BWMHz is the bandwidth.



Fig. 3. UE scheduling example

C. Scheduling framework
Once the C-eNodeB scheduler selects the UE and assign

RBs for uplink transmission, the embedded CE selects the
optimal radio parameters (MCS and powers) based on CQI
and interference on scheduled RBs in subsequent transmission
time interval (TTI), such that the target SINR is achieved. In
addition, suggest the optimal transmit powers of UEs served
by adjacent eNodeBs, operating on same scheduled RBs via
X2-interface (a communication interface between eNodeBs).
This process is depicted in Fig.3 for 7 cell hexagonal layout.

D. CE Design
The optimization framework is summarized in Fig.4, where

the data is first collected for learning which helps GA based
reasoning process to make optimised decisions. Fig.5 illus-
trates this further, where the learning entity with optimization
is integrated. The learning module observes the channel X and
estimates the performance S given radio configuration Y. The
vectors X, Y, and S are the training parameters coming from
the radio. The radio communicates with optimizer the required
objectives and current CQI. The optimizer then queries the
learning module with considered X and Y. The learning section
returns the approximate performance of considered X and Y
i.e. P(S|X, Y). Based on this report, the optimization section
decides the optimal parameters.

The information, which is available to the cognitive con-
troller, can be classified into three categories: environmen-
tal measurements (external factors affecting the reliability
of communication), configuration parameters (tuning knobs
which can be changed in an optimal way to achieve de-
sired performance), and performance metric. After the careful
observation that how different configuration parameters and
environmental measurements are effecting the system perfor-
mance, we feeded the following configuration parameters and
environmental measurements into the RNN black-box. The
justification of selecting these parameters and environmental
measurements is evident through (1-5), where a clear relation-
ship among SINR, bit-rate, transmit power of intended UE, and
transmit power of interfering UE can be seen.
• Environmental measurements (X): we have considered

SINR, ICI, and ACI as environmental measurements.
• Configuration parameters (X): considered parameters

are available channels (RBs), transmit power (P0), and
MCS of all UEs served by C-eNodeB and the transmit

Fig. 4. Optimization framework

Fig. 5. Simplified cognitive engine operation

powers (P1, P2, P3, P4, P5, P6) of all UEs served by
adjacent 6-eNodeBs.

• Performance metric (Y): expected throughput for each
C-eNodeB UE as a performance measure is considered.

The UEs configuration parameters and environmental mea-
surements as defined above are the inputs of RNN black-box
and the performance metric is the output. The UEs configu-
ration parameters and environmental measurements as defined
above are the inputs of RNN black-box and the performance
metric is the output. It is to be noted that the required
input parameters are by default available at the cognitive
eNodeB where the CE is embedded, with no extra effort
required. Moreover, the scheduling process require only one
way communication/coordination between eNodeBs, which is
from cognitive eNodeB to adjacent eNodeBs. With a feature
set X, label set Y, and n training samples T = ((x1, y1),., (xn,
yn)) ε (X x Y)n, a ML algorithm creates a mapping A: X→Y
from features to labels and predicts the labels for new samples.

III. RANDOM NEURAL NETWORK

RNN, a machine learning technique, made up of highly
interconnected processing elements called as neurons, pro-
cesses the information by their state response and learn from
examples. The main objective of the RNN model is to trans-
form the inputs into meaningful outputs, learn the input-output
relationship, and offer viable solutions to unseen problems
(a generalization capability). RNNs were first developed by
Gelenbe [18] as a new modified class of ANNs, representing
the transmission of signals in a very similar form to biological
neural networks, but offers more benefits and cope the limita-
tions of ANNs. In RNN, the neuron exchanges the signal in
the form of spikes. The potential (k) of each neuron represents
its state that increases/decreases with respect to an incoming
signal. A neuron u can receive positive/negative exogenous
signals, modelled as Poisson arrival streams of rates Λu and
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λu respectively. If a neuron receives an excitatory signal (+1),
its potential increases and correspondingly decreases upon
receiving inhibitory signal (-1). When the potential of neuron
is equal to zero (ki = 0), it is in idle state and when (ki > 0),
the neuron is excited. In the state of excitation, the neuron fires
an excitatory spike that goes from neuron u to v. In that case,
the potential of neuron u decreases by one, whereas potential
of neuon v increases by one. When neuron fires inhibitory
spike, the potential of both neuron decreases by one. The firing
is according to the Poisson process represented by the synaptic
weights w+

ij = rP+
ij and w−ij = rP−ij , where P+

ij and P−ij are
the probabilities of excitatory and inhibitory signals and r is
the spikes firing rate. The w+

ij and w−ij can be seen as the
positive and negative rates of signal transmissions and these
are the typical interconnections weights of a neural network
that RNN learns through the process of learning or training.

The average rate of +ive signals at neuron i (λ+
i ), average

rate of -ive signals at neuron i (λ−
i ), and the probability that

neuron i is excited (qi), are calculated using the following
equations:

λ+
i = Λi +

n∑
j=1

qjw
+
ij (6)

λ−
i = λi +

n∑
j=1

qjw
−
ij (7)

qi =
λ+
i

ri + λ−
i

(8)

1) Network Behaviour in Steady State: if 0≤qi≤1 for
i=1,2,3...,n then the stationary joint probability of network
p(k, t) = pr = [k(t) = k] can be written as:

p(k) = Πn
i=1(1 − qi)q

k
i (9)

2) Network Stability: The network is stable, if the signal
potential increases with bounds. Stability can be guaranteed
if a unique solution to non-linear equations (6-8) exists. The
existence of solution implies its uniqueness because for any
neuron i, it is not possible to have two different qs. Moreover,
in feed-forward RNN, the solution always exists since q for
every neuron is computed from the values of neurons on
preceding layer [11].

3) RNN Training: The goal of training is to learn desired
system behaviour and adjust the network parameters (intercon-
nections weights) to map (learn) the input-output relationship
and minimize the mean square error (MSE). The standard GD
training algorithm was proposed in [19] which has been used
in this paper. In [14][15], we also implemented AIW-PSO,
DE and GA based learning algorithms. However, in general,
there is a trade-off among learning accuracy, convergence time,
calculation time, and computational complexity. Further in-
depth details and procedure for GD, AIW-PSO, DE, and GA
learning algorithms is presented in [14][15].

TABLE I
ANN VS. RNN TRAINING PERFORMANCE

Methods Achieved
MSE

Average
time/iter
(s)

Total
training
time (s)

Number
of itera-
tions

ANN-
GD

2.88 E-03 0.00581 33 10000

ANN-
LM

1.37 E-06 0.0411 57 313

RNN-
GD

6.9 E-04 4.62 566 121

IV. PERFORMANCE EVALUATION

A. Simulation Assumptions
The simulations have been performed using SEAMCAT-

LTE simulator [20], Eclipse, and Matlab. SEAMCAT was used
to accurately model the CR environment of our complex cogni-
tive radio network and to build the dataset for training. Eclipse
was used as a Java editor in order to extract the required
parameters from the modelled scenario for post processing.
The trace file was obtained by running the system model using
SEAMCAT online available source code. However, we further
developed the obtained source code for post processing and
added some new classes and functions. The trace file consists
the required configuration parameters, environmental measure-
ments, and performance metric statistics for specified number
of instances. Matlab was used for training and validation of
neural networks. Learning rate for GD and LM was set to
0.01 and 0.001. More RNN simulation settings are the same
as given in [21]. The network was trained/validated with the
dataset of 4000 samples. A subset of dataset was used to train
the neural network (NN) and rest of the data was used to
compare the prediction performance of trained NN in face of
new environment condition (only for Test-Case I), which is
elaborated further in CE testing subsection.

B. CEs Training
As described in Section II that the proposed CE consists

two processes. One, the learning process and second, the
process of reasoning. The learning process is the core of
decision making process; therefore, its role is critical and
the quality of decision making is completely dependent on
the learning quality. The performance of learning process was
evaluated using MSE, which represents how well the CE has
learnt the system behaviour. Once, the system behaviour is
learnt, the CE characterizes the achievable performance of
possible actions i.e., the configuration parameters with respect
to current situation, and then selects the most appropriate
configuration parameters. The main aim of CE training is to
achieve the least possible MSE in less training time.

In training, different number of neurons, hidden layers and
epochs were tried. The best performed RNN/ANN structures
were 1 hidden layer with 11 neurons and 1 hidden layer with
20 neurons. The training performance is illustrated in Table-I
where the least MSE achieved by ANN-GD is 2.88 E-03 in
10K iterations (33 sec), ANN-LM achieved 1.37 E-06 in 313
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TABLE II
ANN VS. RNN TESTING PERFORMANCE

Test-Cases Scenario Configurations MSE
ANN-GD ANN-LM RNN-GD

I Macro-OFDMA Urban propagation
channel

Same as used for training 2.67E-03 1.31E-06 6.2E-04

II Macro-OFDMA Urban propagation
channel

Change in active no. of UEs 1.79E-02 1.52E-02 7.01E-03

III Macro-OFDMA Suburban propaga-
tion channel

Change in propagation channel from Urban to
Suburban (Macro OFDMA)

1.5E-02 1.7E-02 2.15E-03

IV Macro-OFDMA Rural propagation
channel

Change in propagation channel from Urban to
Rural (Macro OFDMA)

1.8E-02 2.1E-02 2.01E-03

V Extended Hata Urban propagation
channel

Change in propagation channel from Urban to
Extended Hata

1.4E-01 1.08E-01 2.1E-02

VI Macro-OFDMA Urban propagation
channel

Same as system model but with fixed training
time of 2 sec

1.34E-01 1.28E-01 1.60E-02

iterations (57 sec), and RNN-GD achieved the MSE of 6.9
E-04 in 121 iterations (566 sec). The training performance of
ANN in terms of accuracy and training time was better than
RNN-GD but ANN could only perform well for the trained
cases, which is discussed in the following Subsection.

C. CEs Testing under CE Design Requirements
1) Long-Term Learning: The CEs were assumed to be

working on a critical mission, where they do not have a
privilege of retraining upon extreme propagation environment
change. For such cases, long-term learning capability is essen-
tial which enables radio to adapt optimal radio parameters in
a completely unknown scenario. To investigate the long-term
learning, the CEs were tested in different wireless environ-
ments for which they were not trained. Table-II illustrates six
testing conditions along with the decision making accuracy of
CEs. The testing conditions varied in urban, suburban, and
rural propagation channels with different assumptions such
as indoor, outdoor transmitter-receiver location, wall losses,
losses between adjacent floors of the building, empirical
parameters etc. Moreover, voice traffic variations with the
assumption of training time constraints were also considered.
Variation in electromagnetic environment affected the whole
system in terms of average system throughput loss, average
system SINR, internal/external interferences etc., which ex-
amined the decision making ability of the engines. In Test-
Case I, ANN-LM outperformed RNN-GD mainly because
of the testing in trained scenario. In all other test cases, as
the electromagnetic environment changed, subsequently the
performance of ANN started decreasing. In contrast, RNN-
GD with its long-term learning remained 53.88% - 87.53%
accurate in making optimal and reliable decisions. A summary
of all test cases is depicted in Fig.6, where the out-performance
of RNN based CE is evident.

2) Decision Making Speed at Run-Time: In real-time
CE applications, fast decision making means that CE can
respond quickly upon severe wireless environment change.
As a core optimization algorithm, we not only require the
decision accuracy but also the response speed. In training
phase, the performance of ANN was found to be faster but
during run-time the RNN-GD outperformed ANN-LM/GD

Fig. 6. CEs testing in six different Test-Cases for the investigation of
long-term learning capability

Fig. 7. LTE uplink end-to-end scheduling delay comparison

in total calculation time (decision making speed). This is
mainly because of RNNs 3-level architecture in which the
computation of output during run-time is extremely fast. As
its non-linear system equations computes the output values of
input neurons directly from its input and similarly for hidden
neurons output. For more details with mathematical proofs,
see [18][19][11]. The decision making speed was tested by
embedding ANN/RNN based controller within eNodeB, re-
placing the traditional LTE optimization algorithms for UEs
parameters settings. The decision making delays are illustrated
in Fig.7, where RNN based CE outperformed SEAMCAT and
ANN.

D. Performance Gain

In Fig. 8, 9, and 10, we show the performance gain of
proposed approach as compared to ANN and FPC methods.
Fig. 8 and Fig. 9 are showing the CDF of UEs throughput
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Fig. 8. User throughput (reference cell)

Fig. 9. User throughput (system)

Fig. 10. Instantaneous ICI (normalized)

in reference cell and over the entire system respectively.
Similarly, Fig. 10 depicts the instantaneous received ICI at
reference cell. Clearly, the RNN based optimization framework
has outperformed both FPC and ANN. Therefore, it is evident
that for proposed optimization framework, RNN is the optimal
choice.

V. CONCLUSION

In this article, we presented an RNN based cognitive eN-
odeB for RRM and ICIC. The focus of this work was mainly to
enhance the learning capability of designed CE and analyse its
performance taking into account the CE design requirements.
Going beyond the discussion, we envision advanced AI/ML
techniques such as RNN being implemented in hardware and
real CR systems. The proposed RNN based CE achieved the
essential CE design features, which other AI/ML approaches
could not. We believe that inherent RNN properties ideally
place it as a powerful tool for CR. There are further AI/ML

techniques we have not considered and more advanced ver-
sions of the RNN, both in structure of the neural network and
also training algorithms. We believe the use of these methods
applied to complex CR problems are one of the best tools.
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