441 research outputs found

    Retournement temporel : application aux réseaux mobiles

    Get PDF
    This thesis studies the time reversal technique to improve the energy efficiency of future mobile networks and reduce the cost of future mobile devices. Time reversal technique consists in using the time inverse of the propagation channel impulse response (between a transceiver and a receiver) as a prefilter. Such pre-filtered signal is received with a stronger power (this is spatial focusing) and with a strong main echo, relatively to secondary echoes (this is time compression). During a previous learning phase, the transceiver estimates the channel by measuring the pilot signal emitted by the receiver. Space-time focusing is obtained only at the condition that the propagation remains identical between the learning phase and the data transmission phase: this is the ‘channel reciprocity’ condition. Numerous works show that spatial focusing allows for the reduction of the required transmit power for a given target received power, on the one hand, and that time compression allow for the reduction of the required complexity at the receiver side to handle multiple echoes, on the other hand. However, studies on complexity reduction are limited to ultra wideband. Some works of this thesis (based on simulations and experimental measurements) show that, for bands which are more typical for future networks (a carrier frequency of 1GHz and a spectrum of 30 MHz to 100 MHz), thanks to time reversal, a simple receiver and a mono-carrier signal are sufficient to reach high data rates. Moreover, the channel reciprocity condition is not verified in two scenarios which are typical from mobile networks. Firstly, in most European mobile networks, the frequency division duplex mode is used. This mode implies that the transceiver and the receiver communicate on distinct carriers, and therefore through different propagation channels. Secondly, when considering a receiver on a moving connected vehicle, the transceiver and the receiver communicate one with each other at distinct instants, corresponding to distinct positions of the vehicles, and therefore through different propagation channels. Some works of this thesis propose solutions to obtain space-time focusing for these two scenarios. Finally, some works of this thesis explore the combination of time reversal with other recent signal processing techniques (spatial modulation, on the one hand, a new multi-carrier waveform, on the other hand), or new deployment scenarios (millimeter waves and large antenna arrays to interconnect the nodes of an ultra dense network) or new applications (guidance and navigation) which can be envisaged for future mobile networks.Cette thèse étudie la technique dite de ‘Retournement Temporel’ afin d’améliorer l’efficacité énergétique des futurs réseaux mobiles d’une part, et réduire le coût des futurs terminaux mobiles, d’autre part. Le retournement temporel consiste à utiliser l’inverse temporel de la réponse impulsionnelle du canal de propagation entre un émetteur et un récepteur pour préfiltrer l’émission d’un signal de données. Avantageusement, le signal ainsi préfiltré est reçu avec une puissance renforcée (c’est la focalisation spatiale) et un écho principal qui est renforcé par rapport aux échos secondaires (c’est la compression temporelle). Lors d’une étape préalable d’apprentissage, l’émetteur estime le canal en mesurant un signal pilote provenant du récepteur. La focalisation spatiotemporelle n’est obtenue qu’à condition que la propagation demeure identique entre la phase d’apprentissage et la phase de transmission de données : c’est la condition de ‘réciprocité du canal’. De nombreux travaux montrent que la focalisation spatiale permet de réduire la puissance émise nécessaire pour atteindre une puissance cible au récepteur d’une part, et que la compression temporelle permet de réduire la complexité du récepteur nécessaire pour gérer l’effet des échos multiples, d’autre part. Cependant, les études sur la réduction de la complexité du récepteur se limitent à l’ultra large bande. Des travaux de cette thèse (basés sur des simulations et des mesures expérimentales) montrent que pour des bandes de fréquences plus typiques des futurs réseaux mobiles (fréquence porteuse à 1GHz et spectre de 30 MHz à 100 MHz), grâce au retournement temporel, un récepteur simple et un signal monoporteuse suffisent pour atteindre de hauts débits. En outre, la condition de réciprocité du canal n’est pas vérifiée dans deux scénarios typiques des réseaux mobiles. Tout d’abord, dans la plupart des réseaux mobiles européens, le mode de duplex en fréquence est utilisé. Ce mode implique que l’émetteur et le récepteur communiquent l’un avec l’autre sur des fréquences porteuses distinctes, et donc à travers des canaux de propagations différents. De plus, lorsqu’on considère un récepteur sur un véhicule connecté en mouvement, l’émetteur et le récepteur communiquent l’un avec l’autre à des instants distincts, correspondants à des positions distinctes du véhicule, et donc à travers des canaux de propagations différents. Des travaux de cette thèse proposent des solutions pour obtenir la focalisation spatio-temporelle dans ces deux scenarios. Enfin, des travaux de la thèse explorent la combinaison du retournement temporel avec d’autres techniques de traitement de signal récentes (la modulation spatiale, d’une part, et une nouvelle forme d’onde multiporteuse, d’autre part), ou des scenarios de déploiement nouveaux (ondes millimétriques et très grands réseaux d’antennes pour inter-connecter les noeuds d’un réseau ultra dense) ou de nouvelles applications (guidage et navigation) envisageables pour les futurs réseaux mobiles

    Simulation of WLAN Based V2X Signal Models Using Deterministic Channel

    Get PDF
    Vehicle to everything (V2X) communication is one of the important topics in the telecommunication field aiming to provide a great improvement in the transport sector by increasing safety and comfort while driving as well as reducing traffic congestion and as a result there are a lot of researches , developments and investments made in this field. This thesis presents the use of Unity 3D game engine program for the creation of a deterministic channel model through which we can analyse and study the performance of the WLAN based signal models that are used in the vehicle to everything (V2X) technology.AN open source V2X simulator was used for the process of channel creation and performance assessment making use of its real time stochastic measurements .Two different methods were used to assess the performance of both the IEEE 802.11p and 802.11bd signal models with different calculations but eventually the latter proved to be the superior since it is considered the most advanced and latest version of the IEEE 802.11 family

    A Review on PAPR Reduction in Perspective of BER Performance in MIMO-OFDM Based Next Generation Wireless Systems.

    Get PDF
    Today, high speed and trustworthy wireless communication over mobile is the requirement of society. As the mobile applications and the users are rapidly increasing, it is obligatory to have more reliable, high speed wireless network with high throughput, which will combat the disadvantages in existing system in this multiuser environment. In wireless system the received signal may be corrupted due to noise and interferences such as ‘inter symbol interference’ and ‘inter carrier interference’ when subjected to multi-path fading. Also the performance the system may be affected due to poor ‘bit error rate’ and high ‘peak to average power ratio’ value, which further affect the signal power and spectral efficiency of transmitted signal. The blend of ‘orthogonal frequency division multiplexing’ and ‘multi input multi output’ antenna system referred as MIMO-OFDM system, which offers the improvement in quality of service and higher throughput to satisfy the tomorrow’s need. This review article mainly focuses on various technologies adopted by different researchers for enhancing the ‘bit error rates’, ‘peak to average power ratio’, ‘signal to noise ratio’ and ‘spectral efficiency’ performances in wireless systems. We continue by highlighting the limitations and comparing results of conventional methods, schemes and algorithms proposed by different researchers.  We also focus on the multiple antenna system (MIMO), which is designed for future multiuser environment to enhance the capacity or to have high throughput along with good quality services
    • …
    corecore