1,671 research outputs found

    Effects of noise suppression and envelope dynamic range compression on the intelligibility of vocoded sentences for a tonal language

    Get PDF
    Vocoder simulation studies have suggested that the carrier signal type employed affects the intelligibility of vocoded speech. The present work further assessed how carrier signal type interacts with additional signal processing, namely, single-channel noise suppression and envelope dynamic range compression, in determining the intelligibility of vocoder simulations. In Experiment 1, Mandarin sentences that had been corrupted by speech spectrum-shaped noise (SSN) or two-talker babble (2TB) were processed by one of four single-channel noise-suppression algorithms before undergoing tone-vocoded (TV) or noise-vocoded (NV) processing. In Experiment 2, dynamic ranges of multiband envelope waveforms were compressed by scaling of the mean-removed envelope waveforms with a compression factor before undergoing TV or NV processing. TV Mandarin sentences yielded higher intelligibility scores with normal-hearing (NH) listeners than did noise-vocoded sentences. The intelligibility advantage of noise-suppressed vocoded speech depended on the masker type (SSN vs 2TB). NV speech was more negatively influenced by envelope dynamic range compression than was TV speech. These findings suggest that an interactional effect exists between the carrier signal type employed in the vocoding process and envelope distortion caused by signal processing

    Evaluation of the Importance of Time-Frequency Contributions to Speech Intelligibility in Noise

    Get PDF
    Recent studies on binary masking techniques make the assumption that each time-frequency (T-F) unit contributes an equal amount to the overall intelligibility of speech. The present study demonstrated that the importance of each T-F unit to speech intelligibility varies in accordance with speech content. Specifically, T-F units are categorized into two classes, speech-present T-F units and speech-absent T-F units. Results indicate that the importance of each speech-present T-F unit to speech intelligibility is highly related to the loudness of its target component, while the importance of each speech-absent T-F unit varies according to the loudness of its masker component. Two types of mask errors are also considered, which include miss and false alarm errors. Consistent with previous work, false alarm errors are shown to be more harmful to speech intelligibility than miss errors when the mixture signal-to-noise ratio (SNR) is below 0 dB. However, the relative importance between the two types of error is conditioned on the SNR level of the input speech signal. Based on these observations, a mask-based objective measure, the loudness weighted hit-false, is proposed for predicting speech intelligibility. The proposed objective measure shows significantly higher correlation with intelligibility compared to two existing mask-based objective measures

    Experimental Study of Generalized Subspace Filters for the Cocktail Party Situation

    Get PDF

    Evaluation of the sparse coding shrinkage noise reduction algorithm for the hearing impaired

    No full text
    Although there are numerous single-channel noise reduction strategies to improve speech perception in a noisy environment, most of them can only improve speech quality but not improve speech intelligibility for normal hearing (NH) or hearing impaired (HI) listeners. Exceptions that can improve speech intelligibility currently are only those that require a priori statistics of speech or noise. Most of the noise reduction algorithms in hearing aids are adopted directly from the algorithms for NH listeners without taking into account of the hearing loss factors within HI listeners. HI listeners suffer more in speech intelligibility than NH listeners in the same noisy environment. Further study of monaural noise reduction algorithms for HI listeners is required.The motivation is to adapt a model-based approach in contrast to the conventional Wiener filtering approach. The model-based algorithm called sparse coding shrinkage (SCS) was proposed to extract key speech information from noisy speech. The SCS algorithm was evaluated by comparison with another state-of-the-art Wiener filtering approach through speech intelligibility and quality tests using 9 NH and 9 HI listeners. The SCS algorithm matched the performance of the Wiener filtering algorithm in speech intelligibility and speech quality. Both algorithms showed some intelligibility improvements for HI listeners but not at all for NH listeners. The algorithms improved speech quality for both HI and NH listeners.Additionally, a physiologically-inspired hearing loss simulation (HLS) model was developed to characterize hearing loss factors and simulate hearing loss consequences. A methodology was proposed to evaluate signal processing strategies for HI listeners with the proposed HLS model and NH subjects. The corresponding experiment was performed by asking NH subjects to listen to unprocessed/enhanced speech with the HLS model. Some of the effects of the algorithms seen in HI listeners are reproduced, at least qualitatively, by using the HLS model with NH listeners.Conclusions: The model-based algorithm SCS is promising for improving performance in stationary noise although no clear difference was seen in the performance of SCS and a competitive Wiener filtering algorithm. Fluctuating noise is more difficult to reduce compared to stationary noise. Noise reduction algorithms may perform better at higher input signal-to-noise ratios (SNRs) where HI listeners can get benefit but where NH listeners already reach ceiling performance. The proposed HLS model can save time and cost when evaluating noise reduction algorithms for HI listeners

    Objective Assessment of Machine Learning Algorithms for Speech Enhancement in Hearing Aids

    Get PDF
    Speech enhancement in assistive hearing devices has been an area of research for many decades. Noise reduction is particularly challenging because of the wide variety of noise sources and the non-stationarity of speech and noise. Digital signal processing (DSP) algorithms deployed in modern hearing aids for noise reduction rely on certain assumptions on the statistical properties of undesired signals. This could be disadvantageous in accurate estimation of different noise types, which subsequently leads to suboptimal noise reduction. In this research, a relatively unexplored technique based on deep learning, i.e. Recurrent Neural Network (RNN), is used to perform noise reduction and dereverberation for assisting hearing-impaired listeners. For noise reduction, the performance of the deep learning model was evaluated objectively and compared with that of open Master Hearing Aid (openMHA), a conventional signal processing based framework, and a Deep Neural Network (DNN) based model. It was found that the RNN model can suppress noise and improve speech understanding better than the conventional hearing aid noise reduction algorithm and the DNN model. The same RNN model was shown to reduce reverberation components with proper training. A real-time implementation of the deep learning model is also discussed

    A New Speech Enhancment algorithm in Hearing Aid based on Wavelet Transform

    Get PDF
    Voice Enhancement systems are used to remove background inference in a speech signal and are become an main component of modern hearing aid. In everyday life the speech communication is vivid uses for the hearing impaired and the numerous other applications. Speech is the fundamental means of human communication. After over thirty years of research enhancement algorithm. Which offer superior noise reduction over current methods? All speech enhancements suffer from distortion for the residual noise due to imperfect noise removal. It is always require to perform denoising in voice processing system operating in highly noise because of wavelet transform is one of the popular techniques used in signal enhancement, In the present paper wavelet thresholding and wavelet packet thresholding method have been used to decrease the noise from the voice signal. A simple threshold method is presented to compute the optimum threshold value. Mean square error(MSE) at different values of SNR is computed to method like traditional speech subtraction, wiener filtering method, spectral subtraction with MMSE etc.The result obtained is compared with the other voice enhancement algorithm given in various reference papers. In comparison to other traditional methods we get improved result in terms of SNR and MSE.Simulation done in MATLAB platform

    Modifying the normalized covariance metric measure to account for nonlinear distortions introduced by noise-reduction algorithms

    Get PDF
    In this study, two methods are proposed to modify the normalized covariance metric (NCM) measure to reduce the effects of gain-induced nonlinear distortions introduced by most noise-suppression algorithms. Considering that the gain-induced distortions behave differently dependent on the signal-to-noise ratio between the noise-reduced speech and the noise, the first approach introduces a penalty factor involving this ratio in the modified NCM measure. The second approach deemphasizes segments marked with amplification distortions that contribute less to intelligibility via adaptive thresholding. Significantly higher correlations with intelligibility scores were obtained from the modified NCM measures compared with the original NCM measures.published_or_final_versio
    • …
    corecore