57 research outputs found

    Reasoning about modular datatypes with Mendler induction

    Full text link
    In functional programming, datatypes a la carte provide a convenient modular representation of recursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to implement this technique in proof assistants that are based on type theory, like Coq. The reason is that it involves type definitions, such as those of type-level fixpoint operators, that are not strictly positive. The known work-around of impredicative encodings is problematic, insofar as it impedes conventional inductive reasoning. Weak induction principles can be used instead, but they considerably complicate proofs. This paper proposes a novel and simpler technique to reason inductively about impredicative encodings, based on Mendler-style induction. This technique involves dispensing with dependent induction, ensuring that datatypes can be lifted to predicates and relying on relational formulations. A case study on proving subject reduction for structural operational semantics illustrates that the approach enables modular proofs, and that these proofs are essentially similar to conventional ones.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Applied Type System: An Approach to Practical Programming with Theorem-Proving

    Full text link
    The framework Pure Type System (PTS) offers a simple and general approach to designing and formalizing type systems. However, in the presence of dependent types, there often exist certain acute problems that make it difficult for PTS to directly accommodate many common realistic programming features such as general recursion, recursive types, effects (e.g., exceptions, references, input/output), etc. In this paper, Applied Type System (ATS) is presented as a framework for designing and formalizing type systems in support of practical programming with advanced types (including dependent types). In particular, it is demonstrated that ATS can readily accommodate a paradigm referred to as programming with theorem-proving (PwTP) in which programs and proofs are constructed in a syntactically intertwined manner, yielding a practical approach to internalizing constraint-solving needed during type-checking. The key salient feature of ATS lies in a complete separation between statics, where types are formed and reasoned about, and dynamics, where programs are constructed and evaluated. With this separation, it is no longer possible for a program to occur in a type as is otherwise allowed in PTS. The paper contains not only a formal development of ATS but also some examples taken from ats-lang.org, a programming language with a type system rooted in ATS, in support of employing ATS as a framework to formulate advanced type systems for practical programming

    Foundational, compositional (co)datatypes for higher-order logic: category theory applied to theorem proving

    Get PDF
    Interactive theorem provers based on higher-order logic (HOL) traditionally follow the definitional approach, reducing high-level specifications to logical primitives. This also applies to the support for datatype definitions. However, the internal datatype construction used in HOL4, HOL Light, and Isabelle/HOL is fundamentally noncompositional, limiting its efficiency and flexibility, and it does not cater for codatatypes. We present a fully modular framework for constructing (co)datatypes in HOL, with support for mixed mutual and nested (co)recursion. Mixed (co)recursion enables type definitions involving both datatypes and codatatypes, such as the type of finitely branching trees of possibly infinite depth. Our framework draws heavily from category theory. The key notion is that of a bounded natural functor—an enriched type constructor satisfying specific properties preserved by interesting categorical operations. Our ideas are implemented as a definitional package in Isabelle, addressing a frequent request from users

    A principled approach to programming with nested types in Haskell

    Get PDF
    Initial algebra semantics is one of the cornerstones of the theory of modern functional programming languages. For each inductive data type, it provides a Church encoding for that type, a build combinator which constructs data of that type, a fold combinator which encapsulates structured recursion over data of that type, and a fold/build rule which optimises modular programs by eliminating from them data constructed using the buildcombinator, and immediately consumed using the foldcombinator, for that type. It has long been thought that initial algebra semantics is not expressive enough to provide a similar foundation for programming with nested types in Haskell. Specifically, the standard folds derived from initial algebra semantics have been considered too weak to capture commonly occurring patterns of recursion over data of nested types in Haskell, and no build combinators or fold/build rules have until now been defined for nested types. This paper shows that standard folds are, in fact, sufficiently expressive for programming with nested types in Haskell. It also defines buildcombinators and fold/build fusion rules for nested types. It thus shows how initial algebra semantics provides a principled, expressive, and elegant foundation for programming with nested types in Haskell

    Foundational, compositional (co)datatypes for higher-order logic: category theory applied to theorem proving

    Get PDF
    Interactive theorem provers based on higher-order logic (HOL) traditionally follow the definitional approach, reducing high-level specifications to logical primitives. This also applies to the support for datatype definitions. However, the internal datatype construction used in HOL4, HOL Light, and Isabelle/HOL is fundamentally noncompositional, limiting its efficiency and flexibility, and it does not cater for codatatypes. We present a fully modular framework for constructing (co)datatypes in HOL, with support for mixed mutual and nested (co)recursion. Mixed (co)recursion enables type definitions involving both datatypes and codatatypes, such as the type of finitely branching trees of possibly infinite depth. Our framework draws heavily from category theory. The key notion is that of a bounded natural functor—an enriched type constructor satisfying specific properties preserved by interesting categorical operations. Our ideas are implemented as a definitional package in Isabelle, addressing a frequent request from users

    Data Types as Quotients of Polynomial Functors

    Get PDF
    A broad class of data types, including arbitrary nestings of inductive types, coinductive types, and quotients, can be represented as quotients of polynomial functors. This provides perspicuous ways of constructing them and reasoning about them in an interactive theorem prover

    Bindings as bounded natural functors

    Get PDF
    We present a general framework for specifying and reasoning about syntax with bindings. Abstract binder types are modeled using a universe of functors on sets, subject to a number of operations that can be used to construct complex binding patterns and binding-aware datatypes, including non-well-founded and infinitely branching types, in a modular fashion. Despite not committing to any syntactic format, the framework is “concrete” enough to provide definitions of the fundamental operators on terms (free variables, alpha-equivalence, and capture-avoiding substitution) and reasoning and definition principles. This work is compatible with classical higher-order logic and has been formalized in the proof assistant Isabelle/HOL

    Haskell Programming with Nested Types: A Principled Approach

    Get PDF
    Initial algebra semantics is one of the cornerstones of the theory of modern functional programming languages. For each inductive data type, it provides a Church encoding for that type, a build combinator which constructs data of that type, a fold combinator which encapsulates structured recursion over data of that type, and a fold/build rule which optimises modular programs by eliminating from them data constructed using the build combinator, and immediately consumed using the fold combinator, for that type. It has long been thought that initial algebra semantics is not expressive enough to provide a similar foundation for programming with nested types in Haskell. Specifically, the standard folds derived from initial algebra semantics have been considered too weak to capture commonly occurring patterns of recursion over data of nested types in Haskell, and no build combinators or fold/build rules have until now been defined for nested types. This paper shows that standard folds are, in fact, sufficiently expressive for programming with nested types in Haskell. It also defines build combinators and fold/build fusion rules for nested types. It thus shows how initial algebra semantics provides a principled, expressive, and elegant foundation for programming with nested types in Haskell

    Bindings as bounded natural functors

    Get PDF
    We present a general framework for specifying and reasoning about syntax with bindings. Abstract binder types are modeled using a universe of functors on sets, subject to a number of operations that can be used to construct complex binding patterns and binding-aware datatypes, including non-well-founded and infinitely branching types, in a modular fashion. Despite not committing to any syntactic format, the framework is “concrete” enough to provide definitions of the fundamental operators on terms (free variables, alpha-equivalence, and capture-avoiding substitution) and reasoning and definition principles. This work is compatible with classical higher-order logic and has been formalized in the proof assistant Isabelle/HOL
    corecore