320 research outputs found

    Continuous-time Algorithms and Analog Integrated Circuits for Solving Partial Differential Equations

    Get PDF
    Analog computing (AC) was the predominant form of computing up to the end of World War II. The invention of digital computers (DCs) followed by developments in transistors and thereafter integrated circuits (IC), has led to exponential growth in DCs over the last few decades, making ACs a largely forgotten concept. However, as described by the impending slow-down of Moore’s law, the performance of DCs is no longer improving exponentially, as DCs are approaching clock speed, power dissipation, and transistor density limits. This research explores the possibility of employing AC concepts, albeit using modern IC technologies at radio frequency (RF) bandwidths, to obtain additional performance from existing IC platforms. Combining analog circuits with modern digital processors to perform arithmetic operations would make the computation potentially faster and more energy-efficient. Two AC techniques are explored for computing the approximate solutions of linear and nonlinear partial differential equations (PDEs), and they were verified by designing ACs for solving Maxwell\u27s and wave equations. The designs were simulated in Cadence Spectre for different boundary conditions. The accuracies of the ACs were compared with finite-deference time-domain (FDTD) reference techniques. The objective of this dissertation is to design software-defined ACs with complementary digital logic to perform approximate computations at speeds that are several orders of magnitude greater than competing methods. ACs trade accuracy of the computation for reduced power and increased throughput. Recent examples of ACs are accurate but have less than 25 kHz of analog bandwidth (Fcompute) for continuous-time (CT) operations. In this dissertation, a special-purpose AC, which has Fcompute = 30 MHz (an equivalent update rate of 625 MHz) at a power consumption of 200 mW, is presented. The proposed AC employes 180 nm CMOS technology and evaluates the approximate CT solution of the 1-D wave equation in space and time. The AC is 100x, 26x, 2.8x faster when compared to the MATLAB- and C-based FDTD solvers running on a computer, and systolic digital implementation of FDTD on a Xilinx RF-SoC ZCU1275 at 900 mW (x15 improvement in power-normalized performance compared to RF-SoC), respectively

    Improved Human Face Recognition by Introducing a New Cnn Arrangement and Hierarchical Method

    Get PDF
    Human face recognition has become one of the most attractive topics in the fields ‎of biometrics due to its wide applications. The face is a part of the body that carries ‎the most information regarding identification in human interactions. Features such ‎as the composition of facial components, skin tone, face\u27s central axis, distances ‎between eyes, and many more, alongside the other biometrics, are used ‎unconsciously by the brain to distinguish a person. Indeed, analyzing the facial ‎features could be the first method humans use to identify a person in their lives. ‎As one of the main biometric measures, human face recognition has been utilized in ‎various commercial applications over the past two decades. From banking to smart ‎advertisement and from border security to mobile applications. These are a few ‎examples that show us how far these methods have come. We can confidently say ‎that the techniques for face recognition have reached an acceptable level of ‎accuracy to be implemented in some real-life applications. However, there are other ‎applications that could benefit from improvement. Given the increasing demand ‎for the topic and the fact that nowadays, we have almost all the infrastructure that ‎we might need for our application, make face recognition an appealing topic. ‎ When we are evaluating the quality of a face recognition method, there are some ‎benchmarks that we should consider: accuracy, speed, and complexity are the main ‎parameters. Of course, we can measure other aspects of the algorithm, such as size, ‎precision, cost, etc. But eventually, every one of those parameters will contribute to ‎improving one or some of these three concepts of the method. Then again, although ‎we can see a significant level of accuracy in existing algorithms, there is still much ‎room for improvement in speed and complexity. In addition, the accuracy of the ‎mentioned methods highly depends on the properties of the face images. In other ‎words, uncontrolled situations and variables like head pose, occlusion, lighting, ‎image noise, etc., can affect the results dramatically. ‎ Human face recognition systems are used in either identification or verification. In ‎verification, the system\u27s main goal is to check if an input belongs to a pre-determined tag or a person\u27s ID. ‎Almost every face recognition system consists of four major steps. These steps are ‎pre-processing, face detection, feature extraction, and classification. Improvement ‎in each of these steps will lead to the overall enhancement of the system. In this ‎work, the main objective is to propose new, improved and enhanced methods in ‎each of those mentioned steps, evaluate the results by comparing them with other ‎existing techniques and investigate the outcome of the proposed system.

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Air Force Institute of Technology Contributions to Air Force Research and Development, Calendar Year 1987

    Get PDF
    From the introduction:The primary mission of the Air Force Institute of Technology (AFIT) is education, but research and consulting are essential integral elements in the process. This report highlights AFIT\u27s contributions to Air Force research and development activities [in 1987]

    Space Communications: Theory and Applications. Volume 3: Information Processing and Advanced Techniques. A Bibliography, 1958 - 1963

    Get PDF
    Annotated bibliography on information processing and advanced communication techniques - theory and applications of space communication

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Aeronautical engineering: A continuing bibliography with indexes (supplement 246)

    Get PDF
    This bibliography lists 690 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Temperature aware power optimization for multicore floating-point units

    Full text link
    • …
    corecore