39 research outputs found

    Techno-economical Analysis of Indoor Enterprise Solutions

    Get PDF

    Traffic and mobility management in large-scale networks of small cells

    Get PDF
    The growth in user demand for higher mobile data rates is driving Mobile Network Operators (MNOs) and network infrastructure vendors towards the adoption of innovative solutions in areas that span from physical layer techniques (e.g., carrier aggregation, massive MIMO, etc.) to the Radio Access Network and the Evolved Packet Core, amongst other. In terms of network capacity, out of a millionfold increase since 1957, the use of wider spectrum (25x increase), the division of spectrum into smaller resources (5x), and the introduction of advanced modulation and coding schemes (5x) have played a less significant role than the improvements in system capacity due to cell size reduction (1600x). This justifies the academic and industrial interest in short-range, low-power cellular base stations, such as small cells. The shift from traditional macrocell-based deployments towards heterogeneous cellular networks raises the need for new architectural and procedural frameworks capable of providing a seamless integration of massive deployments of small cells into the existing cellular network infrastructure. This is particularly challenging for large-scale, all-wireless networks of small cells (NoS), where connectivity amongst base stations is provided via a wireless multi-hop backhaul. Networks of small cells are a cost-effective solution for improving network coverage and capacity in high user-density scenarios, such as transportation hubs, sports venues, convention centres, dense urban areas, shopping malls, corporate premises, university campuses, theme parks, etc. This Ph.D. Thesis provides an answer to the following research question: What is the architectural and procedural framework needed to support efficient traffic and mobility management mechanisms in massive deployments of all-wireless 3GPP Long-Term Evolution networks of small cells? In order to do so, we address three key research challenges in NoS. First, we present a 3GPP network architecture capable of supporting large-scale, all-wireless NoS deployments in the Evolved Packet System. This involves delegating core network functions onto new functional entities in the network of small cells, as well as adapting Transport Network Layer functionalities to the characteristics of a NoS in order to support key cellular services. Secondly, we address the issue of local location management, i.e., determining the approximate location of a mobile terminal in the NoS upon arrival of an incoming connection from the core network. This entails the design, implementation, and evaluation of efficient paging and Tracking Area Update mechanisms that can keep track of mobile terminals in the complex scenario of an all-wireless NoS whilst mitigating the impact on signalling traffic throughout the local NoS domain and towards the core network. Finally, we deal with the issue of traffic management in large-scale networks of small cells. On the one hand, we propose new 3GPP network procedures to support direct unicast communication between LTE terminals camped on the same NoS with minimal involvement from functional entities in the Evolved Packet Core. On the other hand, we define a set of extensions to the standard 3GPP Multicast/Broadcast Multimedia Service (MBMS) in order to improve the quality of experience of multicast/broadcast traffic services in high user-density scenarios.El crecimiento de la demanda de tasas de transmisión más altas está empujando a los operadores de redes móviles y a los fabricantes de equipos de red a la adopción de soluciones innovadoras en áreas que se extienden desde técnicas avanzadas de capa física (agregación de portadoras, esquemas MIMO masivos, etc.) hasta la red de acceso radio y troncal, entre otras. Desde 1957 la capacidad de las redes celulares se ha multiplicado por un millón. La utilización de mayor espectro radioeléctrico (incremento en factor 25), la división de dicho espectro en recursos más pequeños (factor 5) y la introducción de esquemas avanzados de modulación y codificación (factor 5) han desempeñado un papel menos significativo que las mejoras en la capacidad del sistema debidas a la reducción del tamaño de las celdas (factor 1600). Este hecho justifica el interés del mundo académico y de la industria en estaciones base de corto alcance y baja potencia, conocidas comúnmente como small cells. La transición de despliegues tradicionales de redes celulares basados en macroceldas hacia redes heterogéneas pone de manifiesto la necesidad de adoptar esquemas arquitecturales y de procedimientos capaces de proporcionar una integración transparente de despliegues masivos de small cells en la actual infraestructura de red celular. Este aspecto es particularmente complejo en el caso de despliegues a gran escala de redes inalámbricas de small cells (NoS, en sus siglas en inglés), donde la conectividad entre estaciones base se proporciona a través de una conexión troncal inalámbrica multi-salto. En general, las redes de small cells son una solución eficiente para mejorar la cobertura y la capacidad de la red celular en entornos de alta densidad de usuarios, como núcleos de transporte, sedes de eventos deportivos, palacios de congresos, áreas urbanas densas, centros comerciales, edificios corporativos, campus universitarios, parques temáticos, etc. El objetivo de esta Tesis de Doctorado es proporcionar una respuesta a la siguiente pregunta de investigación: ¿Cuál es el esquema arquitectural y de procedimientos de red necesario para soportar mecanismos eficientes de gestión de tráfico y movilidad en despliegues masivos de redes inalámbricas de small cells LTE? Para responder a esta pregunta nos centramos en tres desafíos clave en NoS. En primer lugar, presentamos una arquitectura de red 3GPP capaz de soportar despliegues a gran escala de redes inalámbricas de small cells en el Evolved Packet System, esto es, el sistema global de comunicaciones celulares LTE. Esto implica delegar funciones de red troncal en nuevas entidades funcionales desplegadas en la red de small cells, así como adaptar funcionalidades de la red de transporte a las características de una NoS para soportar servicios celulares clave. En segundo lugar, nos centramos en el problema de la gestión de movilidad local, es decir, determinar la localización aproximada de un terminal móvil en la NoS a la llegada de una solicitud de conexión desde la red troncal. Esto incluye el diseño, la implementación y la evaluación de mecanismos eficientes de paging y Tracking Area Update capaces de monitorizar terminales móviles en el complejo escenario de redes de small cells inalámbricas que, a la vez, mitiguen el impacto sobre el tráfico de señalización en el dominio local de la NoS y hacia la red troncal. Finalmente, estudiamos el problema de gestión de tráfico en despliegues a gran escala de redes inalámbricas de small cells. Por un lado, proponemos nuevos procedimientos de red 3GPP para soportar comunicaciones unicast directas entre terminales LTE registrados en la misma NoS con mínima intervención por parte de entidades funcionales en la red troncal. Por otro lado, definimos un conjunto de extensiones para mejorar la calidad de la experiencia del servicio estándar 3GPP de transmisión multicast/broadcast de tráfico multimedia (MBMS, en sus siglas en inglés) en entornos de alta densidad de usuarios

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF

    Network virtualization in next generation cellular networks

    Get PDF
    The complexity of operation and management of emerging cellular networks significantly increases, as they evolve to correspond to increasing QoS needs, data rates and diversity of offered services. Thus critical challenges appear regarding their performance. At the same time, network sustainability pushes toward the utilization of haring Radio Access Network (RAN) infrastructure between Mobile Network Operators (MNOs). This requires advanced network management techniques which have to be developed based on characteristics of these networks and traffic demands. Therefore it is necessary to provide solutions enabling the creation of logically isolated network partitions over shared physical network infrastructure. Multiple heterogeneous virtual networks should simultaneously coexist and support resource aggregation so as to appear as a single resource to serve different traffic types on demand. Hence in this thesis, we study RAN virtualization and slicing solutions destined to tackle these challenges. In the first part, we present our approach to map virtual network elements onto radio resources of the substrate physical network, in a dense multi-tier LTE-A scenario owned by a MNO. We propose a virtualization solution at BS level, where baseband modules of distributed BSs, interconnected via logical point-to-point X2 interface, cooperate to reallocate radio resources on a traffic need basis. Our proposal enhances system performance by achieving 53% throughput gain compared with benchmark schemes without substantial signaling overhead. In the second part of the thesis, we concentrate on facilitating resource provisioning between multiple Virtual MNOs (MVNOs), by integrating the capacity broker in the 3GPP network management architecture with minimum set of enhancements. A MNO owns the network and provides RAN access on demand to several MVNOs. Furthermore we propose an algorithm for on-demand resource allocation considering two types of traffic. Our proposal achieves 50% more admitted requests without Service Level Agreement (SLA) violation compared with benchmark schemes. In the third part, we devise and study a solution for BS agnostic network slicing leveraging BS virtualization in a multi-tenant scenario. This scenario is composed of different traffic types (e.g., tight latency requirements and high data rate demands) along with BSs characterized by different access and transport capabilities (i.e., Remote Radio Heads, RRHs, Small Cells, SCs and future 5G NodeBs, gNBs with various functional splits having ideal and non-ideal transport network). Our solution achieves 67% average spectrum usage gain and 16.6% Baseband Unit processing load reduction compared with baseline scenarios. Finally, we conclude the thesis by providing insightful research challenges for future works.La complejidad de la operación y la gestión de las emergentes redes celulares aumenta a medida que evolucionan para hacer frente a las crecientes necesidades de calidad de servicio (QoS), las tasas de datos y la diversidad de los servicios ofrecidos. De esta forma aparecen desafíos críticos con respecto a su rendimiento. Al mismo tiempo, la sostenibilidad de la red empuja hacia la utilización de la infraestructura de red de acceso radio (RAN) compartida entre operadores de redes móviles (MNO). Esto requiere técnicas avanzadas de gestión de redes que deben desarrollarse en función de las características especiales de estas redes y las demandas de tráfico. Por lo tanto, es necesario proporcionar soluciones que permitan la creación de particiones de red aisladas lógicamente sobre la infraestructura de red física compartida. Para ello, en esta tesis, estudiamos las soluciones de virtualización de la RAN destinadas a abordar estos desafíos. En la primera parte de la tesis, nos centramos en mapear elementos de red virtual en recursos de radio de la red física, en un escenario LTE-A de múltiples niveles que es propiedad de un solo MNO. Proponemos una solución de virtualización a nivel de estación base (BS), donde los módulos de banda base de BSs distribuidas, interconectadas a través de la interfaz lógica X2, cooperan para reasignar los recursos radio en función de las necesidades de tráfico. Nuestra propuesta mejora el rendimiento del sistema al obtener un rendimiento 53% en comparación con esquemas de referencia. En la segunda parte de la tesis, nos concentramos en facilitar el aprovisionamiento de recursos entre muchos operadores de redes virtuales móviles (MVNO), al integrar el capacity broker en la arquitectura de administración de red 3GPP con un conjunto míinimo de mejoras. En este escenario, un MNO es el propietario de la red y proporciona acceso bajo demanda (en inglés on-demand) a varios MVNOs. Además, para aprovechar al máximo las capacidades del capacity broker, proponemos un algoritmo para la asignación de recursos bajo demanda, considerando dos tipos de tráfico con distintas características. Nuestra propuesta alcanza 50% más de solicitudes admitidas sin violación del Acuerdo de Nivel de Servicio (SLA) en comparación con otros esquemas. En la tercera parte de la tesis, estudiamos una solución para el slicing de red independiente del tipo de BS, considerando la virtualización de BS en un escenario de múltiples MVNOs (multi-tenants). Este escenario se compone de diferentes tipos de tráfico (por ejemplo, usuarios con requisitos de latencia estrictos y usuarios con altas demandas de velocidad de datos) junto con BSs caracterizadas por diferentes capacidades de acceso y transporte (por ejemplo, Remote Radio Heads, RRHs, Small cells, SC y 5G NodeBs, gNBs con varias divisiones funcionales que tienen una red de transporte ideal y no ideal). Nuestra solución logra una ganancia promedio de uso de espectro de 67% y una reducción de la carga de procesamiento de la banda base de 16.6% en comparación con escenarios de referencia. Finalmente, concluimos la tesis al proporcionando los desafíos y retos de investigación para trabajos futuros.Postprint (published version

    Context-Aware Self-Healing for Small Cell Networks

    Get PDF
    These can be an invaluable source of information for the management of the network, in a way that we have denominated as context-aware SON, which is the approach proposed in this thesis. To develop this concept, the thesis follows a top-down approach. Firstly, the characteristics of the cellular deployments are assessed, especially for indoor small cell networks. In those scenarios, the need for context-aware SON is evaluated and considered indispensable. Secondly, a new cellular architecture is defined to integrate both context information and SON mechanisms in the management plane of the mobile network. Thus, the specifics of making context an integral part of cellular OAM/SON are defined. Also, the real-world implementation of the architecture is proposed. Thirdly, from the established general SON architecture, a logical self-healing framework is defined to support the context-aware healing mechanisms to be developed. Fourthly, different self-healing algorithms are defined depending on the failures to be managed and the conditions of the considered scenario. The mechanisms are based on probabilistic analysis, making use of both context and network data for detection and diagnosis of cellular issues. The conditions for the implementation of these methods are assessed. Their applicability is evaluated by means of simulators and testbed trials. The results show important improvements in performance and capabilities in comparison to previous methods, demonstrating the relevance of the proposed approach.The last years have seen a continuous increase in the use of mobile communications. To cope with the growing traffic, recently deployed technologies have deepened the adoption of small cells (low powered base stations) to serve areas with high demand or coverage issues, where macrocells can be both unsuccessful or inefficient. Also, new cellular and non-cellular technologies (e.g. WiFi) coexist with legacy ones, including also multiple deployment schemes (macrocell, small cells), in what is known as heterogeneous networks (HetNets). Due to the huge complexity of HetNets, their operation, administration and management (OAM) became increasingly difficult. To overcome this, the NGMN Alliance and the 3GPP defined the Self-Organizing Network (SON) paradigm, aiming to automate the OAM procedures to reduce their costs and increase the resulting performance. One key focus of SON is the self-healing of the network, covering the automatic detection of problems, the diagnosis of their causes, their compensation and their recovery. Until recently, SON mechanisms have been solely based on the analysis of alarms and performance indicators. However, on the one hand, this approach has become very limited given the complexity of the scenarios, and particularly in indoor cellular environments. Here, the deployment of small cells, their coexistence with multiple telecommunications systems and the nature of those environments (in terms of propagation, coverage overlapping, fast demand changes and users' mobility) introduce many challenges for classic SON. On the other hand, modern user equipment (e.g. smartphones), equipped with powerful processors, sensors and applications, generate a huge amount of context information. Context refers to those variables not directly associated with the telecommunication service, but with the terminals and their environment. This includes the user's position, applications, social data, etc

    Context-aware Self-Optimization in Small-Cell Networks

    Get PDF
    Most mobile communications take place at indoor environments, especially in commercial and corporate scenarios. These places normally present coverage and capacity issues due to the poor signal quality, which degrade the end-user Quality of Experience (QoE). In these cases, mobile operators are offering small cells to overcome the indoor issues, being femtocells the main deployed base stations. Femtocell networks provide significant benefits to mobile operators and their clients. However, the massive integration and the particularities of femtocells, make the maintenance of these infrastructures a challenge for engineers. In this sense, Self-Organizing Networks (SON) techniques play an important role. These techniques are a key feature to intelligently automate network operation, administration and management procedures. SON mechanisms are based on the analysis of the mobile network alarms, counters and indicators. In parallel, electronics, sensors and software applications evolve rapidly and are everywhere. Thanks to this, valuable context information can be gathered, which properly managed can improve SON techniques performance. Within possible context data, one of the most active topics is the indoor positioning due to the immediate interest on indoor location-based services (LBS). At indoor commercial and corporate environments, user densities and traffic vary in spatial and temporal domain. These situations lead to degrade cellular network performance, being temporary traffic fluctuations and focused congestions one of the most common issues. Load balancing techniques, which have been identified as a use case in self-optimization paradigm for Long Term Evolution (LTE), can alleviate these congestion problems. This use case has been widely studied in macrocellular networks and outdoor scenarios. However, the particularities of femtocells, the characteristics of indoor scenarios and the influence of users’ mobility pattern justify the development of new solutions. The goal of this PhD thesis is to design and develop novel and automatic solutions for temporary traffic fluctuations and focused network congestion issues in commercial and corporate femtocell environments. For that purpose, the implementation of an efficient management architecture to integrate context data into the mobile network and SON mechanisms is required. Afterwards, an accurate indoor positioning system is developed, as a possible inexpensive solution for context-aware SON. Finally, advanced self-optimization methods to shift users from overloaded cells to other cells with spare resources are designed. These methods tune femtocell configuration parameters based on network information, such as ratio of active users, and context information, such as users’ position. All these methods are evaluated in both a dynamic LTE system-level simulator and in a field-trial
    corecore