thesis

Context-Aware Self-Healing for Small Cell Networks

Abstract

These can be an invaluable source of information for the management of the network, in a way that we have denominated as context-aware SON, which is the approach proposed in this thesis. To develop this concept, the thesis follows a top-down approach. Firstly, the characteristics of the cellular deployments are assessed, especially for indoor small cell networks. In those scenarios, the need for context-aware SON is evaluated and considered indispensable. Secondly, a new cellular architecture is defined to integrate both context information and SON mechanisms in the management plane of the mobile network. Thus, the specifics of making context an integral part of cellular OAM/SON are defined. Also, the real-world implementation of the architecture is proposed. Thirdly, from the established general SON architecture, a logical self-healing framework is defined to support the context-aware healing mechanisms to be developed. Fourthly, different self-healing algorithms are defined depending on the failures to be managed and the conditions of the considered scenario. The mechanisms are based on probabilistic analysis, making use of both context and network data for detection and diagnosis of cellular issues. The conditions for the implementation of these methods are assessed. Their applicability is evaluated by means of simulators and testbed trials. The results show important improvements in performance and capabilities in comparison to previous methods, demonstrating the relevance of the proposed approach.The last years have seen a continuous increase in the use of mobile communications. To cope with the growing traffic, recently deployed technologies have deepened the adoption of small cells (low powered base stations) to serve areas with high demand or coverage issues, where macrocells can be both unsuccessful or inefficient. Also, new cellular and non-cellular technologies (e.g. WiFi) coexist with legacy ones, including also multiple deployment schemes (macrocell, small cells), in what is known as heterogeneous networks (HetNets). Due to the huge complexity of HetNets, their operation, administration and management (OAM) became increasingly difficult. To overcome this, the NGMN Alliance and the 3GPP defined the Self-Organizing Network (SON) paradigm, aiming to automate the OAM procedures to reduce their costs and increase the resulting performance. One key focus of SON is the self-healing of the network, covering the automatic detection of problems, the diagnosis of their causes, their compensation and their recovery. Until recently, SON mechanisms have been solely based on the analysis of alarms and performance indicators. However, on the one hand, this approach has become very limited given the complexity of the scenarios, and particularly in indoor cellular environments. Here, the deployment of small cells, their coexistence with multiple telecommunications systems and the nature of those environments (in terms of propagation, coverage overlapping, fast demand changes and users' mobility) introduce many challenges for classic SON. On the other hand, modern user equipment (e.g. smartphones), equipped with powerful processors, sensors and applications, generate a huge amount of context information. Context refers to those variables not directly associated with the telecommunication service, but with the terminals and their environment. This includes the user's position, applications, social data, etc

    Similar works