79 research outputs found

    Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    Get PDF
    2012 Summer.Includes bibliographical references.The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi-channel digital receiver has been successfully deployed as a key component in the recently developed National Aeronautical and Space Administration (NASA) Global Precipitation Measurement (GPM) Dual-Frequency Dual-Polarization Doppler Radar (D3R). The D3R is the principal ground validation instrument for the precipitation measurements of the Dual Precipitation Radar (DPR) onboard the GPM Core Observatory satellite scheduled for launch in 2014. The D3R system employs two broadly separated frequencies at Ku- and Ka-bands that together make measurements for precipitation types which need higher sensitivity such as light rain, drizzle and snow. This research describes unique design space to configure the digital receiver for D3R at several processing levels. At length, this research presents analysis and results obtained by employing the multi-carrier waveforms for D3R during the 2012 GPM Cold-Season Precipitation Experiment (GCPEx) campaign in Canada

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    Development of a Nanosatellite Software Defined Radio Communications System

    Get PDF
    Communications systems designed with application-specific integrated circuit (ASIC) technology suffer from one very significant disadvantage - the integrated circuits do not possess the ability of programmability. However, Software Defined Radio’s (SDR’s) integrated with Field Programmable Gate Arrays (FPGA) provide an opportunity to update the communication system on nanosatellites (which are physically difficult to access) due to their capability of performing signal processing in software. SDR signal processing is performed in software on reprogrammable elements such as FPGA’s. Applying this technique to nanosatellite communications systems will optimize the operations of the hardware, and increase the flexibility of the system. In this research a transceiver algorithm for a nanosatellite software defined radio communications is designed. The developed design is capable of modulation of data to transmit information and demodulation of data to receive information. The transceiver algorithm also works at different baud rates. The design implementation was successfully tested with FPGA-based hardware to demonstrate feasibility of the transceiver design with a hardware platform suitable for SDR implementation

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu

    Design and implementation of an SDR-based multi-frequency ground-based SAR system

    Get PDF
    Synthetic Aperture Radar (SAR) has proven a valuable tool in the monitoring of the Earth, either at a global or local scales. SAR is a coherent radar system able to image extended areas with high resolution, and finds applications in many areas such as forestry, agriculture, mining, structure inspection or security operations. Although space-borne SAR systems can image extended areas, their main limitation is the long revisit times, which are not suitable for applications where the target experiments rapid changes, in the scale of minutes to few days. GBSAR systems have proven useful to fill this revisit time gap by imaging relatively small areas continuously, with extensions usually smaller than a few square kilometers. Ground Based SAR (GBSAR) systems have been used extensively for the monitoring of slope instability, and are a common tool in the mining sector. The development of the GBSAR is relatively recent, and various developments have taken place since the 2000s, transitioning from the usage of Vector Network Analyzers (VNAs) to custom radar cores tailored for this application. This transition is accompanied by a reduction in cost, but at the same time is accompanied by a loss of operational flexibility. Specifically, most GBSAR sensors now operate at a single frequency, losing the value of the multi-band operation that VNAs provided. This work is motivated by the idea that it is worth to use the value of multi-frequency GBSAR measurements, while maintaining a limited system cost. In order to implement a GBSAR with these characteristics, it is realized that Software Defined Radio (SDR) devices are a good option for fast and flexible implementation of broadband transceivers. This thesis details the design and implementation process of an SDR-based Frequency Modulated Continuous Wave (FMCW) GBSAR system from the ground up, presenting the main issues related with the usage of the most common SDR analog architecture, the Zero-IF transceiver. The main problem is determined to be the behavior of spurs related to IQ imbalances of the analog transceiver with the FMCW demodulation process. Two effective techniques to overcome these issues, the Super Spatial Variant Apodization (SSVA) and the Short Time Fourier Transform (STFT) signal reconstruction techniques, are implemented and tested. The thesis also deals with the digital implementation of the signal generator and digital receiver, which are implemented on top of an RF Network-on-Chip (RFNoC) architecture in the SDR Field Programmable Gate Array (FPGA). Another important aspect of this work is the development of an radiofrequency front-end that extends the capabilities of the SDR, implementing filtering, amplification, leakage mitigation and up-conversion to X-band. Finally, a set of test campaigns is described, in which the operation of the system is verified and the value of multi-frequency GBSAR observations is shown.El radar d'obertura sintètica (SAR) ha demostrat ser una eina valuosa en el monitoratge de la Terra, sigui a escala global o local. El SAR és un sistema de radar coherent capaç d’obtenir imatges de zones extenses amb alta resolució i té aplicacions en moltes àrees com la silvicultura, l’agricultura, la mineria, la inspecció d’estructures o les operacions de seguretat. Tot i que els sistemes SAR embarcats en plataformes orbitals poden obtenir imatges d'àrees extenses, la seva principal limitació és el temps de revisita, que no són adequats per a aplicacions on l'objectiu experimenta canvis ràpids, en una escala de minuts a pocs dies. Els sistemes GBSAR han demostrat ser útils per omplir aquesta bretxa de temps, obtenint imatges d'àrees relativament petites de manera contínua, amb extensions generalment inferiors a uns pocs quilòmetres quadrats. Els sistemes SAR terrestres (GBSAR) s’han utilitzat àmpliament per al control de la inestabilitat de talussos i esllavissades i són una eina comuna al sector miner. El desenvolupament del GBSAR és relativament recent i s’han produït diversos desenvolupaments des de la dècada de 2000, passant de l’ús d’analitzadors de xarxes vectorials (VNA) a nuclis de radar personalitzats i adaptats a aquesta aplicació. Aquesta transició s’acompanya d’una reducció del cost, però al mateix temps d’una pèrdua de flexibilitat operativa. Concretament, la majoria dels sensors GBSAR funcionen a una única freqüència, perdent el valor de l’operació en múltiples bandes que proporcionaven els VNA. Aquesta tesi està motivada per la idea de recuperar el valor de les mesures GBSAR multifreqüència, mantenint un cost del sistema limitat. Per tal d’implementar un GBSAR amb aquestes característiques, s’adona que els dispositius de ràdio definida per software (SDR) són una bona opció per a la implementació ràpida i flexible dels transceptors de banda ampla. Aquesta tesi detalla el procés de disseny i implementació d’un sistema GBSAR d’ona contínua modulada en freqüència (FMCW) basat en la tecnologia SDR, presentant els principals problemes relacionats amb l’ús de l’arquitectura analògica de SDR més comuna, el transceptor Zero-IF. Es determina que el problema principal és el comportament dels espuris relacionats amb el balanç de les cadenes de fase i quadratura del transceptor analògic amb el procés de desmodulació FMCW. S’implementen i comproven dues tècniques efectives per minimitzar aquests problemes basades en la reconstrucció de la senyal contaminada per espuris: la tècnica anomenada Super Spatial Variant Apodization (SSVA) i una tècnica basada en la transformada de Fourier amb finestra (STFT). La tesi també tracta la implementació digital del generador de senyal i del receptor digital, que s’implementen sobre una arquitectura RF Network-on-Chip (RFNoC). Un altre aspecte important d’aquesta tesi és el desenvolupament d’un front-end de radiofreqüència que amplia les capacitats de la SDR, implementant filtratge, amplificació, millora de l'aïllament entre transmissió i recepció i conversió a banda X. Finalment, es descriu un conjunt de campanyes de prova en què es verifica el funcionament del sistema i es mostra el valor de les observacions GBSAR multifreqüència

    NASA Tech Briefs, October 2009

    Get PDF
    Topics covered include: Light-Driven Polymeric Bimorph Actuators; Guaranteeing Failsafe Operation of Extended-Scene Shack-Hartmann Wavefront Sensor Algorithm; Cloud Water Content Sensor for Sounding Balloons and Small UAVs; Pixelized Device Control Actuators for Large Adaptive Optics; T-Slide Linear Actuators; G4FET Implementations of Some Logic Circuits; Electrically Variable or Programmable Nonvolatile Capacitors; System for Automated Calibration of Vector Modulators; Complementary Paired G4FETs as Voltage-Controlled NDR Device; Three MMIC Amplifiers for the 120-to-200 GHz Frequency Band; Low-Noise MMIC Amplifiers for 120 to 180 GHz; Using Ozone To Clean and Passivate Oxygen-Handling Hardware; Metal Standards for Waveguide Characterization of Materials; Two-Piece Screens for Decontaminating Granular Material; Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer; Improved Method of Design for Folding Inflatable Shells; Ultra-Large Solar Sail; Cooperative Three-Robot System for Traversing Steep Slopes; Assemblies of Conformal Tanks; Microfluidic Pumps Containing Teflon[Trademark] AF Diaphragms; Transparent Conveyor of Dielectric Liquids or Particles; Multi-Cone Model for Estimating GPS Ionospheric Delays; High-Sensitivity GaN Microchemical Sensors; On the Divergence of the Velocity Vector in Real-Gas Flow; Progress Toward a Compact, Highly Stable Ion Clock; Instruments for Imaging from Far to Near; Reflectors Made from Membranes Stretched Between Beams; Integrated Risk and Knowledge Management Program -- IRKM-P; LDPC Codes with Minimum Distance Proportional to Block Size; Constructing LDPC Codes from Loop-Free Encoding Modules; MMICs with Radial Probe Transitions to Waveguides; Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz; and Extending Newtonian Dynamics to Include Stochastic Processes

    Time domain based image generation for synthetic aperture radar on field programmable gate arrays

    Get PDF
    Aerial images are important in different scenarios including surface cartography, surveillance, disaster control, height map generation, etc. Synthetic Aperture Radar (SAR) is one way to generate these images even through clouds and in the absence of daylight. For a wide and easy usage of this technology, SAR systems should be small, mounted to Unmanned Aerial Vehicles (UAVs) and process images in real-time. Since UAVs are small and lightweight, more robust (but also more complex) time-domain algorithms are required for good image quality in case of heavy turbulence. Typically the SAR data set size does not allow for ground transmission and processing, while the UAV size does not allow for huge systems and high power consumption to process the data. A small and energy-efficient signal processing system is therefore required. To fill the gap between existing systems that are capable of either high-speed processing or low power consumption, the focus of this thesis is the analysis, design, and implementation of such a system. A survey shows that most architectures either have to high power budgets or too few processing capabilities to match real-time requirements for time-domain-based processing. Therefore, a Field Programmable Gate Array (FPGA) based system is designed, as it allows for high performance and low-power consumption. The Global Backprojection (GBP) is implemented, as it is the standard time-domain-based algorithm which allows for highest image quality at arbitrary trajectories at the complexity of O(N3). To satisfy real-time requirements under all circumstances, the accelerated Fast Factorized Backprojection (FFBP) algorithm with a complexity of O(N2logN) is implemented as well, to allow for a trade-off between image quality and processing time. Additionally, algorithm and design are enhanced to correct the failing assumptions for Frequency Modulated Continuous Wave (FMCW) Radio Detection And Ranging (Radar) data at high velocities. Such sensors offer high-resolution data at considerably low transmit power which is especially interesting for UAVs. A full analysis of all algorithms is carried out, to design a highly utilized architecture for maximum throughput. The process covers the analysis of mathematical steps and approximations for hardware speedup, the analysis of code dependencies for instruction parallelism and the analysis of streaming capabilities, including memory access and caching strategies, as well as parallelization considerations and pipeline analysis. Each architecture is described in all details with its surrounding control structure. As proof of concepts, the architectures are mapped on a Virtex 6 FPGA and results on resource utilization, runtime and image quality are presented and discussed. A special framework allows to scale and port the design to other FPGAs easily and to enable for maximum resource utilization and speedup. The result is streaming architectures that are capable of massive parallelization with a minimum in system stalls. It is shown that real-time processing on FPGAs with strict power budgets in time-domain is possible with the GBP (mid-sized images) and the FFBP (any image size with a trade-off in quality), allowing for a UAV scenario

    The Digital Design and Synthesis of Delay Doppler Maps in GNSS Remote Sensing Receivers

    Get PDF
    Global Navigation Satellite Systems (GNSS) are satellite based systems primarily capable of determining the location of receivers on the Earth. However, these systems can also receive and process bistatically surface reflected signals, studying the scattering from the signal off the reflection surface. In order to achieve these results, accurate and fast technology are necessary. In this work, a Delay-Doppler mapping module of a GNSS system has been implemented in VHDL and synthesized on FPGA Xilinx-Virtex 6 to map the delay and frequency domains of Earth scattered signals. The designed system presents high timing performance to provide quick and accurate measurements. In this work, a FFT based GNSS mapping algorithms has been designed to process raw samples GNSS data. The remote sensing module has been implemented, generating all the 32 possible C/A codes and then processing the received signal for each of the 32 C/A codes in a pipelined circuit. Once the GNSS power signals have been detected, a final detector is used to compare all the GNSS power signals found with a magnitude twice the noise and with the highest peak to detect the best candidate signal for the Delay Doppler Map (DDM). Different timing delay ranges and Doppler frequency ranges have been considered to compare the performance of the mapping algorithm. The use of an FPGA based algorithm permits significantly higher performance and greater flexibility than software based solutions and opens up the GNSS remote sensing application for integration into real-time instruments

    A Highly Integrated Navigation Unit for On-Orbit Servicing Missions

    Get PDF
    VINAG (VISION/INS integrated Navigation Assisted by GNSS) is a highly integrated multisensor navigation unit, particularly conceived for On-Orbit Servicing missions. The system is designed to provide all-in-one, on-board real time autonomous absolute navigation as well as pose determination of an uncooperative known object orbiting in LEO (Low Earth Orbit), GEO (GEosynchronous Orbits) and possibly in HEO (Highly Earth Orbit). The system VINAG is under development by a team of Italian companies and universities, co-financed by the Italian Space Agency. Thanks to a tight optimized integration of its subsystems, VINAG is characterized by a low power and mass total budgets and therefore it is suitable for small and very small satellites. In order to provide both 1) absolute orbit and attitude determination and 2) vision-based pose determination, the unit integrates three metrology systems: a Cameras Subsystem (a monocular camera and a Star sensor), an Inertial Measurement Unit (IMU) and a GNSS (Global Navigation Satellite System) receiver. In this paper, we introduce the complete system architecture, the adopted algorithms and then the adopted hardware design solutions. In addition, we describe preliminary numerical simulation results obtained for different orbits from LEO to GEO carried out for the validation phase of VINAG
    • …
    corecore