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ABSTRACT

DESIGN AND TESTING OF A PROTOTYPE HIGH SPEED DATA ACQUISITION
SYSTEM FOR NASA

SEPTEMBER 2011
VISHWAS T. VIJAYENDRA
B.E., VISVESVARAYA TECHNOLOGICAL UNIVERSITY, INDIA
M.S. E.C.E., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor Russell G. Tessier

Modern radar and signal processing applications require data acquisition systems
capable of high-speed analog data reception and processing. These systems need to
support sophisticated signal processing algorithms and reliable high-speed interfaces. The
objective of this project is to develop a prototype of a state of the art data acquisition
system to aid NASA’s Surface Water and Ocean Topography (SWOT) mission. The
SWOT mission aims at monitoring water levels of various water bodies to predict and
avoid any catastrophic events. The principal instrument is a Ka-band Radar
Interferometer (KaRIN) that is used for the measurement of water levels. The collected
data need to be digitized and processed using an FPGA based-data acquisition system
housed in a satellite. The scope of this project involves the design, implementation and
test of a high-speed printed circuit board (PCB) that serves as the prototype data
acquisition system. A lot of emphasis is placed on layout design, as the PCB needs to
support data rates up to three Giga samples per second. The goal of this research is to
provide Jet Propulsion Laboratory (JPL), NASA with a prototype version of the high-

speed acquisition system that can be integrated with the KaRIN system in future.
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CHAPTER 1

INTRODUCTION

Data Acquisition Systems (DAS) are ubiquitous in microwave, signal processing
and radar applications [1] [2] [3]. The objective of data acquisition is to measure an
electrical or physical quantity of interest such as voltage, current, pressure, temperature
etc. Although each DAS is customized depending on the specific application, they share
the common functionalities of acquiring, processing and analyzing the information. Most
of the present-day systems use computer based data acquisition. A combination of
hardware modules, software applications and a computer is used to measure and analyze

the quantity of interest. A typical data acquisition system is shown in Figure 1.

HARDWARE SOFTWARE

: 4 N
ANALOG SIGNALS
ADC DSP/ FPGA

DIGITAL SIGNALS

Y

ANALOG DIGITAL
CIRCUITRY CIRCUITRY

—»
SENSORS \_ J
ANALOG TO DIGITAL DRIVERS
SIGNAL CONDITIONING SOFTWARE APPLICATIONS
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Figure 1. Typical Data Acquisition System
A DAS used in satellite radar applications is distinctive from a typical acquisition
system in many ways. Firstly, the components present on the DAS must be space-
qualified radiation hardened to overcome soft errors. Secondly, these systems need to
support real time data acquisition with hardware support for complex signal processing

algorithms. Lastly, they need to incorporate several high-speed reliable interfaces [1] to



communicate with the on-board computer and other modules. With recent advancements
in technology, many powerful devices and high-speed interfaces are available off the
shelf. These enhancements facilitate the development of an advanced DAS.

The common devices used in a DAS are an analog-to-digital converter (ADC) for
digitizing the analog signals and Field Programmable Gate Array (FPGA) or Digital
Signal Processor (DSP) to process the digitized signals [4]. The prototype systems often
use FPGAs since they offer system flexibility and reconfiguration. FPGAs incorporating
high-speed interfaces, soft microprocessor, and custom hardware modules for digital
filtering are now available in a single device [5] [6].

In this project, we have developed a prototype version of the DAS to meet the
requirements of a radar application that monitors the water levels of various water bodies.
This is part of the Surface Water and Ocean topography (SWOT) mission carried out by
NASA [7]. The data acquisition system is implemented using off the shelf components
such as analog-to-digital converters from National Semiconductor and Xilinx Virtex-4
FPGA:s.

The initial prototype system is designed by including non-radiation hardened
(Rad-Hard) components on the board. The final version of the PCB will include the Rad-
Hard equivalent devices following the success of the prototype system.

The thesis report is organized as follows. Chapter 2 provides an overview of the
SWOT project of NASA and its goals. The specifications of the data acquisition system,
its primary objectives and the top-level design architecture are described in chapter 3.
Chapter 4 discusses the system architecture and design details of the board architecture

including specific circuit details. The set of layout guidelines for the successful operation



of the system is described in chapter 5. Chapter 6 outlines the preliminary verification
procedures followed before the fabrication of the board. Chapter 7 discusses the details
pertaining to the test and debug of the system including the experimental results. Chapter
8 describes a novel method of monitoring the phase of the signal and phase drifts
between two associated signals using the Data FPGA resources. Finally, chapter 9

concludes the thesis with an overview of the future work.



CHAPTER 2

SURFACE WATER AND OCEAN TOPOGRAPHY MISSION OF NASA

The National Research Council decadal review “Earth Science and Applications
from Space: National Imperatives for the Next Decade and Beyond” recommended the
SWOT mission for implementation by NASA [7]. The SWOT mission combines goals of
physical oceanography and hydrology communities. The mission targets ocean mesoscale
and sub-mesoscale circulation characterizations at spatial resolution of 10 kilometers and
greater. The goals include estimation of global storage change in fresh water bodies and
global change in river discharge at sub-monthly, seasonal, and annual time scales.

2.1 Mission Architecture

The principal instrument of the SWOT mission is a Ka-band Radar Interferometer
(KaRIN) [7] [8]. The system employs two swaths each of 50 km and produces heights
and co-registered all-weather imagery. This system uses a conventional Jason-class
altimeter for nadir coverage and radiometer for wet troposphere delay. The block diagram

in Figure 2 outlines the system that will be employed.
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The high-level block diagram of the system required for the SWOT mission is
shown in Figure 3. On the transmitter side, the control, timing and waveform information
received from the on board computer are translated to Ka-band signals by the RF up
conversion circuitry and transmitted through the antenna sub-system. On the receiver
side, the high frequency Ka-band signals are converted to L-band or baseband signals by
the down conversion circuitry and fed to a high speed DAS. The DAS processes the
analog signals and transfers the processed data to the on-board computer via the
spacecraft bus for further analysis.

The proposed architecture includes two 3 Giga Samples Per Second (GSPS)
analog-to-digital converters from National Semiconductor [9], a Xilinx Virtex-4 FPGA
(XC4VFX140 - Data FPGA) [5] to process data from the ADCs and another Xilinx
Virtex-4 FPGA (XC4VLX25 - PCI FPGA) [5] to interface with the cPCI bus. Several
high speed interfaces are included in the system such as RocketlO Multi Gigabit
Transceivers (MGT) [10], a small form factor pluggable (SFP) connector [11] and a serial
advanced technology attachment (SATA) interface [12] to transfer data to other modules
at high-speed. The system is equipped with a Joint Test Action Group (JTAG) port to
program the FPGA devices and a 20-pin header to monitor the temperature and other
timing information. The high-level block diagram of the proposed architecture is

portrayed in Figure 4.
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2.2 Background Work

Many commercial solutions like [13] and [14] support high-speed data acquisition
with high-speed interfaces. The Signatec PX1500-4 [13] is similar to the DAS system
proposed for the SWOT mission. It is equipped with two 3GSPS ADCs [9] and two
Xilinx Virtex-5 (XC5VLX50T) FPGAs [6]. There is support for 1400MB/sec continuous
transfer over PCI Express bus. Virtex-5 FPGA supports complex signal processing
algorithms. However, the system does not support high-speed interfaces like SATA and
SFP.

Big3Gig reference design [14] from National Semiconductor employs a 3GSPS

ADC (ADC083000/ADC08B3000) [15] [16] and a Virtex-4 FPGA (XC4VLX15) [5].



The reference design supports a single USB interface and lacks multiple high-speed
interfaces on the board. Several key design implementation points were obtained from

this design to implement the proposed DAS system.



CHAPTER 3

DATA ACQUISITION SYSTEM SPECIFICATIONS

The Ka-band radar interferometer in combination with the DAS constitutes the
complete system employed in the SWOT project. This chapter discusses the requirements
of the data acquisition system and the proposed feature set to meet the requirements.

3.1 Radar Terminologies

This section lists the radar terminologies used in this document.

(a) High Rate Sampling Mode (HRSM) - HRSM is the mode of the DAS when a
single stage down conversion is used in the radar system (Ka-band to L-band).

(b) Low Rate Sampling Mode (LRSM) — LRSM is the mode of the DAS when two
stages of down conversion are used in the radar system (Ka-Band to L-band/S-
band and L-band/S-band to baseband).

(c) Receive Window (Rx Win) — Rx Win is the time window for which the Transmit/
Receive Switch (T/R Switch) acts as the receive module.

(d) Pulse Repetition Frequency (PRF) - PRF is the frequency at which radar pulses
are transmitted.

3.2 DAS Specifications

This section lists the specifications set by the radar unit for the DAS.

1. Support real time data acquisition, processing and storage.

2. Support reception of raw analog data on I and Q channels, each channel
supporting a bandwidth of 200 MHz centered at 1.2GHz.

3. Support hardware for time-domain convolution filtering and decimation.



Support a processor that includes block RAM of up to 828Kbit in HRSM and
252Kbit in LRSM.
Support processing of up to 90K samples (HRSM) and 18K samples (LRSM)

between PRF events.

6. Support up to 80 18 x 18 multipliers in HRSM and 42 18 x 18 multipliers in
LRSM.

7. Support high speed interfaces capable of transferring data at 1GSPS on two
channels.

8. Support a Compact PCI (cPCI) interface to enable communication with the on-
board computer. This implies that the PCB should have a standard 6U cPCI form
factor (160mm X 233mm) [17].

3.3 DAS Features

The following section outlines the various features of the data acquisition system

that meets the specifications set by the radar unit.

1.

Two analog-to-digital converters corresponding to the two input data channels, I
and Q.

A Virtex-4 FPGA device (XC4VFX140) implements complex time domain
convolution filters.

Another Virtex-4 FPGA device (XC4VLX25) implements a 64-bit 66MHz cPCI
core and supports a finite state machine (FSM) to load the configuration of
XC4VFX140 device via cPCI bus.

High speed interfaces such as SATA, SFP and Rocket I0 MGTs to transfer

processed data to other modules.

10



5. JTAG port and Universal Asynchronous Receiver Transmitter (UART) channel to

support debugging of the system.

6. Other components like power regulators, on-board oscillators, and EPROM to

support the development of the data acquisition system.

The ADCs sample the input L-band/ baseband signals at 3GSPS. The Virtex-4 Data
FPGA supports up to 192 18 x 18 multipliers and 9936 Kbit of memory [5] to perform
time domain filtering operations. The Data FPGA supports processing of more than 90K
samples in HRSM on a receive window of 30 psec. In addition to the SFP and SATA
interfaces, the Data FPGA includes a fast Rocket IO MGT that supports data throughput
up to 1.5GSPS [10]. This enables high-speed data transfer to other modules such as on-
board computer and hard disks. The 64-bit 66MHz PCI core in PCI FPGA allows
communication with the cPCI bus with ease.

Thus, the proposed data acquisition system satisfies all the requirements set by the
radar unit and is ideally suited for integration with the Ka-band radar. The plan is to
design a prototype version of the data acquisition system to support HRSM at the
University of Massachusetts, Amherst with the non Rad-Hard components on the board.
A final revision of the board shall be developed that integrates DAS with the Ka-band

radar in the future.
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CHAPTER 4
SYSTEM ARCHITECTURE AND DESIGN DETAILS

This chapter discusses the system architecture and design details pertaining to the
components used in the data acquisition system. The key components used in the system
are listed below.

(1) Analog to Digital Converters (ADCs)

(2) Data FPGA (Virtex-4 XC4VFX140)

(3) PCI FPGA (Virtex-4 XC4VLX25)

(4) Linear Regulators and Switching Regulators

(5) On Board Crystal Oscillators

(6) High Speed Interfaces such as SFP and SATA

(7) Compact PCI Connector

The detailed system architecture of DAS is shown in Figure 5. The system
receives L-band signals from the down conversion circuitry on two channels, I and Q.
The two ADCs, IADC and QADC sample these signals at 3GSPS and digitizes them to 8
bits. The output clock and output data signals of both the ADCs interface to the Virtex-4
FPGA called Data FPGA on its LVDS I/O pins. The system includes another Virtex-4
FPGA called PCI FPGA to establish communication with the cPCI bus. The power
distribution circuitry on board comprises of both linear and switching regulators to power

different components.
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Figure 5. System Architecture
The Data FPGA and PCI FPGA form the core of the DAS. The Data FPGA
includes the hardware logic for processing the digital data. A 32-bit soft microprocessor
called MicroBlaze [18] is instantiated in the Data FPGA that acts as the control module.
High-speed interfaces such as Rocket IO MGT, SATA, and SFP are supported by the
system. JTAG port and UART interface constitute the debug channels on the board. The
following sections describe the implementation details of power distribution circuitry,

ADC, Data FPGA, PCI FPGA and the FPGA programming interfaces.
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4.1 Power Distribution

The design of power distribution circuitry constitutes an important design phase

in any board design project. The selection of regulators is made based on several factors,

the important ones being the input voltage range, desired output current, efficiency, and

the drop out voltage.

The power distribution circuitry on our system receives two external unregulated

voltages on the cPCI bus namely 5V and 3.3V. The various linear and switching

regulators generate on-board regulated voltages. Table 1 below lists the regulators on the

board, their rated voltage and the devices that the regulator powers.

SI. | Regulator Manufacturer | Type of Rated | Rated Purpose
NO Regulator | Output | Output
Voltage | Current
1 |LT1764 — Linear Linear 1.5V 3A Powers the
1.5 Technology Multi Giga
2 | LT1764 - Linear Linear 2.5V 3A bit
2.5 Technology transceiver
3 | NCP5663 On Linear 1.2V 3A (MGT) on
Semiconductor Data FPGA
4 | 5920RH M S Kennedy | Linear 1.9V 3A Powers the
corporation two ADCs
5 | PTHO05010 Texas Switching | 1.2V I15A Powers the
Instruments internal logic
of Data
FPGA and
PCI FPGA
6 | PTHO5060W | Texas Switching | 1.8V, 10A Powers the
Instruments 2.5V, auxiliary
3.3V circuits, IO
banks of Data
FPGA and
PCI FPGA

Table 1. On-board Power Regulators

Linear regulators [19] [20] [21] are used to derive voltages for the ADCs and the

RocketlO MGTs on the Data FPGA. Switching power regulators [22] [23] are used to
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generate core voltages, I/O voltages and the auxiliary voltages for the Data FPGA and
PCI FPGA. The Data FPGA and the PCI FPGA require 1.2V for internal logic, 2.5V for
the digital clock manager (DCM), JTAG and other auxiliary circuits, 3.3V, 2.5V and
1.8V for different I/O banks. Four switching power regulators from Texas Instruments
generate these voltages. Certain PCI FPGA 1/O banks are powered directly from the cPCI
bus. This complies with the cPCI standard. A section is included in this chapter that
explains the function of the PCI FPGA in detail.

The switching regulators need to be replaced by linear regulators in the space
qualified DAS due to the lack of availability of Rad-Hard switching regulators. This is a
challenge since most linear regulators have a maximum output current rating of 5A and
the FPGAs require more than SA output current from the regulators.

Separate linear regulators [19] [20] power the MGTs to ensure sufficient noise
isolation from the surrounding noise sources such as the switching regulators. The MGTs
require a passive high frequency filtering circuit [10] in addition to the separate

regulators to function properly. The deployed high frequency filtering circuit is shown in

Figure 6.
1.5V 25V
FERRITE_BEAD ' FERRITE_BEAD
MPZ16085221a MPZ16085221a
VTT_TXA AVCCAUX
=" 1.2V
w VTT_TXB /( m AVCCAUX_TX
0.22uF T 0.22u?7 L
1.2V
FERRITE_BEAD 0.22uF 0.22uF
MPZ16085221a = FERRITE_BEAD |
VTT_RXA MPZ16085221a
= L AVCCAUX_RXA
| (™7 | VIT.RxB
™ AVCCAUX_RXB
0.22uF | —
F 0.22uF

0.22u

0.22uF

Figure 6. High frequency filtering circuit for MGTs
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The ADCs are powered only after the Data FPGA is configured. This design
consideration eliminates the risk of active ADC outputs damaging the I/O buffers of Data
FPGA during boot up. This is accomplished by controlling an active low shutdown pin of
the linear regulator (5920RH) [21] through the Data FPGA. The specific circuit
implementation is shown in the Figure 7. The Data FPGA I/O pins are tri-stated before
configuration as the Data FPGA HSWAPEN pin [24] is pulled high through a 10K pull-

up resistor.

3.3v/
10K
10K c
ADC_ENAB% B
E
Y
1K 10K - SHUTDOWN
3.3V ADC_1.9V
—— > VIN VOUT —»
1 LINEAR
= = REGULATOR

5920
Figure 7. ADC Enable Circuit
4.2 Clock Distribution
The PCB houses three crystal oscillators; one for generating 60/150MHz clock for
Data FPGA, another one for generating 60MHz/200MHz for PCI FPGA and the other
one for generating 150MHz clock for RocketlO MGT in the Data FPGA. The RocketlO

MGT requires a reference clock that needs to have a high degree of accuracy [10]. The
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EPSON 2121CA oscillator [25] is used to provide this reference (150MHz) which is in
accordance with the part suggested in the RocketlO user guide [10].
The board has provisions for alternate clocks.
(1) There is an option to provide an external clock to the Data FPGA through an
SMA connector J14 (DATAFPGA CLK150 EXT signal in the schematic).
(2) The Data FPGA can drive the PCI FPGA clock (DATAFPGA ALTCLK signal
and PCIFPGA ALTCLK signal in the schematic).
4.3 Analog to Digital Converter
The PCB comprises of two Analog to Digital converters called as IADC and
QADC. Each ADC is an 8 bit dual 1.5 GSPS or single 3.0 GSPS converter. Both IADC
and QADC have two internal converters that receive input data on two channels, I and Q
and produce outputs on four channels named as I, Id, Q, Qd (‘d’ stands for delayed
output). Effectively, the four outputs represent four consecutive 3GSPS 8-bit data
samples.
4.3.1 Dual Edge Sampling
Each ADC consists of two internal converters that can be interleaved to achieve a
3.0 GSPS sampling rate. This interleaved mode of the ADC is referred to as Dual Edge
Sampling (DES) mode of the ADC. The input signal is sampled on both the positive and
negative edges of the sample clock in DES mode. Each ADC has two input channels (I
and Q), but in DES mode, the input signal is fed only through the I channel [9].
4.3.2 DDR Output Clock and 1:2 Output De-multiplexing
Each converter within the ADC provides an option of selectable output de-

multiplexing that reduce the output data rate to half the input sample rate on each of the
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output channels [9]. The ADCs support both Single Data Rate (SDR) and Double Data
Rate (DDR) output clocking. In SDR mode, the output clock (DCLK) frequency on each
converter is the same as the data rate on its two output channels. In DDR mode, the
output clock (DCLK) frequency on each converter is half the input sample rate and the
data appears on the output on both edges of the DCLK.

In our system, we use the DES mode with 1:2 de-multiplexing mode for each
converter and DDR output clocking. The DCLK frequency is reduced by a factor of eight
(3GHz/8 = 375MHz) with respect to the sampling clock since we are using the 1:2 de-
multiplexing mode on each converter and DDR output clock.

4.3.3 Alternate Output Clock

DCLK is the primary output clock of the ADC. Alternatively, we can use DCLK?2
as the second output clock to latch the outputs. To enable the alternate output clock, one
of the ADC registers must be configured. The DCLK?2 signal behaves as an overflow
signal (OR) to indicate the out of range condition of an input signal when the alternate
output clock is not used.

4.3.4 Extended Control Mode
The configuration and control of the ADC can be controlled in two ways [9].
a. Non-extended control mode: The user can control the configuration of the ADC
by setting several control pins in this mode.
b. Extended control mode: This mode provides additional configuration through a
serial interface and a set of nine registers [9].

Both the ADCs in our system use extended control mode.
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4.3.5 Serial Interface

The serial interface consists of three pins; SCLK (Serial clock), SDATA (Serial
data) and SCS (Serial chip select). The serial interface provides an option to access nine
write only registers. A specific 32-bit word on SDATA line accesses any one of these
nine registers. The nine write only registers and their addresses are tabulated in Table 2.
The timing diagram is depicted in Figure 8. The SCLK signal is terminated at the end of

the chained layout using pull-up and pull-down 100 Ohm resistors.

SI.NO | Register Address
(in hex)

Calibration 0

Configuration 1
I-channel Offset 2
3

I-channel Full-
Scale Voltage
Adjust

5 | Extended 9
Configuration

6 | Q-channel A
Offset
7 | Q-Channel Full- B
Scale Voltage
Adjust

8 | Sampling Clock E
Phase Fine
Adjust

9 | Sampling Clock F
Phase
Intermediate and
Course Adjust
Table 2. ADC Registers

AW —
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SINGLE REGISTER ACCESS

A
\

SCS
SCLK 1 2 12 13 16 17 32
SDATA
FIXED HEADER REGISTER REGISTER WRITE
PATTERN ADDRESS DATA
Figure 8. Serial Interface Timing
4.4 Data FPGA

The Data FPGA is one of the key components of the DAS. The Xilinx Virtex-4
XC4VFX140 device is the largest device in the Virtex-4 family with a total of 142,128
logic cells, 768 user 1/0s, 9936 Kbits of block RAM, 987 Kbits of distributed RAM, 24
Rocket I/O Multi Gigabit Transceivers, 20 Digital Clock Managers (DCM), and 17 1/O

banks [5].
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4.4.1 ADC — Data FPGA Interface

The data channels (I, Id, Q and Qd) and clock channels (DCLK and DCLK2) of IADC
and QADC interface to the Data FPGA on its LVDS I/O pins. Each output channel is an
8-bit word in LVDS format.

Figure 9 shows the interface between the ADC and the Data FPGA.

IADC_DCLK2 \
| 1
— Id F
8 | I
IADC Q L E
IDATA ¢ o
7 Qd | % .
8
T [mosoag
VIRTEX4
QADC_DCLK XC4VFX140
QCLK 8 F
— d, |
8
QADC Q L F
QDATA 8 9
— ™ Qd 3 L
-
QADC_DCLK2

Figure 9. ADC — Data FPGA interface
It is imperative to choose the appropriate data and clock pins on the Data FPGA
that connects the ADC output data and output clock lines. The assignment of output data
lines is constrained by the fact that the clock signal on the Virtex-4 FX140 device reaches
only three clock regions; its own and the two neighboring regions [17]. There are 24

clock regions in the FX140 device, as shown in Figure 10.

21



QADC_DCLK/2,

QADC_DCLK/2
COVERS THESE
CLOCK
REGIONS

XC4VFX140 CLOCK REGIONS

12 24
11 23
10 22
9 21
8 20
7 19
6 18
5 17
4 16
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2 14
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Figure 10. Clock regions in XC4VFX140 device
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ADC Clock/ 1/0 Clock | I/O pair number
Data bank | Region
IADC DCLK 12 15 24
DCLK2 12 15 25
| 8 14 2,6,10,4,13,11,7,1
Id 8 14 8,9,14,12,16,5,3, 15
Q 12 15 26, 32,29, 30,22,20,17,21
Qd 12 15 16, 15, 14, 27, 28, 31, 19, 18
QADC | DCLK 11 3 24
DCLK2 11 3 25
| 7 2 7,14,12,10,2,4,3,13
Id 7 2 9,8,15,11,6,16,5, 1
Q 11 3 21,17, 28, 18, 22, 30, 27, 26
Qd 11 3 13,11, 2, 32,31, 20, 19, 29

Table 3. I/0 pins on Data FPGA interfacing ADC data and clock pins

The Table 3 lists the I/O pairs, I/O bank and the associated clock region of the
Data FPGA connecting the output data and clock lines of the ADC.

IADC: The DCLK and DCLK2 clock lines are assigned to clock capable pins in
I/O bank 12. These clock lines are present in clock region 15. Hence, the data lines must
be confined to clock regions 14, 15 and 16. Accordingly, the data pins are assigned to 1-
16 1/O pairs in bank 8 and 16 I/O pairs in bank 12 [24].

QADC: The DCLK and DCLK2 clock lines are assigned to clock capable pins in
I/O bank 11. These clock lines are present in clock region 3. Hence, the data lines must
be confined to clock regions 2, 3 and 4. Accordingly, the data pins are assigned to 1-16
I/O pairs in bank 7 and 16 I/O pairs in bank 11 [24].
4.4.2 Logic Circuits

The Data FPGA includes abundant hardware resources to perform
implementation of complex time domain convolution filters. The Data FPGA supports up
to 192 18 x18 multipliers, and 9936 Kbit of block RAM necessary for performing

filtering operations [5]. At the maximum clock frequency of 150MHz, the Data FPGA
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supports processing of up to 170Ksamples between the PRF events, which supersedes the
requirement of processing 90Ksamples between PRF events.

The data rate of the digital samples at the input of the Data FPGA is 375 MHz.
The Data FPGA fabric does not support such high speeds. However, the Data FPGA
includes several dedicated serial to parallel converters or de-serializers called ISERDES
that support fast /O data rates. The ISERDES module supports DDR mode and allows
high-speed data reception without the FPGA fabric matching the I/O data rate [17]. In our
system, we use ISERDES to create an 8-bit parallel word. This implies the incoming
clock rate is divided by a factor of four and the data rate is divided by 8. The specific

circuit implemented in the FPGA is as shown in the Figure 11.

DDR MODE
I0_P 8 /ﬁ
ION IBUFDS ISERDES
CLK CLK_DIV
375MHz 93.75
CLK_P
oL N IBUFDS
375MHz F
DIVIDE BY 4 |
IDELAY =2 or 3 F
@)
DATA FPGA
<&

Figure 11. ISERDES and FIFO Implementation
The input LVDS pins of the Data FPGA are connected to the IBUFDS module
that converts differential signals to single ended signals. These signals are then connected
to the ISERDES modules. ISERDES receives two clocks [17], one is the undivided
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375MHz clock and the other one is the divided 93.75 MHz clock. The BUFR module
generates the 93.75 MHz clock, which is a local clock buffer for I/O and Configurable
Logic Blocks (CLBs). BUFIO is a bi-directional buffer that needs to be used in
conjunction with BUFR. The ISERDES outputs are interfaced to a FIFO queue in the
Data FPGA.
4.4.3 Serial Controller

The IADC and QADC serial interface pins SCS, SCLK and SDATA are
connected to the I/O pins of the Data FPGA. A finite state machine (FSM) [26] is
implemented in the Data FPGA to enable the access of ADC registers through these pins.
4.4.4 MicroBlaze

A 32-bit soft microprocessor called ‘MicroBlaze’ [18] is instantiated in the Data
FPGA that includes an RS232 interface. The RS-232 interface is used for de-bugging
purposes, for reading values out of the FIFO queues in the Data FPGA. An application to
access the serial controller in the Data FGPA is implemented in the MicroBlaze.
4.4.5 RocketlO MGT

The Data FPGA comprises of high-speed interface called RocketlO MGT. Two
Rocket IO CoreGen modules [27] are instantiated in the Data FPGA to enable high-speed
data transfer to other modules.
4.5 PCI FPGA

Control information will be transferred back and forth between the host computer
and the DAS using the cPCI bus. The DAS will plug into the backplane of a cPCI slot

using the five connectors on the periphery of the board. Configuration information for the
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Data FPGA will be transferred to the board using this interface, although currently it is
configured via the JTAG interface for testing purposes.
4.5.1 Compact PCI Interface

The system implements a 6U version of the Compact PCI interface. The
dimensions of a 6U Compact PCI board are 160 mm x 233 mm [17]. The Compact PCI
bus is a 64-bit bus that runs at 33 or 66MHz. The board can support either clock speed
via a manual on-board U63 jumper setting. There are five connectors J1, J2, J3, J4, J5 on
the periphery of the board that interface to the cPCI backplane. J1 and J2 consist of 110
pins each. J1 carries the lower 32-bit cPCI signals while J2 carries the upper 32-bit cPCI
signals. J3, J4 and J5 are additional connectors that are intentionally undefined at this
point of time. They can be used as a bridge to other buses like VersaModular Eurocard
(VME) or Industry Standard Architecture (ISA) in the future [17].

A Xilinx Virtex-4 XC4VLX25 device supports 64-bit 66MHz cPCI core [28]. The
system utilizes this core to interact with the cPCI interface. A -10 speedgrade version of
the LX25 device will only support a 33 MHz cPCI bus. A -11 speedgrade device will
support either a 33 or a 66 MHz cPCI interface. In the final version of the board, this PCI
FPGA device will be replaced by Actel Rad-Hard equivalent device RTAX, RT
ProASIC3 (flash), or RTSX-SU device.

The cPCI signals interface to two I/O banks on the PCI FPGA. Hence, the I/O
voltage pins of these banks are directly connected to 3.3V on the cPCI bus in compliance
with the cPCI standard [17]. The UCF (User Constraint File) generated by the 64 bit PCI

core [28] is used as reference for assigning PCI FPGA pins to the cPCI connectors. A
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series of 10 Ohm stub resistors are placed close to the cPCI connectors to prevent signal
reflections.
4.6 SATA and SFP Interfaces

A Serial Advanced Technology Attachment (SATA) connector and a Small Form
Factor Pluggable (SFP) connector are included in our system. This is primarily to transfer
data to other modules at up to 1 Gbps. The SFP optical module is a low profile 20-pin
connector [11] while the SATA connector is a 9-pin connector [12]. SATA connectors
are used for disk interfacing and inter-board transfer of data. SATA allows data transfer
rates up to 1.5 Gbps.

The SATA interface includes two transmit and two receive lines connected to the
RocketlO MGT pins. Similarly, the SFP interface consists of two transmit and two
receive lines connected to the MGT pins. The clock for the RocketlO MGT is derived
from 150MHz EPSON crystal oscillator present on board.

4.7 Thermal Sensor

The thermal diodes on the IADC and the Data FPGA are connected to a
temperature sensor (LM95221) to monitor the temperature level of these components.
The SCL and SDA outputs of the sensor interface to the Data FPGA 1/O pins.

4.8 FPGA Programming Interfaces

The Data FPGA and PCI FPGA can be programmed through two configuration

interfaces; Slave SelectMAP8 and JTAG.
4.8.1 Slave SelectMAP8
The mode pins M2, M1 and MO of both Data and PCI FPGA are in logic state

(M2 M1 MO0) = (1 1 0) to enable the Slave SelectMAP8 mode [29]. In this mode, the
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configuration clock CCLK is an input signal to the FPGA. An 8-bit bidirectional data bus
interfaces to the Virtex-4 configuration logic. The Slave SelectMAP8 mode between the
Xilinx PROM and PCI FPGA is shown in Figure 12 where as the SelectMAP mode

between the PCI and Data FPGA is shown in Figure 13.

R 4 M2ZMIMO | {
D7-DO » D7-DO 1
CLKOUT » CCLK
CE = DONE
RDWR_B
EPROM
CS Bl
XCFO8P  op/ReseT > INIT_B
CF »PROG_B PCI 3.3K
FPGA
BUSY | DOUT_BUSY 3.3K

Figure 12. Slave SelectMAP8 mode — Xilinx PROM and PCI FPGA

3.3V
— 3.3\//
47K 330
3.3K
M2 M1 MO
GPIOs » D7-DO 1
GPIO » CCLK
GPIO |« DONE
GPIO » CS B
PCI
FPGA GPIO > INIT_B
GPIO|——— »PROG B DATA
FPGA
GPIO |« DOUT_BUSY
GPIO » RDWR_B

Figure 13. Slave SelectMAP8 mode — PCI FPGA and Data FPGA
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4.8.2 JTAG Interface

JTAG is the simpler of the two programming interfaces available in the Data
FPGA. JTAG programming mode overrides any other mode and can always be used
irrespective of the mode pin configuration [29]. The JTAG chain on the board includes

Xilinx PROM, PCI FPGA and Data FPGA. The scan chain is shown in Figure 14.

XILINX_USB Il Header

D

EPROM PCI FPGA

TDI|— B 1D ycpogp TDO T sz MO0
TCK  TMS TCK TMS
A * A A
TMS
e Y Y
TCK TMS
- ( DATA FPGA [
TDO ™ TDO xcavFx140

AN
Figure 14. JTAG Scan Chain
Once the FPGA devices are deployed in space, JTAG programming interface
cannot be used. The PCI FPGA reads the configuration file from the non-volatile
EPROM (XCFO8P) on power up through Slave SelectMAP8 mode. The PCI FPGA then
receives the configuration file of Data FPGA through the cPCI interface and configures

the Data FPGA through Slave SelectMAP8 mode [30].
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CHAPTER 5

LAYOUT CONSIDERATIONS

Layout is one of the important steps in any board design project. A lot of
emphasis is placed on placement and routing of components, since the data acquisition
system needs to support up to a 3GSPS data rate. For successful operation of the system,
the layout guidelines listed in the datasheets of all the components present on board needs
to be incorporated. This chapter discusses the layout guidelines pertaining to the critical
components on system namely ADC, Data FPGA and PCI FPGA.

5.1 Data FPGA Layout Guidelines

The following section lists the guidelines from the Virtex-4 FPGA PCB
designer’s guide that need to be incorporated into the layout.

1. The capacitor mounting and the power and ground planes of the PCB are the
primary sources of parasitic inductances in the PCB.

a. Shorter connecting trace lengths minimize the parasitic inductance since it
reduces the area the current traverses. Via lengths need to be minimized to
reduce inductance.

b. The vias should not be shared among multiple capacitors. The capacitor
mounting (lands, traces, and vias) contributes about the same amount (or
more) inductance than the capacitor's own parasitic inductance. It is
recommended to reduce the total number of capacitors than to connect a

second capacitor into the vias of an existing capacitor [31].
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c. The thickness of the dielectric plays an important role in minimizing the
spreading inductance. The lesser the dielectric thickness between the power
plane and its associated ground plane, the lesser is the spreading inductance.
Vcce power planes are often directly adjacent to Gnd planes in the stack up.
The Vee Gnd sandwiches offer high frequency decoupling capacitance [31].

2. Layer order is extremely important; high-priority supplies need to be in the top
half of the stack-up and low-priority supplies need to be in the bottom half of the
stack-up [31]. The Vcc planes that connect to the power supplies with high
transient current need to be in the top half of the PCB stack-up. The Vcc-Gnd
planes carrying high frequency energy are given higher priority over the Vcc-Gnd
planes carrying lower frequency energy. Accordingly, they are either placed on
the top half or the bottom half.

3. Decoupling capacitors, as the name suggests are used to perform decoupling
function and need to be present closer to the device. Shorter traces lengths are
used to connect capacitor lands to vias. In order to reduce the intrinsic parasitic
inductance, vias are inserted in between the solder lands for large package
capacitors [31].

Not all the high-frequency capacitors need to be placed closer to the
FPGA. It is acceptable to place the capacitors around the periphery of the device,
provided the separation between the Vce and the Gnd plane adjacent to it is less
than 4mils in thickness [31]. In cases where Vcc-Gnd plane pairs are in the top
half of the stack-up, the capacitors are placed on the top surface of the board,

around the periphery of the device.
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In order to have the power supply noise within half the maximum allowed
power supply noise (VRIPPLE/2), the Power Distribution System (PDS) needs to
have approximately one capacitor per Vcec pin on a per-supply basis. Generally,
the rule of thumb is to have one 0.01 pF capacitor for every power pin. However,
Xilinx recommends using a broad range of capacitor values to cover a broad
range of frequencies [31]. The proportion of high frequency capacitors to low-
frequency capacitors plays a significant role.

The idea behind using different values of capacitors is to maintain low and
flat power supply impedance from 500 kHz to 500 MHz frequency range. Both
large value (low frequency) and small value (high frequency) capacitors are
needed. It is recommended to include a capacitor in every decade of the capacitor
value range to keep the impedance profile smooth and free of anti-resonance
spikes. The quantity of capacitors needs to be roughly doubled for every decade
of decrease in size in order to maintain a relatively flat impedance profile.

4. In cases where large numbers of external termination resistors are used at the
destination, placement of the termination resistors takes priority over the
decoupling capacitors. Termination resistors should be closest to the device,
followed by the smallest-value decoupling capacitors, then followed by larger-
value decoupling capacitors [31].

5.2 ADC Layout Guidelines
The following are the guidelines from National Semiconductor for inclusion of

ADCO08D1520 devices into the layout.
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1.

Every power pin needs to have a 0.0.1uF de-coupling capacitor. They need to be
placed closer to each power supply pin (< 0.5cm).

The 128LQFP package of the ADC08D1520 has an exposed pad on its back to
provide a heat removal path as well as electrical grounding to the PCB. This
exposed pad needs to be attached to the PCB to remove a maximum amount of
heat from the package [9].

A thermal land pattern needs to be incorporated on the PCB within the footprint
of the package to aid heat dissipation. The recommended thermal land pattern is
shown in Figure 15.

5.0 mm, min

0.25 mm, typ
0.33 mm, typ

Figure 15. Recommended thermal land pattern for the ADC
The ADC inputs should have shield pads. The DGND on the SMA connector
should connect to the DGND on the balun using an etch trace on the top layer for
all four SMAs.
A heat sink needs to be included in order to reduce the junction temperature. A
solder coated copper area of about 2 sq. inches needs to be present on the opposite

side of the PCB [9].
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Each ADC includes a special shield called a dog house to shield them from high
frequency noise.

A single ground plane needs to be used, instead of splitting the ground plane into
analog and digital grounds [9].

Coupling between the noisy digital circuitry and the sensitive analog circuitry can
lead to poor performance. High power digital components should not be located
on or near any linear component or power supply trace or plane that services
analog or mixed signal components.

The input clock lines should be isolated from all other lines, analog and digital.
The generally accepted 90° crossing are avoided. Best performance at high

frequencies is obtained with a straight signal path.

5.3 Compact PCI Layout Guidelines

The following are the guidelines with respect to cPCI interface that needs to be

incorporated into the layout.

1.

2.

cPCI interconnect needs to be customized for standard FR4 board design

cPCI 10 Ohm stub resistors should be placed near the cPCI connectors.

The cPCI pins should terminate with a 100 Ohm differential impedance [17].

The clock lines have to be straight and clock signal loops must be avoided.

The signals should not be routed close to the edge of the PCB board.

Connectors on clock traces should be avoided.

Clock signals need to be routed on the top layer and vias should be avoided. The

reason for this is vias change impedance and introduce more skew and reflections.
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These layout guidelines were strictly followed during the layout design. In order to
comply with the above guidelines, placements of several components were changed and
several schematic design changes were incorporated.

(a) The placement of the ADCs was made close to the Data FPGA. A conscious
effort was made to have symmetrical trace lengths for both IADC and QADC
signals connecting the Data FPGA.

(b) The switching regulators were placed far away from the Data FPGA and the
ADCs.

(c) The PCI FPGA was placed closer to the PCI connectors so that the trace lengths
connecting them were shortened.

(d) In order to place and route all the components, 14 layers were incorporated in the
PCB.

() Two 9-pin DIN connectors were included instead of the bulky DB-9 connectors to
save area.

(f) 0805 package termination resistors on the LVDS input lines of the Data FPGA
were replaced with 0402 package resistors. This allowed shorter stub lengths and

the resistors could be placed directly under the pin of the Data FPGA.
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CHAPTER 6

PRELIMINARY VERIFICATION

The pre-fabrication activities played a significant role in the overall success of the
system. It helped us to simulate and verify key components of the system before the PCB
was fabricated. It included:

a) Simulation of analog components on the board.

b) Analyzing the power requirements of the Data FPGA, PCI FPGA and the

two ADCs.

c) Compilations of Data and PCI FPGA designs

6.1 Analog Simulation
The SMA connectors (J1, J17), the RF transformer/balun (U6, U44), the

capacitors (C30, C248) and (C35, C255) and the two ADC (U9, U47) inputs VIN+ and
VIN- constitute the analog circuit on the data acquisition system. Signals of frequencies
up to 1.5GHz flow through the traces (transmission lines) connecting these components.
A simulation environment is created in Ansoft Designer to obtain/verify the S parameters

of this analog system. The analog system created in Ansoft Designer software is shown in

Figure 16.
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Figure 16. Analog Circuit
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The RF transformer ADTL2-18 is simulated as a 3 port device. A *.s3p file is
created using the S parameters provided by the manufacturer of the RF transformer,
Minicircuits. Portl (input port), Port2 and Port3 (output ports) are terminated using 50
ohm resistances. The traces are simulated using the specifications given below. All are

Microstrip transmission lines.

Specifications

Substrate FR4

Dielectric constant of the substrate

(er) 4.4

Thickness of the Dielectric (H) 4 mils
Copper (resistivity -
1.7241 uohm*cm,

Metallization thickness - 0.675 mils)

Table 4. PCB Specifications

Trace width (in mils) | (in mm)
SMA -> Balun 3.25 0.08255
Balun -> 100pf cap 3.25 0.08255
100pf cap -~ ADC

input 3.25 0.08255

Table 5. Analog Circuit - Trace Widths

Trace length (in mils) (in mm)
SMA -> Balun 288 7.3152
Balun -> 100pf cap 629 15.97
100pf cap -~ ADC

input 99 2.515

Table 6. Analog Circuit - Trace lengths
The circuit in Figure 16 is analyzed over a frequency range of 500MHz to
1.7GHz. The S parameters S11, S12 and S13 are obtained and shown for the entire

system in the Figure 17.
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Figure 17. S parameter plot for the analog section

S11 represents the input return loss, S12 and S13 represents the insertion losses
through the paths 1-2 and 1-3 respectively.
The frequency of interest is 1.5GHz. From the plots,

S11 @1.5GHz=-5.53 dB

S12 @1.5GHz =-6.18 dB

S13 @1.5GHz =-5.66 dB

S11 should be ideally low indicating less reflection (order of -10dB). A -5.53dB
corresponds to 27.98% of the power being reflected back to Port 1. S12 and S13 should
be ideally high indicating that most of the power is propagated to port2 and port3 from

portl. A -6.18 and -5.66 dB corresponds to 25% and 27% of power being transmitted
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from port 1 to ports 2 and 3 respectively. Although S11, S12 and S13 parameters were
deviating from the expected values, the results were acceptable since these calculations
were performed using a theoretical based simulator (with approximations for effective
dielectric constant, thickness of etches between layers, and thickness of the traces).
6.2 Power budgeting of the board

An estimate of the total power consumption of the board was made before the
board fabrication. The estimate was helpful to choose the appropriate linear regulators
and switching regulators with appropriate output current ratings. To estimate the total
static and dynamic power consumption of the Data FPGA, XPOWER analyzer [32] of the
Xilinx ISE feature was used. Two MGTs, all the I/O pins, input and output buffers were
instantiated in the Data FPGA. Dummy logic was created utilizing all the inputs to the
system. The tool estimated the total power consumption of the Data FPGA assuming
random inputs and the power averaged over the time period.

A similar experiment was performed using the PCI FPGA. A 64-bit 66MHz PCI
core was instantiated in the PCI FPGA. The maximum power consumption on each ADC

in active mode is about 2W [9] in active mode. The total power consumption estimate is

tabulated in Table 7.
Component Power Consumption
Data FPGA 6W
PCI FPGA 2W
ADCs 4 W
Others 1w
Total 13W

Table 7. Power Consumption Estimate
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6.3 Data FPGA Compilations

The ADC — Data FPGA interface was critical to the overall functioning of the
entire system. The output data channels and the clock channels from the two ADCs had
to be connected to the appropriate I/O pins on the Data FPGA. The pin assignments were
constrained by the fact that that the clock signal on the Virtex-4 XC4VFX140 device
reached only three clock regions; its own region and the two neighboring regions [33]. In
other words, we had to ensure that we assign the output data of ADCs to only those 1/O
pins of the Data FPGA that were within three clock regions of the clock pin.

Hence, several test designs were created in Xilinx ISE that included the
components IBUFDS, ISERDES, BUFR, BUFIO and FIFO. The user constraint file
(UCF) contained pin assignments that were made on the schematic. Synthesis,
translation, mapping, place and route were run in the ISE software. The compilations

were successful with no errors, which meant that the pin assignments made were correct.
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CHAPTER 7

TESTING THE PROTOTYPE HARDWARE SYSTEM

A systematic test procedure was followed to test the individual components on the
board. The test methodology developed was independent of the integration of DAS with
the down conversion circuitry. The experiments were performed by connecting the board
to a customized test set up in the laboratory. The results of these experiments served as a
proof of concept of the design of the system.

7.1 Precautions and Safety

Extreme care was taken while handling the board, anti-static straps were used at
all times to ensure that the static charges discharge to ground and do not affect the
components present on the board. The input voltages to the board were provided only
after double-checking the voltage levels from the power supply to avoid any mishaps due
to voltage fluctuations.

7.2 Powering the board

One of the challenges we faced during the testing process was figuring out a
technique to provide input voltages to the board. Normally, the board receives input
voltages via the cPCI pins. Since we did not have the set up to connect our board to the
cPCI interface at the university laboratory, we had to use an external 3U CompactPCI
extender board from Twin Industries. The extender card was plugged into P1 and P2 slots
on our board and input voltages 3.3V and 5V were given to the metal holders on the 3.3V
and 5V fuses respectively. A 3U extender card was sufficient since all the active signals
and voltage pins were connected to P1 and P2 interfaces of the cPCI slot. The screen shot

of the extender card is shown in Figure 18.

41



Il

TWIN INDUSTRIES PART $2000-EXTM-\F

X 3 CompactPCl Extender Board
www_twinind.com

b
y -

2

Figure 18. 3U Extender card from Twin Industries

The first test that we performed post fabrication was to check for any
manufacturing defects such as trace discontinuity, accidental opposite connections of
polarized capacitor leads while assembly and other soldering related manual checks. We
verified that there were no manufacturing related defects.
7.3 FPGA Test Designs without the Clock

The next step was to verify whether the programming of both the FPGAs was
possible through the JTAG interface. In order to perform this experiment, two test
designs were created in Xilinx ISE, one for Data FPGA and the other for PCI FPGA. The
Data FPGA was loaded with a configuration file that included a simple program to turn
on two out of the four LEDs on the board. For this experiment, the 60MHz oscillator was

not mounted in the socket Ull provided on the board. Both the ADCs were shut off.
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Similarly, the PCI FPGA was loaded with a configuration file that turned on two LEDs
on the board.

To program the FPGAs, iMPACT software was used. iMPACT provides an
option of automatically detecting the JTAG scan chain on the board. This was used to
verify whether the scan chain was properly set up on the board. On power up, IMPACT
detected three devices in the scan chain; a Xilinx PROM XCFO08P connected to the Xilinx
Virtex-4 XC4VLX25 PCI FPGA, which in turn connected to the Xilinx Virtex-4
XC4VFX140 Data FPGA. This is exactly the way we had set up the scan chain in the
hardware. The scan chain detection implied that the JTAG connections were properly
made on these three devices.

Next, the FPGAs were programmed one at a time with their respective
configuration files through the JTAG port. iIMPACT successfully programmed both the
FPGAs. This was a significant milestone in the testing process since this experiment
verified that the FPGA voltage pins were properly assigned on the board for both FPGAs.
7.4 Flash Programming

The configuration file of the PCI FPGA was next stored in the Xilinx PROM
XCFO0O8P device. On subsequent power ups, PCI FPGA read the configuration file from
the PROM and was configured.

7.5 PCI FPGA Test Plan

There were no tests conducted for the PCI FPGA at the UMass lab except for the
FPGA configuration test. Long-term plans include instantiation of the 66 MHz 64-bit PCI
core and the design of a finite state machine that accepts data from the cPCI bus and

configures the Data FPGA.
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The rest of the experiments focused on various test designs involving the Data
FPGA and the two ADCs.

7.6 FPGA Test Designs with the Clock

A test design was created that included a clock in the design. This was used to
blink four LEDs on the board each at a different frequency. For this experiment, the
60MHz oscillator was mounted in the socket U11. The ADCs were disabled.

After the Data FPGA was programmed, the LEDs started blinking at different
frequencies, which confirmed the operation of the FPGA with the clock
7.7 Establishing the Serial Communication

The next step was to test the ADCs on the board. The idea was to configure the
ADC in test mode and observe the fixed pattern output on the four ADC output channels.
Due to the space constraint, the board houses a 9-pin DIN connector instead of DB9
connector for serial communication. An external connector is used to connect DB9 serial
cable and DIN connector.

The serial communication on Data FPGA was established by instantiating a soft
microprocessor called ‘MicroBlaze’ that includes a UART as peripheral. Serial data was
transmitted and received using the standard Application Programming Interfaces (APIs)
available in MicroBlaze. A test application was written in C language with UART APIs
in MicroBlaze. When the application was loaded, it was able to send and receive data
through the serial interface at a baud rate of 9600 bytes per second. We used the serial

interface as a debug interface for various purposes during the course of validation.
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7.8 ADC Test Designs
7.8.1 IADC Test Mode Configuration

A test design was created in Xilinx ISE to enable the IADC, configure it (to enter
into test mode), collect the outputs and store them in FIFO queues in the Data FPGA. A
MicroBlaze processor was created with a UART interface using the base system builder
wizard in EDK software and instantiated in the ISE software. Signals from the
MicroBlaze processor were given to initiate the serial controller in the Data FPGA.

Specifically, the following registers in IADC were configured; a) Configuration
Register and b) Extended Configuration Register. An input clock of 200MHz was given
to the IADC clock pin (minimum clock frequency) [9]. In 1:2 DeMux and DDR mode,
the output clock DCLK runs at S0MHz and can be given to the write clock of the FIFO
queue without using the SERDES interface. The extended configuration mode setting
ensured the ADCs enter the test mode. When the system was powered up, a specific test
pattern [9] appeared on the four output channels of IADC. This was collected in the FIFO
queue of Data FPGA and printed on the hyper-terminal through the UART interface.
7.8.2 IADC Test Mode Configuration at higher input clock frequencies

The input clock speeds on the IADC clock were cranked up steadily from
200MHz until 1.5GHz in multiples of 100MHz. Since the FIFO queues in Data FPGA
could not handle such high speeds, customized input de-serializers (ISERDES) were used
in the FPGA that allowed FPGA fabric to run slower than the I/O [17]. The

implementation block diagram is shown in Figure 19.
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Figure 19. Circuit implementation for higher input clock frequencies

The ISERDES modules accepted a high-speed clock and divided clock as inputs,

and generated output data that transitioned on every edge of the high-speed clock (DDR

mode). The BUFR module, a local clock buffer with respect to the input clock, provided



the divided clock. BUFR block provides a divided by four clock to the ISERDES module.
The ISERDES modules in Data FPGA were configured as 1:8 de-serializers in DDR
mode. A 1:8 de-serializer was created by instantiating two ISERDES blocks, master
ISERDES and slave ISERDES. The ISERDES module produced eight samples per input
pair on every edge transition of the divided output clock. Since there were 32 LVDS
input pairs connected to the Data FPGA from the IADC, 64 ISERDES blocks were
instantiated in the Data FPGA and together these 64 blocks produced a 256 bit (32
samples * 8 bits/sample) output data. These data values were then interfaced to a 256
wide, 2048 deep FIFO module.

The FIFOs in Data FPGA were created using block RAM. The write and read
widths were different since 256 bits were written to the FIFO at once and only 8 bits were
read out by the MicroBlaze. The write clock of the FIFO was synchronized with the
divided clock of ISERDES module and the read clock was synchronized with the
MicroBlaze clock. The full and empty signals were used by the MicroBlaze as FIFO
indicators. The test pattern [9] appeared on all four output (I, Id, Q, Qd) channels until the
clock frequency was 1.3GHz. Beyond 1.3GHz, few samples were lost. At 1.5GHz, a
large number of samples were lost.

7.8.3 IADC Test Mode Configuration beyond 1.3GHz

At input clock frequencies greater than 1.3GHz, few samples were lost from the
test pattern. This was because of the hold time violation resulting in race condition (early
data, late clock scenario) [34]. The data and clock path in the Data FPGA are shown in

Figure 20.
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The clock path consisted of modules IBUFDS (input buffer to convert differential
signals to single ended signals), BUFIO (input output buffer used in conjunction with
BUFR) and BUFR (local clock buffer capable of generating divided clocks) where as the
data path consisted of modules IBUFDS and ISERDES. Our analysis showed that the
data path had less delay than the clock path and hence few samples were violating hold
time on the ISERDES module. The analysis is shown below; the delay on the IBUFDS
module is neglected since it is present on both the paths.

a. Clock path

Total delay = BUFR delay + BUFIO delay + ISERDES hold time + routing delay

= 500ps (BUFR+BUFIO) [35] + 340ps [35] + 150ps = ~1000ps
b. Data path
Total delay = Routing delay from IBUFDS to ISERDES + hold time of the data =

360 ps [34] + 560 ps [9] = ~920 ps.
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Figure 20. Data path and Clock path in Data FPGA
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In order to overcome this problem, a combinational logic delay had to be inserted
on the data path. The ISERDES module provided this option of inserting programmable
delay element called IDELAY on the data path [33]. IDELAY, a 64-tap wrap around
delay element was inserted which delayed the incoming signals to the ISERDES block by
an amount specified by the attribute IOB_DELAY VALUE. The possible values are 0 to
63. Each IDELAY element provides approximately 78ps of delay (78*0ps = 0 to 78*63ps
=4.914ns of delay is possible).

Approximately 70-120ps delay was necessary on the data path.
IOB DELAY VALUE of two or three addressed the problem. Beyond three IDELAYsS,
the set up time on the ISERDES modules were violated (late data, early clock scenario).
7.8.4 QADC Test Mode Configuration

After the verification of IADC, the same procedure was repeated for the QADC.
The results of the experiment were very similar to the one we obtained with the IADC.
The test pattern were observed accurately on the four output channels of the QADC until
the input clock frequency of 1.3GHz. Beyond 1.3GHz, there was hold time violations and
as before, IDELAY modules were inserted in the data path to solve the problem
(IOB_DELAY_ VALUE of2 or 3)

7.9 Sampling the Input Signal

After the verification of test mode pattern, the next step was verifying the working
of IADC and QADC for real input signals. Two cosine waves of 100MHz, one 500mV
(p-p) and the other 850mV (p-p) were given to the IADC and QADC. The input clock

was set at 1.5GHz.
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The outputs from TADC and QADC were collected and processed. The plots are
shown in Figure 21 and Figure 22 with the X-axis representing the sample number and
Y-axis representing the sample value. The blue lines and dots represent the signal with

500mV (p-p) and the green lines and dots represent the signal with 850mV (p-p).
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Figure 22. Data Plot - IADC

There was a good correlation between the input signal given to the two ADCs and
the plots with respect to both frequency and amplitude. However, these signals had to be

corrected for time skew and amplitude offsets.
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7.9.1 Time Skew and Amplitude offset Corrections
7.9.1.1 113MHz Input Cosine Wave

Time skew and amplitude offset were calculated for different channels by taking
the Qd channel as a reference. The signal generator used for this purpose was a Tektronix
Arbitrary Waveform Generator (AFG3252). Table 8 and Table 9 shows the values of

time skews and amplitude offsets for QADC and IADC.

Channel | Time skew (in ps) Gain Correction

Q 4.41 1.21
Id 0.73 1.00
I 4.20 1.21

Table 8. QADC -Time Skew & Amplitude Correction for 113 MHz input

Channel | Time skew (in ps) Gain Correction

Q 1.39 1.21
Id -0.42 1.00
I 3.98 1.21

Table 9. IADC -Time Skew & Amplitude Correction for 113 MHz input

To correct for the time offset, the skew mentioned in Tables 7 and 8 must be
subtracted from the associated channel. To correct for the gain, the number above must
be multiplied by the data from the associated channel. Figure 23 and Figure 24 below
show the IADC and QADC data points for the first 400 points (or 140ns) after they have

been corrected for time skews and amplitude offsets.
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Figure 23. Data plot of QADC after correction
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Figure 24. Data plot of IADC after correction

The plots show components in five colors. The dots relate to the four channels of
each ADC. They follow one another in color sequence, going from blue, to green, to red,
to cyan, and then all over again. The magenta line is a 100 MHz cosine function that is fit
to the data. We observed the difference between the fit and the samples collected by the
ADC:s, and the fit was excellent.

The time skew and amplitude-offset numbers could be fine tuned and more
accurate by choosing an input signal whose frequency is not a multiple of the sampling
frequency. In other words, choosing 100 MHz for the signal, and 1.5 GHz for the clock
meant that every cycle, the waveform was sampled in the same place (currently there are
30 points per signal cycle). This made the quantization errors correlated, which caused
inaccuracies in the estimation routines. Hence, if we were to use a signal frequency of
133 MHz (for instance), the number of points per waveform would be 22.5564, which
would take many cycles of the sampled waveform before the quantization errors became
correlated.
7.9.1.2 133MHz Input Cosine Wave

An accurate measurement was obtained for time skew and amplitude offset by
providing a 133MHz cosine input signal. Two signal generators were used for this
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experiment; a) Agilent E4437B and b) Tektronix Arbitrary Waveform generator

AFG3252. This was done to verify whether the superior quality generator (Agilent

E4437B) had any effect on the performance of the ADC.

The results are tabulated in the Table 10, Table 11, Table 12 and Table 13.

Agilent Signal Generator

Channel Phase (deg) Skew (ps) Sinad (db) Gain error
Qd 50.25 0.00 43.99 1.27
Id 66.26 0.99 43.59 1.56
Q 82.13 -0.79 43.96 1.27
| 98.24 2.21 43.14 1.56

Table 10. QADC -Time Skew & Amplitude Correction for 133 MHz input (Agilent
waveform generator)

Channel Phase (deg) Skew (ps) Sinad (db) Gain error
Qd 61.09 0.00 43.51 1.29
Id 77.16 2.24 43.25 1.60
Q 93.03 0.30 42.60 1.28
1 109.12 3.18 43.24 1.60

Table 11. IADC -Time Skew & Amplitude Correction for 133 MHz input (Agilent
waveform generator)

Tektronix ARB

Channel Phase (deg) Skew (ps) Sinad (db) Gain error
Qd 82.09 0.00 42.11 1.32

Id 98.11 1.28 42.03 1.62

Q 113.97 -0.77 4191 1.32

1 130.08 2.33 42.04 1.62

Table 12. QADC -Time Skew & Amplitude Correction for 133 MHz input

(Tektronix waveform generator)

Channel Phase (deg) Skew (ps) Sinad (db) Gain error
Qd 132.30 0.00 40.36 1.33
Id 148.38 2.40 42.50 1.66
Q 164.24 0.29 41.57 1.34
| 180.35 3.38 40.74 1.65

Table 13. IADC -Time Skew & Amplitude Correction for 133 MHz input (Tektronix
waveform generator)
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The first column is the ADC output channel, the second column represents the
phase measured for the incoming signal (the phase of the Qd channel is arbitrary, as it
depends on when exactly we begin collecting data relative to the input signal).

The third column represents the clock skew that is relative to the Qd channel (the
reference). The measured phase in the second column is converted into time (based on
the period of the 133 MHz measured signal). This time is compared with the "correct”
sample time for a 3GSPS clock. Any difference between the "correct" time and the
measured "phase" time is termed skew. Ideally, it should be zero. If it is positive, then the
measurement is taking place a little after the time that it really should be and if it is
negative, the opposite is happening. For example, the skew for the I-channel is about 2 ps
different than the Q-channel for the Agilent generator. This is 0.3% (or 3/1000th) of a 1.5
GHz clock cycle, or equivalently, about 1mm of differential path length, that is internal to
the ADCs.

The fourth column (sinad), is the signal power to (noise and distortion) ratio. This
value can be converted to the effective number of bits by using the formula: ENOB =
(SINAD - 1.76)/6.02. A SINAD of 44 dB gives an ENOB of 7 bits (43 dB -> 6.85 bits;
42 dB -> 6.7 bits; 41 dB -> 6.5 bits; etc.). The Agilent signal generator has a better
SINAD than the Tektronix ARB, which is probably reflective of the quality of the signal
sources.

The fifth and last column shows the gain error. This is related to the peak-to-peak
voltage of our input waveform compared to the peak-to-peak setting on the ADC. The

difference between the measured full-scale range and the ADC set full-scale range is
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called the gain error (e.g. 1.56 = 700/445). This type of error is not problematic as long
as it is consistent.
7.10 Error Spectra

Error spectra are determined by subtracting the measured time series of the ADC
from a theoretical 133 MHz waveform that has been corrected for phase and amplitude
errors. This type of plot will show if there are external signals leaking into our signal path
as well as highlight the presence of higher order frequency products caused by distortion
(e.g. 266 MHz, etc.).
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Figure 25. Error spectra - Agilent generator E4437B
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Figure 26. Error spectra - Tektronix Waveform Generator AFG3252

The error spectra for both waveform generators are plotted and shown in Figure

25 and Figure 26. In these plots, four colors are shown, one for each channel of the IADC

and QADC.

The following conclusions were drawn from the above plots.

1.

The Tektronix ARB showed signs of higher order harmonics at 266 MHz,
whereas the Agilent E4437B did not.

The true noise floor was about -14 dB.

The true effect of the dominant signal at 110MHz is less strong than it appears in
the spectrum because the noise contributing to the SINAD and ENOB is
essentially integrated over the spectrum. Hence, many of these point sources of

signals will average out.
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7.11 Filter implementation, integration and testing

A polyphase decimation filter is implemented in the Data FPGA to process the L-
band signals coming into the DAS and converts them to baseband signals. Vu Duong and
Mike Nakashima, engineers at JPL, NASA designed and implemented the filter. The
integration of the filter with the SERDES and the FIFO is done at the MIRSL Ilab,
UMass. The filter module is integrated with the rest of the modules in Xilinx ISE
environment, and synthesized. In order to perform the initial round of system testing with
the filter, a test chirp input with frequency range of 100MHz — 300MHz is mixed with a
1GHz frequency component with the help of a frequency mixer. This produces two
frequency components, one centered at 800 MHz (700MHz — 900MHz) and the other
centered at 1.2GHz (1.1GHz — 1.3GHz). This set up mimics the real time system where
the DAS receives L-band signals centered around 1.2GHz (1.1GHz — 1.3GHz).

Figure 27 shows the spectrum plot of the up-converted input via the mixer (ADC
output). X axis represents the frequency and Y axis represents the signal power. Figure
28 shows the demodulated output of the filter. The plot shows good SNR (Signal to Noise
Ratio) and most importantly, there are no unwanted harmonics present. Thus, we are able
to verify the working of the hardware and FPGA design (with the filter). To accurately
verify filter performance, we need to input a chirp that contains actual radar pulse data
and fine tune filter parameters. Detailed filter performance and validation will take place

at JPL, NASA in the future.
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Figure 27. Spectrum plot of the ADC output of the up-converted input
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CHAPTER 8
REAL TIME ESTIMATES OF DIFFERENTIAL SIGNAL PHASE

This section describes a novel approach to monitor the phase of a single signal
over time and phase drifts between two associated signals using Data FPGA resources in
the DAS [36].

8.1 Introduction

A fundamental characteristic of the microwave signals is the signal's phase, which
is associated with the round-trip distance between the signal's source and destination.
Signal phase measurements play an important role in fundamental satellite system
operation. As a result, it is important to measure and monitor a signal's phase from a
measurement point of view and in terms of its use as a characterization of the overall
system's performance [38].

For the SWOT mission, a common signal is reflected from the Earth's surface and
received by two antenna panels (Figure 29) co-mounted on a satellite that are separated
by a fixed distance called the baseline (nominally 10m). The differential phase of the
received signal by the two ends of the baseline is used to infer the angle of arrival of the
reflected signal. Since the viewing geometry is known, it is possible to determine the
topography of the ocean and inland waters to a high degree of accuracy [37]. The
precision to which this phase difference can be measured directly affects the intended
science product of height. Hence, an improved phase measurement capability can be used
to improve overall system performance, or can be traded against other system parameters
such as the baseline length, to reduce the size of the spacecraft structure and dramatically

impact the overall system cost.

60



By measuring and monitoring the differential phase of a known signal fed into the
two analog-to-digital converters on the DAS, a low-level check can be performed on the
science data integrity on a pulse-to-pulse basis. The results are subsequently passed down
and incorporated into a standard data telemetry data stream. On-board FPGA monitoring
of these results can be used as a "watch dog" to flag problematic data and to record

intermediate products that can be saved and sent to the ground for further analysis.

\ite

sate! X
\\\\_‘,\\\ wad

R s AL . A
Figure 29. Artistic concept of the SWOT satellite mission.

8.2 Background Work

An algorithm for monitoring system phase has previously been implemented and
tested in software [38]. The most basic form of the algorithm is based on the monitoring
of a single-tone signal fed into an analog-to-digital converter. The resulting waveform is
compared to a reference waveform of the expected frequency and phase. Differences
between the observed waveform and the reference waveform are used to determine the
gain and phase characteristics of the observed waveform's signal path. The accuracy of

the gain and phase characteristics is dictated by the number of data points and the signal
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to noise ratio (SNR) of the observed signal. Increasing either the SNR or the number of
points increases the accuracy of these estimates in a mathematically predictable way, and
the estimation of these numbers can be optimized to achieve a desired level of
measurement accuracy.

Figure 30 illustrates measured and theoretic phase accuracy versus sample count.
The theoretical phase measurement accuracy (standard deviation in degrees) versus the
number of samples is shown on a log scale (on this scale, the number 10 represents 2"
samples, or 1024 samples). Simulations using Matlab were performed for varying signal
to noise ratios (5 dB, 10 dB, and 20 dB) and for varying numbers of samples. An
excellent agreement between the theory and simulations can be seen. Similar results have

also been demonstrated with measured data in the laboratory.

Phase Accuracy vs. Number of Samples

10' .

T

O  measured

10'1 . A i A A

Iogz(Nsa'np)

Figure 30. Measured and theoretical phase accuracy versus the number of samples.

8.3 FPGA Implementation and Testing
The implementation of phase testing in the FPGA takes place as a sequence of steps

performed on stored data. Operations take place in the following sequence:
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a. Storing M consecutive samples in a FIFO - As shown in Figure 31, a series of

consecutive data samples are stored in a FIFO after collection from an ADC. A subset of

M samples are taken from the FIFO and stored in the RAM bank shown in Figure 31. As

values are collected from the FIFO they are converted from 8-bit signed magnitude

representation to two's complement representation by the subtraction of 127. The array

values stored in RAM (called v[]) are located in adjacent memory locations. The size of

the array (M) should be greater than 1000 and should cover multiple cycles of the input

sinusoidal waveform.

ADC

FPGA BLOCK
Qd |, ||SERDES | » S —
| R —
ld |, ISERDES —> A FIFO > 3;;
M »| 256-bit wide U -
1024 d
Q |, |ISERDES | » IE_’ eep X
E SEL
! |,/ISERDES| —» R | A
1:8 DE-SERIALIZERS f
-
READ | appr” ADDR  WRITE
STATE RAM |, | STATE <
MACHINE (2400 * 8) MACHINE
DATA -
WR_EN
Nzerov AMPLITUDE
COMPUTE jvz(Nzero_v) | L
(G, €2, Cbj, vj, [
Vbi) - PHASE
(jz(Nzero_v)T >

Figure 31. Block diagram of the hardware for phase detection in Data FPGA

b. Determine and count signal zero value transitions — A total of M data values (v[]) are

fetched one at a time from consecutive RAM locations starting with the first value in an

63



array of M values. Each sequence of three consecutive v[] values are then averaged using

a three-point boxcar filter to create a new sequence of values.

vb[j — 1] + vb[j] + vb[j + 1]
3

vb[j] =
The generated vb[] values are used to determine positive-to-negative and negative-to-
positive transitions in the sinusoidal data stream. The number of these zero transitions
(Nzero_v) in the vb[] array is determined along with the index in vb[] where the first

(jvz[1]) and last (jvz[Nzero v]) zero transition in the data stream occurs.

c. Determine a running sum of the square of the signal magnitudes - Data values (v[]) are

also used to calculate a running sum of the square of the magnitude of all points such that

J
c2ll =), lily?
The intermediate values vb[], Nzero v, jvz[Nzero v], and c2[] are calculated in parallel
in the FPGA. These intermediate values are used to calculate estimated amplitude,
frequency, and the phase of the first sample in the v[] array.
d. Estimated amplitude calculation - In terms of the values noted above, the amplitude of

a signal can be estimated by the following equation.

A=
Nzero_v

x/C2[jvz[Nzero_v]] (1)

The numerator in the expression includes the sum of squared magnitudes of all points up
to the index of the last data zero transition. The denominator includes the number of zero
transitions of the sinusoidal signal. A square root is taken of the resulting value to
determine the RMS amplitude value.

e. Estimated frequency calculation - The estimated frequency of the signal is determined

using the following formula:
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(Nzerov—1)

freq = jvz[Nzero_v — 1] — jvz[1] X(Fsamp) (2)

where Fgapp 1S the system sampling frequency of the analog-to-digital converters.

f. Calculation of corrected initial phase - The goal of this calculation is to estimate the
phase of the initial sample in the array sequence. The calculation of this initial phase
takes place in a series of steps. The calculation of initial phase is represented by the

following equation:

phii = (2nx(Nzero_v)) + (g) — (an freq

Xjvz[Nzero_v — 1]) 3)
SAMP

This initial phase is then used in a series of iterations to minimize the error involved in

the calculations. The equations associated with this analysis are:

2 (5in(0m) x(vIm] — Acos(6,,)))
A X m=1(sin(6,))?

phic = phii — 4)

such that
w = 2n Xfreq (5)

dt =
Fsamp

(6)

O, = wxdtx(m — 1) + phii  (7)

In the first iteration, the phii value determined in Equation (3) is used as the input to
Equations (4) and (7). In subsequent iterations, the phic value found in the immediately
previous iteration is used as the equation input in the phii locations. In Equation (4), the
corrected initial phase is effectively refined by evaluating estimated phase values across
all M data points in v[]. A total of 3 iterations were used to estimate phase values in our
experimentation.

To evaluate phase drift, a series of corrected initial phase values (phic) can be

determined for a series of M point data blocks sampled from a single input sinusoidal
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signal. These values can then be compared to expected phase values to determine if a
measurable phase drift can be determined for the sequence.
8.4 Experimental approach

The phase detection circuit has been implemented in the lab using the
experimental setup shown in Figure 32. An arbitrary waveform generator is used to create
a 62 MHz signal which is used as a reference signal. The signal is sent through a splitter
to generate two equivalent signals. These signals are then input into a state-of-the-art
FPGA-based data acquisition system.
Following steps were followed to collect data for our experiments
* The 1.5 GHz clock is enabled to start ADC sampling
* The 62 MHz input signal is enabled
* A start trigger is sent from the signal generator to the FPGA.
* This trigger enables the FIFOs to store state.

* Processing starts once the input FIFO is full.
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SPLITTER GENERATOR
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Figure 32. Block diagram of the experimental setup for the phase detection circuit
Inside the Data FPGA, a 256x1024 FIFO is used to hold a total of 32,768 data
samples. There are two state machines employed in the FPGA. The write state machine
reads the values from the FIFO, splits it into 32 8-bit samples and writes to successive
locations of a RAM. The read state machine reads data at appropriate addresses of RAM
and passes the values to a compute stage.
8.5 Results
Two sets of experiments were performed using the experimental setup described
in Section 8.4. First, the corrected initial phase (phic) of each individual channel was
determined for a series of M point blocks. The actual initial phase (the phase of the first
sample of the first sequence) was then determined using Matlab for comparison. In a

second set of experiments, the corrected initial phases for two channels were compared to
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each other for a series of data point blocks. These results were also compared to Matlab
calculated results.

The hardware implementation of Equations (1-7) includes a mix of fixed and
floating point formats. Values Nzero v, v[], vb[], and jvz[] are represented using 8-bit
2’s complement values. Values c2[] are represented using 26-bit 2’s complement values.
The amplitude calculation in Equation (1) requires the conversion of c2[] and Nzero v
values to floating point. This conversion is performed in the FPGA hardware. Xilinx
floating point multiply, divide, and square root operations are performed on 32-bit
floating point values. An amplitude result (Equation (1)) is generated as a 32-bit integer.
The frequency calculation (Equation (2)) and corrected initial phase calculation
(Equations (3-7)) similarly require the conversion of input values to floating point and the
use of a floating point divider. These calculations also result in 32-bit integer results. The
corrected initial phase (phic) calculations additionally require the use of 32-bit Xilinx
Cordic blocks to perform sin and cos operations [40]. In the Virtex 4 architecture, each
RAM block contains 18 Kbits of data and multipliers perform 18x18 2’s complement
operations.

For our initial single channel experiments, a 600 mV peak-to-peak signal of 62
MHz was fed to the I channel ADC (IADC) and a total of 32,768 8-bit consecutive
samples were stored in the FIFO shown in Figure 31. These samples were then
considered as a series of consecutive M = 2400 sample blocks. The phase of the first
sample of the first sequence was calculated from the samples in post processing (using

algorithms written in Matlab) for reference.
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For the first 2400 value sample block (block 1), the comparison of the calculated
phicl and the post-processed value is straightforward. After calculation using Equations
(3-7), the comparison can be made directly. For subsequent sample blocks, the calculated
values using Equation (4) determine the phase of that block’s (i.e. block m) sequence,
phicm. To adjust this value to allow comparison to the phase of the first sequence, a
phase equivalent to the time delay of 2400 samples at a sample rate of 3 GSamp/sec was

subtracted from the current sample block.

phic;, = phic,, — 360X AT xX(62MHz) (8)

This approach can be extended to monitor/estimate the initial phase of the signal
in real time for several seconds/minutes. The incoming data stream is collected in the
FIFO continuously for the entire receive window duration and the algorithm is run to
estimate the corrected initial phase of the signal at a variety of time points, indicating the
possible presence of phase drift

Table 14 shows the FPGA algorithm’s estimated phase for consecutive blocks of
2400 samples each measured at a sample rate of 3 GSamp/sec (Equations (3-7)) for the I-
channel ADC being read into the FPGA. Three iterations of phic calculation using
Equation (4) were necessary to converge to the result shown in Table 14. The signal’s
true starting phase (I channel - 55.03 deg, Q channel - 45.43 deg) has been determined in
post-processing, and is accurate to within 0.01 degrees. The starting phase itself, while
somewhat arbitrary, should stay constant for each subsequent block. The FPGA
estimated phases, phic, are within 3.1 degrees of the true value and better than 1%
accurate overall (out of 360 degrees of phase), thus validating our approach. The small

remaining error is expected to be due to round off error in the data processing and we are
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currently investigating how to make the measurement accurate to within its theoretical
bounds of 0.01 degrees.

A similar experiment was performed for a 62 MHz input signal for the Q channel
ADC (QADC). Table 15 shows the phase of the signal monitored for 7 successive sample
blocks in the FIFO. For both the results in Table 14 and 15, the clock speed of the FPGA
circuitry was 60 MHz. A total of 0.37 ms was needed to determine phii and 10.3 ms was
required to determine phic. These execution times was determined starting from the
initial sample read from RAM.

The second experiment used to validate the corrected initial phase estimator
involved a comparison of initial phase for signals arriving simultaneously on both I and Q
channels. In this experiment, phic is determined for both channels and subtracted to
determine the phase difference. As shown in Figure 32, a single signal from the arbitrary
waveform generator is split into I and Q channels. Since equal length 2m cables were
used for both channels, minor phase differences were expected. While there are various
reasons that the phase might be different for the two channels (e.g. timing differences
between the two ADCs) the phase difference between the two channels as a function of
time, if performed accurately, shows path-integrated temperature differences between the

two channels that feed into the ADCs.

Sample Estimated Estimated error
block phase, phic

1 58.1 -3.0 deg -0.8 %
2 53.1 +2.0 deg +0.5 %
3 53.0 +2.0 deg +0.6 %
4 55.7 -0.7 deg -0.2%
5 55.5 -0.4 deg -0.1%
6 58.1 -3.1 deg -0.9%
7 53.1 +1.9 deg +0.5 %

Table 14. Corrected initial phase estimation (phic) for IADC versus actual phase
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Sample Estimated Estimated error
block phase, phic

1 47.73 +2.3 deg +0.7 %
2 47.83 +2.4 deg +0.7 %
3 45.23 -0.2 deg -0.0%
4 42.63 -2.8 deg -0.8 %
5 42.83 -2.6 deg -0.7%
6 47.73 +2.3 deg +0.7 %
7 47.83 +2.4 deg +0.7 %

Table 15. Corrected initial phase estimation for QADC versus actual phase

Actual (determined from post-processing) and FPGA estimated phases for a split
62MHz signal input into both I and Q ADC channels are shown in Table 16. A slight
error is seen in the phase estimation due to round off errors and sampling accuracy, which
at times manifests itself as a seven degree error when an entire sample is dropped (see
blocks 4 and 5). With the exception of the errors induced from a dropped sample, it can
be seen that the phase difference measures between the post-processed and FPGA
processed data is consistent to within 0.03° an indication that the FPGA phase

measurement errors are systematic (and not random), and therefore cancel one another

when calculating phase differences.

Sample True FPGA | Difference | Difference
block (phici- | (phict- Error Error
phicg) | phicg)

1 29.22° | 29.78° 0.56° 0.2%
2 29.22° | 29.77° 0.55° 0.2%
3 29.20° | 29.74° 0.54° 0.2%
4 29.23° | 22.18° -7.05° 1.9%
5 29.20° | 22.28° -6.92° 1.9%
6 29.18° | 29.78° 0.60° 0.2%
7 29.19° | 29.77° 0.58° 0.2%
8 29.18° | 29.74° 0.55° 0.2%

Table 16. True (Matlab) versus FPGA measured phase differences
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A final experiment was performed to evaluate an estimate of the signal frequency
using Equation (2). Using a 2400 sample block, an estimate of 61.9964 MHz was

determined for the 62.0000 MHz signal.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

A prototype high speed DAS has been designed and implemented to support
NASA’s SWOT mission. The PCB design phase concentrated on every minute design
aspect with careful attention to schematics, and layout of the board. The board has been
fabricated after several rigorous rounds of design review. The prototype hardware system
has been implemented with a form factor same as that of a standard 6U cPCI form factor
(160mm X 233mm) which makes the board pluggable to the backplane of the cPCI slot.
The hardware system is shown in the Figure 33. The system has been verified for both
FPGA functionalities and the ADC functionalities using the customized test set up in
laboratory conditions. Specialized waveform generators have been used to provide high-
speed clocks and inputs to the system and the results show that the data acquisition
system has been performing up to the mark in terms of performance. The digital
polyphase filter designed by Mike has been successfully integrated with the rest of the
modules and tested. In addition to developing the DAS, an elegant method is described
to monitor the phase of the signal and phase difference between two associated signals
using Data FPGA resources[36]. Results indicate that phase calculations with an error of

less than 2% are achieved using the adaptive approach[36].
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9.2. Future Work

This section provides an overview of the future work before the integration of the system

with the down conversion circuitry and field-testing.

a.

The RocketlO MGTs in the Data PGA need to be tested and verified. A test
design needs to be created in Xilinx ISE platform involving the two MGTs. A test
methodology must be developed to perform testing at high speeds.

Similarly, the SATA and SFP interfaces must be tested and verified. Necessary
drivers needed for SATA and SFP interfaces need to be installed in the Data
FPGA. Test design and a test platform must be created facilitating the testing of
these interfaces.

A state machine is implemented in PCI FPGA that configures the Data FPGA on
start up. This is necessary since the configuration file of the Data FPGA is too
large to be stored in any external non-volatile memory. An initial design is
developed and simulated at UMass and sent to JPL, NASA for further integration
and testing with the real hardware.

Finally after the completion of the above tasks, the non Rad-Hard components on
board must be replaced with Rad-Hard equivalents to allow the system to be

housed in a satellite.
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APPENDIX A
SCHEMATICS
The Schematics for the Data Acquisition Board is given in Appendix A. It spans

from page 77 to page 103.
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