6,061 research outputs found

    Complexity, rate, and scale in sliding friction dynamics between a finger and textured surface.

    Get PDF
    Sliding friction between the skin and a touched surface is highly complex, but lies at the heart of our ability to discriminate surface texture through touch. Prior research has elucidated neural mechanisms of tactile texture perception, but our understanding of the nonlinear dynamics of frictional sliding between the finger and textured surfaces, with which the neural signals that encode texture originate, is incomplete. To address this, we compared measurements from human fingertips sliding against textured counter surfaces with predictions of numerical simulations of a model finger that resembled a real finger, with similar geometry, tissue heterogeneity, hyperelasticity, and interfacial adhesion. Modeled and measured forces exhibited similar complex, nonlinear sliding friction dynamics, force fluctuations, and prominent regularities related to the surface geometry. We comparatively analysed measured and simulated forces patterns in matched conditions using linear and nonlinear methods, including recurrence analysis. The model had greatest predictive power for faster sliding and for surface textures with length scales greater than about one millimeter. This could be attributed to the the tendency of sliding at slower speeds, or on finer surfaces, to complexly engage fine features of skin or surface, such as fingerprints or surface asperities. The results elucidate the dynamical forces felt during tactile exploration and highlight the challenges involved in the biological perception of surface texture via touch

    Electro-Optic Effects in Colloidal Dispersion of Metal Nano-Rods in Dielectric Fluid

    Full text link
    In modern transformation optics, one explores metamaterials with properties that vary from point to point in space and time, suitable for applications in devices such as an "optical invisibility cloak" and an "optical black hole". We propose an approach to construct spatially varying and switchable metamaterials that are based on colloidal dispersions of metal nano-rods (NRs) in dielectric fluids, in which dielectrophoretic forces, originating in the electric field gradients, create spatially varying configurations of aligned NRs. The electric field controls orientation and concentration of NRs and thus modulates the optical properties of the medium. Using gold (Au) NRs dispersed in toluene, we demonstrate electrically induced change in refractive index on the order of 0.1.Comment: 27 pages, 23 figure

    Wearable performance

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2009 Taylor & FrancisWearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment. Wearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Rub the stane

    Get PDF
    Stane is a hand-held interaction device controlled by tactile input: scratching or rubbing textured surfaces and tapping. The system has a range of sensors, including contact microphones, capacitive sensing and inertial sensing, and provides audio and vibrotactile feedback. The surface textures vary around the device, providing perceivably different textures to the user. We demonstrate that the vibration signals generated by stroking and scratching these surfaces can be reliably classified, and can be used as a very cheap to manufacture way to control different aspects of interaction. The system is demonstrated as a control for a music player, and in a mobile spatial interaction scenario

    Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane

    Full text link
    We present an overview of pattern formation analysis for an analogue of the Swift-Hohenberg equation posed on the real hyperbolic space of dimension two, which we identify with the Poincar\'e disc D. Different types of patterns are considered: spatially periodic stationary solutions, radial solutions and traveling waves, however there are significant differences in the results with the Euclidean case. We apply equivariant bifurcation theory to the study of spatially periodic solutions on a given lattice of D also called H-planforms in reference with the "planforms" introduced for pattern formation in Euclidean space. We consider in details the case of the regular octagonal lattice and give a complete descriptions of all H-planforms bifurcating in this case. For radial solutions (in geodesic polar coordinates), we present a result of existence for stationary localized radial solutions, which we have adapted from techniques on the Euclidean plane. Finally, we show that unlike the Euclidean case, the Swift-Hohenberg equation in the hyperbolic plane undergoes a Hopf bifurcation to traveling waves which are invariant along horocycles of D and periodic in the "transverse" direction. We highlight our theoretical results with a selection of numerical simulations.Comment: Dedicated to Klaus Kirchg\"assne

    Spin waves in curved magnetic shells

    Get PDF
    This thesis aims to theoretically explore the geometrical effects on spin waves, the fundamental low-energy excitations of ferromagnets, propagating in curved magnetic shells. Supported by an efficient numerical technique developed for this thesis, several aspects of curvilinear spin-wave dynamics involving magnetic pseudo-charges, the topology of curved magnets, symmetry-breaking effects, and dynamics of spin textures are studied. In recent years, geometrical and curvature effects on mesoscale ferromagnets have attracted the attention of fundamental and applied research. Exciting curvature-induced phenomena include chiral symmetry breaking, the stabilization of magnetic skyrmions on Gaussian bumps, or topologically induced domain walls in Möbius ribbons. Spin waves in vortex-state magnetic nanotubes exhibit a curvature-induced dispersion asymmetry due to geometric contributions to the magnetic volume pseudo-charges. However, previous theoretical studies were limited to simple and thin curved shells due to the complexity of analytical models and the time-consuming nature of existing numerical techniques. For a systematic study of spin-wave propagation in curved shells, the first of five thematic parts of this thesis deals with developing a numerical method to calculate spin-wave spectra in waveguides with arbitrarily shaped cross-sections efficiently. For this, a finite-element/boundary-element method to calculate dynamic dipolar fields, the Fredkin-Koehler method, was extended for propagating waves. The technique is implemented in the micromagnetic modeling package TetraX developed and made available as open source to the scientific community. Equipped with this method, the second part of the thesis studies the influence of geometric contributions to the magnetic charges leading to nonlocal chiral symmetry breaking. Introducing the toroidal moment to spin-wave dynamics allows us to predict whether this symmetry breaking is present even in complicated systems with spatially inhomogeneous equilibria or shells with gradient curvatures. The theoretical study of curvilinear magnetism is extended to thick shells, uncovering a curvature-induced nonreciprocity in the spatial mode profiles of the spin waves. Consequently, nonreciprocal dipole-dipole hybridization between different modes leads to asymmetric level gaps enabling spin-wave diode behavior. Besides unidirectional transport, curvature modifies the weakly nonlinear spin-wave interactions. The third part of this thesis focuses on topological effects. A topological Berry phase of spin waves in helical-state nanotubes is studied and connected to a local curvature-induced chiral interaction of exchange origin. The topology of more complicated systems, such as magnetic Möbius ribbons, is shown to impose selection rules on the spectrum of possible spin waves and split it into modes with half and full-integer indices. To understand the effects of achiral symmetry breaking, the fourth part of this thesis focuses on the deformation of symmetric shells, here, cylindrical nanotubes, to polygonal and elliptical shapes. Lowering rotational symmetry leads to splitting spin-wave dispersions into singlet and doublets branches, which is explained using a simple group theory approach and is analogous to the electron band structure in crystals. Apart from mode splitting, this symmetry breaking allows hybridization between different spin-wave modes and modifies their microwave absorption. While this hybridization appears discretely in polygonal tubes, tuning the eccentricity of elliptical tubes allows controlling the level gaps appearing from hybridization. Finally, the last part focuses on the dynamics of spin waves in the vicinity of spin textures in curvilinear systems. The dynamics of topological meron strings are shown to exhibit dipole-induced chiral symmetry breaking like spin waves in curved shells. Moreover, modulational instability is predicted from the softening of their gyrotropic modes, similar to the formation of stripe domains in flat systems. This stripe domain formation can also be observed in curved shells but leads to tilted or helix domains. Overall, this thesis contributes to the fundamental understanding of spin-wave dynamics on the mesoscale but also advertises these for possible magnonic applications.:Abstract Acknowledgements Contents 1 Introduction Theoretical Foundations 2 Micromagnetic continuum theory 3 Spin waves Numerical methods in micromagnetism 4 Overview 5 Finite-element dynamic-matrix method for propagating spin waves 6 Numerical reverse-engineering of spin-wave dispersions 7 TetraX: A micromagnetic modeling package Aspects of curvilinear magnetization dynamics 8 Magnetic charges 9 Topology 10 Achiral symmetry breaking 11 Spin textures Closing remarks 12 Summary and outlook 13 Publications and conference contributions Appendix A Extended derivations and proofs B Supplementary data and discussion List of Figures List of Tables Bibliography Alphabetical IndexZiel dieser Arbeit ist es, die geometrischen Effekte auf Spinwellen (Magnonen), die fundamentalen niederenergetischen Anregungen von Ferromagneten, die sich in gekrümmten magnetischen Schalen ausbreiten, theoretisch zu untersuchen. Unterstützt durch ein effizientes numerisches Verfahren, das für diese Arbeit entwickelt wurde, werden verschiedene Aspekte der krummlinigen Spinwellen-Dynamik untersucht: magnetische Pseudoladungen, die Topologie gekrümmter Magnete, Symmetriebrechungseffekte und die Dynamik von Spin-Texturen. In den letzten Jahren haben Geometrie- und Krümmungseffekte auf mesoskaligen Ferromagneten die Aufmerksamkeit der Grundlagen- und angewandten Forschung auf sich gezogen. Zu den spannenden krümmungsinduzierten Phänomenen gehören chirale Symmetriebrechung, die Stabilisierung magnetischer Skyrmionen auf Gaußschen Unebenheiten oder topologisch induzierte Domänenwände in Möbiusbändern. Spinwellen in magnetischen Nanoröhren im Vortex-Zustand zeigen eine krümmungsinduzierte Dispersionsasymmetrie aufgrund geometrischer Beiträge zu den magnetischen Volumen-Pseudoladungen. Bisherige theoretische Studien beschränkten sich jedoch auf einfache und dünne gekrümmte Schalen, da die analytischen Modelle zu komplex und die bestehenden numerischen Verfahren zu zeitaufwändig waren. Für eine systematische Untersuchung der Spinwellenausbreitung in gekrümmten Schalen befasst sich der erste von fünf thematischen Teilen dieser Arbeit mit der Entwicklung einer numerischen Methode zur effizienten Berechnung von Spinwellenspektren in Wellenleitern mit beliebig geformten Querschnitten. Dazu wurde eine Finite-Elemente/Grenzelement-Methode zur Berechnung dynamischer Dipolfelder, die Fredkin-Köhler-Methode, für propagierende Wellen erweitert. Die Technik ist in dem mikromagnetischen Modellierungspaket TetraX implementiert, das während dieser Arbeit entwickelt und der wissenschaftlichen Gemeinschaft als Open Source zur Verfügung gestellt wurde. Ausgestattet mit dieser Methode untersucht der zweite Teil der Arbeit den Einfluss von geometrischen Beiträgen zu den magnetischen Ladungen, die zu nichtlokaler chiraler Symmetriebrechung führen. Durch die Einführung des toroidalen Moments in die Spin-Wellen-Dynamik lässt sich vorhersagen, ob diese Symmetriebrechung auch in komplizierten Systemen mit räumlich inhomogenen Gleichgewichtszuständen oder magnetischen Schalen mit Gradientenkrümmungen vorhanden ist. Die theoretische Untersuchung des krummlinigen Magnetismus wird auf dicke Schalen ausgedehnt, für die eine krümmungsbedingte Nichtreziprozität in den räumlichen Modenprofilen der Spinwellen gefunden wird. Als Konsequenz führt nicht-reziproke Dipol-Dipol-Hybridisierung zwischen verschiedenen Moden zu asymmetrischen Niveaulücken, die die Konstruktion von Spinwellen-Dioden ermöglichen. Neben unidirektionalem Transport modifiziert die Krümmung auch die schwach nichtlinearen Spin-Wellen-Wechselwirkungen. Der dritte Teil dieser Arbeit befasst sich mit topologischen Effekten. So wird eine topologische Berry-Phase von Spinwellen in Nanoröhren im Helix-Zustand untersucht, die mit einer lokalen krümmungsinduzierten chiralen Wechselwirkung in Verbindung gebracht wird. Es wird gezeigt, dass die Topologie komplizierterer Systeme, wie z.B. magnetischer Möbiusbänder, dem Spektrum möglicher Spinwellen Auswahlsregeln auferlegt, das damit in Moden mit halb- und ganzzahligen Indizes aufspaltet. Um die Auswirkungen der achiralen Symmetriebrechung zu verstehen, konzentriert sich der vierte Teil dieser Arbeit auf die Verformung symmetrischer Schalen, hier zylindrischer Nanoröhren, zu polygonalen und elliptischen Formen. Die Verringerung der Rotationssymmetrie führt zu einer Aufspaltung der Spin-Wellen-Dispersionen in Singlets Dublets, was mit einem einfachen gruppentheoretischen Ansatz erklärt wird und analog zur Elektronenbandstruktur in Kristallen ist. Abgesehen von der Modenaufspaltung ermöglicht diese Symmetriebrechung eine Hybridisierung zwischen verschiedenen Spin-Wellen-Moden und verändert zudem deren Mikrowellenabsorption. Während diese Hybridisierung in polygonalen Röhren diskret auftritt, kann die Exzentrizität elliptischer Röhren genutzt werden um die durch Hybridisierung entstehenden Niveaulücken kontinuierlich einzustellen. Schließlich konzentriert sich der letzte Teil auf die Dynamik von Spinwellen in der Umgebung von Spinstrukturen in krummlinigen Systemen. Es wird gezeigt, dass die Dynamik topologischer Meron-Strings dipol-induzierte chirale Symmetriebrechungen wie Spinwellen in gekrümmten Schalen aufweist. Darüber hinaus wird eine Instabilität der gyrotropen Mode vorhergesagt, ähnlich der Bildung von Streifendomänen in flachen Systemen. Diese Bildung von Streifendomänen kann auch in gekrümmten Schalen beobachtet werden, führt aber zu gekippten oder spiralförmigen Domänen. Insgesamt trägt diese Arbeit zum grundlegenden Verständnis der Spinnwellen-Dynamik auf der Mesoskala bei, aber diskutiert auch mögliche magnonische Anwendungen.:Abstract Acknowledgements Contents 1 Introduction Theoretical Foundations 2 Micromagnetic continuum theory 3 Spin waves Numerical methods in micromagnetism 4 Overview 5 Finite-element dynamic-matrix method for propagating spin waves 6 Numerical reverse-engineering of spin-wave dispersions 7 TetraX: A micromagnetic modeling package Aspects of curvilinear magnetization dynamics 8 Magnetic charges 9 Topology 10 Achiral symmetry breaking 11 Spin textures Closing remarks 12 Summary and outlook 13 Publications and conference contributions Appendix A Extended derivations and proofs B Supplementary data and discussion List of Figures List of Tables Bibliography Alphabetical Inde

    System integration report

    Get PDF
    Several areas that arise from the system integration issue were examined. Intersystem analysis is discussed as it relates to software development, shared data bases and interfaces between TEMPUS and PLAID, shaded graphics rendering systems, object design (BUILD), the TEMPUS animation system, anthropometric lab integration, ongoing TEMPUS support and maintenance, and the impact of UNIX and local workstations on the OSDS environment

    Quantifying the Topology of Magnetic Skyrmions in three Dimensions

    Full text link
    Magnetic skyrmions have so far been treated as two-dimensional spin structures characterized by a topological winding number describing the rotation of spins across the skyrmion. However, in real systems with a finite thickness of the material being larger than the magnetic exchange length, the skyrmion spin texture extends into the third dimension and cannot be assumed as homogeneous. Using soft x-ray laminography we reconstruct with about 20nm spatial (voxel) resolution the full three-dimensional spin texture of a skyrmion in an 800 nm diameter and 95 nm thin disk patterned into a trilayer [Ir/Co/Pt] thin film structure. A quantitative analysis finds that the evolution of the radial profile of the topological skyrmion number and the chirality is non-uniform across the thickness of the disk. Estimates of local micromagnetic energy densities suggest that the changes in topological profile are related to non-uniform competing energetic interactions. Theoretical calculations and micromagnetic simulations are consistent with the experimental findings. Our results provide the foundation for nanoscale magnetic metrology for future tailored spintronics devices using topology as a design parameter, and have the potential to reverse-engineer a spin Hamiltonian from macroscopic data, tying theory more closely to experiment.Comment: 18 pages, 4 figure
    • …
    corecore