3,561 research outputs found

    Real-time communication over switched ethernet for military applications

    Get PDF
    Full-Duplex Switched Ethernet is a forecasted new technology for advanced military aircraft system interconnection. However, it was not originally developed to meet the requirements of real-time communications. Therefore, in this paper, we analyze traffic shaping and a priority handling approach over switched Ethernet to achieve reliable transmission with bounded delays that conform to the real-time constraints, required by military applications

    Full duplex switched ethernet for next generation "1553B" -based applications

    Get PDF
    Over the last thirty years, the MIL-STD 1553B data bus has been used in many embedded systems, like aircrafts, ships, missiles and satellites. However, the increasing number and complexity of interconnected subsystems lead to emerging needs for more communication bandwidth. Therefore, a new interconnection system is needed to overcome the limitations of the MIL-STD 1553B data bus. Among several high speed networks, Full Duplex Switched Ethernet is put forward here as an attractive candidate to replace the MIL-STD 1553B data bus. However, the key argument against Switched Ethernet lies in its non-deterministic behavior that makes it inadequate to deliver hard timeconstrained communications. Hence, our primary objective in this paper is to achieve an accepted QoS level offered by Switched Ethernet, to support diverse "1553B"-based applications requirements. We evaluate the performance of traffic shaping techniques on Full Duplex Switched Ethernet with an adequate choice of service strategy in the switch, to guarantee the real-time constraints required by these specific 1553B-based applications. An analytic study is conducted, using the Network Calculus formalism, to evaluate the deterministic guarantees offered by our approach. Theoretical analysis are then investigated in the case of a realistic "1553B"-based application extracted from a real military aircraft network. The results herein show the ability of profiled Full Duplex Switched Ethernet to satisfy 1553B-like real-time constraints

    Centralized vs distributed communication scheme on switched ethernet for embedded military applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the future embedded military applications. Therefore, a new interconnection system is needed to overcome these limitations. Two new communication networks based upon Full Duplex Switched Ethernet are presented herein in this aim. The first one uses a distributed communication scheme where equipments can emit their data simultaneously, which clearly improves system’s throughput and flexibility. However, migrating all existing applications into a compliant form could be an expensive step. To avoid this process, the second proposal consists in keeping the current centralized communication scheme. Our objective is to assess and compare the real time guarantees that each proposal can offer. The paper includes the functional description of each proposed communication network and a military avionic application to highlight proposals ability to support the required time constrained communications

    Performance analysis of a Master/Slave switched Ethernet for military embedded applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the next generation military embedded applications. A new communication network based upon Full Duplex Switched Ethernet is proposed in this paper to overcome these limitations. To allow existing military subsystems to be easily supported by a Switched Ethernet network, our proposal consists in keeping their current centralized communication scheme by using an optimized master/slave transmission control on Switched Ethernet thanks to the Flexible Time Triggered (FTT) paradigm. Our main objective is to assess the performance of such a proposal and estimate the quality of service we can expect in terms of latency. Using the Network Calculus formalism, schedulability analysis are determined. These analysis are illustrated in the case of a realistic military embedded application extracted from a real military aircraft network, to highlight the proposal's ability to support the required time constrained communications

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Exploring Alternatives to use Master/Slave Full Duplex Switched Ethernet for Avionics Embedded Applications

    Get PDF
    The complexity of distributed real-time systems, including military embedded applications, is increasing due to an increasing number of nodes, their functionality and higher amounts of exchanged data. This higher complexity imposes major development challenges when nonfunctional properties must be enforced. On the other hand, the current military communication networks are a generation old and are no longer effective in facing such increasingly complex requirements. A new communication network, based on Full Duplex Switched Ethernet and Master/slave approach, has been proposed previously. However, this initial approach is not efficient in terms of network bandwidth utilization. In this paper we propose two new alternative approaches that can use the network bandwidth more efficiently. In addition we provide a preliminary qualitative assessment of the three approaches concerning different factors such as performance, scalability, complexity and flexibility

    Real-time characteristics of switched ethernet for "1553B" -embedded applications : simulation and analysis

    Get PDF
    In our previous work , Full Duplex Switched Ethernet was put forward as an attractive candidate to replace the MIL-STD 1553B data bus, in next generation "1553B"-embedded applications. An analytic study was conducted, using the Network Calculus formalism, to evaluate the deterministic guarantees offered by our proposal. Obtained results showed the effectiveness of traffic shaping techniques, combined with priority handling mechanisms on Full Duplex Switched Ethernet in order to satisfy 1553B-like real-time constraints. In this paper, we extend this work by the use of simulation. This gives the possibility to capture additional characteristics of the proposed architecture with respect to the analytical study, which was basically used to evaluate worst cases and deterministic guarantees. Hence, to assess the real-time characteristics of our proposed interconnection technology, the results yielded by simulation are discussed and average latencies distributions are considered

    Data Acquisition and Control System of Hydroelectric Power Plant Using Internet Techniques

    Get PDF
    Vodní energie se nyní stala nejlepším zdrojem elektrické energie na zemi. Vyrábí se pomocí energie poskytované pohybem nebo pádem vody. Historie dokazuje, že náklady na tuto elektrickou energii zůstávají konstantní v průběhu celého roku. Vzhledem k mnoha výhodám, většina zemí nyní využívá vodní energie jako hlavní zdroj pro výrobu elektrické energie.Nejdůležitější výhodou je, že vodní energie je zelená energie, což znamená, že žádné vzdušné nebo vodní znečišťující látky nejsou vyráběny, také žádné skleníkové plyny jako oxid uhličitý nejsou vyráběny, což činí tento zdroj energie šetrný k životnímu prostředí. A tak brání nebezpečí globálního oteplování. Použití internetové techniky k ovladání několika vodních elektráren má velmi významné výhody, jako snížení provozních nákladů a flexibilitu uspokojení změny poptávky po energii na straně spotřeby. Také velmi efektivně čelí velkým narušením elektrické sítě, jako je například přidání nebo odebrání velké zátěže, a poruch. Na druhou stranu, systém získávání dat poskytuje velmi užitečné informace pro typické i vědecké analýzy, jako jsou ekonomické náklady, predikce poruchy systémů, predikce poptávky, plány údržby, systémů pro podporu rozhodování a mnoho dalších výhod. Tato práce popisuje všeobecný model, který může být použit k simulaci pro sběr dat a kontrolní systémy pro vodní elektrárny v prostředí Matlab / Simulink a TrueTime Simulink knihovnu. Uvažovaná elektrárna sestává z vodní turbíny připojené k synchronnímu generátoru s budicí soustavou, generátor je připojen k veřejné elektrické síti. Simulací vodní turbíny a synchronního generátoru lze provést pomocí různých simulačních nástrojů. V této práci je upřednostňován SIMULINK / MATLAB před jinými nástroji k modelování dynamik vodní turbíny a synchronního stroje. Program s prostředím MATLAB SIMULINK využívá k řešení schematický model vodní elektrárny sestavený ze základních funkčních bloků. Tento přístup je pedagogicky lepší než komplikované kódy jiných softwarových programů. Knihovna programu Simulink obsahuje funkční bloky, které mohou být spojovány, upravovány a modelovány. K vytvoření a simulování internetových a Real Time systémů je možné použít bud‘ knihovnu simulinku Real-Time nebo TRUETIME, v práci byla použita knihovna TRUETIME.Hydropower has now become the best source of electricity on earth. It is produced due to the energy provided by moving or falling water. History proves that the cost of this electricity remains constant over the year. Because of the many advantages, most of the countries now have hydropower as the source of major electricity producer. The most important advantage of hydropower is that it is green energy, which mean that no air or water pollutants are produced, also no greenhouse gases like carbon dioxide are produced which makes this source of energy environment-friendly. It prevents us from the danger of global warming. Using internet techniques to control several hydroelectric plants has very important advantages, as reducing operating costs and the flexibility of meeting changes of energy demand occurred in consumption side. Also it is very effective to confront large disturbances of electrical grid, such as adding or removing large loads, and faults. In the other hand, data acquisition systems provides very useful information for both typical and scientific analysis, such as economical costs reducing, fault prediction systems, demand prediction, maintenance schedules, decision support systems and many other benefits. This thesis describes a generalized model which can be used to simulate a data acquisition and control system of hydroelectric power plant using MATLAB/SIMULINK and TrueTime simulink library. The plant considered consists of hydro turbine connected to synchronous generator with excitation system, and the generator is connected to public grid. Simulation of hydro turbine and synchronous generator can be done using various simulation tools, In this work, SIMULINK/MATLAB is favored over other tools in modeling the dynamics of a hydro turbine and synchronous machine. The SIMULINK program in MATLAB is used to obtain a schematic model of the hydro plant by means of basic function blocks. This approach is pedagogically better than using a compilation of program code as in other software programs .The library of SIMULINK software programs includes function blocks which can be linked and edited to model. Either Simulink Real-Time library or TrueTime library can be used to build and simulate internet and real time systems, in this thesis the TrueTime library was used.

    Set-up and study of a networked control system

    Get PDF

    Aircraft Communication Systems - Topologies, Protocols, and Vulnerabilities

    Get PDF
    Aviation systems are facing fierce competition driven by private investments promoting the development of new avionics suites (AS). With these new AS comes the need for a faster and larger bandwidth requirement for next generation communication systems. The legacy military (MIL) standard 1553 communication system (e.g., 1Mbps) can no longer keep up with the surge in bandwidth demand requirements. The new communication systems need to be designed with a system architecture background that can enable simplistic integration with Information Technology (IT) controlled groundnetworks, military, and commercial payloads. To facilitate a seamless integration with communication architecture, the current system is highly dependent on the Ethernet based IEEE 802.3 standard. Using a standard protocol cuts down on cost and shortens time for accessibility. However, it introduces several other new problems that developers are actively working through. These problems include a loss of redundancy, lower reliability, and cyber-security vulnerabilities. The cyber-security vulnerabilities that are introduced by IEEE 802.3 Ethernet are one of the larger concerns to military defense programs, and other aviation companies. Impacts of these new communication protocols are quantified and presented as cost, redundancy, topology, and vulnerability. This review paper introduces four communication protocols that can replace heritage systems. These protocols are presented and compared against each other in redundancy, reliability, topology and security vulnerabilities in their application on aircraft, space launch vehicles and satellites
    corecore