3,132 research outputs found

    An Autonomous Surface Vehicle for Long Term Operations

    Full text link
    Environmental monitoring of marine environments presents several challenges: the harshness of the environment, the often remote location, and most importantly, the vast area it covers. Manual operations are time consuming, often dangerous, and labor intensive. Operations from oceanographic vessels are costly and limited to open seas and generally deeper bodies of water. In addition, with lake, river, and ocean shoreline being a finite resource, waterfront property presents an ever increasing valued commodity, requiring exploration and continued monitoring of remote waterways. In order to efficiently explore and monitor currently known marine environments as well as reach and explore remote areas of interest, we present a design of an autonomous surface vehicle (ASV) with the power to cover large areas, the payload capacity to carry sufficient power and sensor equipment, and enough fuel to remain on task for extended periods. An analysis of the design and a discussion on lessons learned during deployments is presented in this paper.Comment: In proceedings of MTS/IEEE OCEANS, 2018, Charlesto

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Underwater Exploration and Mapping

    Get PDF
    This paper analyzes the open challenges of exploring and mapping in the underwater realm with the goal of identifying research opportunities that will enable an Autonomous Underwater Vehicle (AUV) to robustly explore different environments. A taxonomy of environments based on their 3D structure is presented together with an analysis on how that influences the camera placement. The difference between exploration and coverage is presented and how they dictate different motion strategies. Loop closure, while critical for the accuracy of the resulting map, proves to be particularly challenging due to the limited field of view and the sensitivity to viewing direction. Experimental results of enforcing loop closures in underwater caves demonstrate a novel navigation strategy. Dense 3D mapping, both online and offline, as well as other sensor configurations are discussed following the presented taxonomy. Experimental results from field trials illustrate the above analysis.acceptedVersio

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Adaptive Path Planning for Depth Constrained Bathymetric Mapping with an Autonomous Surface Vessel

    Full text link
    This paper describes the design, implementation and testing of a suite of algorithms to enable depth constrained autonomous bathymetric (underwater topography) mapping by an Autonomous Surface Vessel (ASV). Given a target depth and a bounding polygon, the ASV will find and follow the intersection of the bounding polygon and the depth contour as modeled online with a Gaussian Process (GP). This intersection, once mapped, will then be used as a boundary within which a path will be planned for coverage to build a map of the Bathymetry. Methods for sequential updates to GP's are described allowing online fitting, prediction and hyper-parameter optimisation on a small embedded PC. New algorithms are introduced for the partitioning of convex polygons to allow efficient path planning for coverage. These algorithms are tested both in simulation and in the field with a small twin hull differential thrust vessel built for the task.Comment: 21 pages, 9 Figures, 1 Table. Submitted to The Journal of Field Robotic

    Local Generating Map System Using Rviz ROS and Kinect Camera for Rescue Robot Application

    Get PDF
    This paper presents a model to generate a 3D model of a room, where room mapping is very necessary to find out the existing real conditions, where this modeling will be applied to the rescue robot. To solve this problem, researchers made a breakthrough by creating a 3D room mapping system. The mapping system and 3D model making carried out in this study are to utilize the camera Kinect and Rviz on the ROS. The camera takes a picture of the area around it, the imagery results are processed in the ROS system, the processing carried out includes several nodes and topics in the ROS which later the signal results are sent and displayed on the Rviz ROS. From the results of the tests that have been carried out, the designed system can create a 3D model from the Kinect camera capture by utilizing the Rviz function on the ROS. From this model later every corner of the room can be mapped and modeled in 3

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Mobile Robotics, Moving Intelligence

    Get PDF

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice
    corecore