5,823 research outputs found

    RLFC: Random Access Light Field Compression using Key Views and Bounded Integer Encoding

    Full text link
    We present a new hierarchical compression scheme for encoding light field images (LFI) that is suitable for interactive rendering. Our method (RLFC) exploits redundancies in the light field images by constructing a tree structure. The top level (root) of the tree captures the common high-level details across the LFI, and other levels (children) of the tree capture specific low-level details of the LFI. Our decompressing algorithm corresponds to tree traversal operations and gathers the values stored at different levels of the tree. Furthermore, we use bounded integer sequence encoding which provides random access and fast hardware decoding for compressing the blocks of children of the tree. We have evaluated our method for 4D two-plane parameterized light fields. The compression rates vary from 0.08 - 2.5 bits per pixel (bpp), resulting in compression ratios of around 200:1 to 20:1 for a PSNR quality of 40 to 50 dB. The decompression times for decoding the blocks of LFI are 1 - 3 microseconds per channel on an NVIDIA GTX-960 and we can render new views with a resolution of 512X512 at 200 fps. Our overall scheme is simple to implement and involves only bit manipulations and integer arithmetic operations.Comment: Accepted for publication at Symposium on Interactive 3D Graphics and Games (I3D '19

    Management and display of four-dimensional environmental data sets using McIDAS

    Get PDF
    Over the past four years, great strides have been made in the areas of data management and display of 4-D meteorological data sets. A survey was conducted of available and planned 4-D meteorological data sources. The data types were evaluated for their impact on the data management and display system. The requirements were analyzed for data base management generated by the 4-D data display system. The suitability of the existing data base management procedures and file structure were evaluated in light of the new requirements. Where needed, new data base management tools and file procedures were designed and implemented. The quality of the basic 4-D data sets was assured. The interpolation and extrapolation techniques of the 4-D data were investigated. The 4-D data from various sources were combined to make a uniform and consistent data set for display purposes. Data display software was designed to create abstract line graphic 3-D displays. Realistic shaded 3-D displays were created. Animation routines for these displays were developed in order to produce a dynamic 4-D presentation. A prototype dynamic color stereo workstation was implemented. A computer functional design specification was produced based on interactive studies and user feedback

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Human Performance Modeling and Rendering via Neural Animated Mesh

    Full text link
    We have recently seen tremendous progress in the neural advances for photo-real human modeling and rendering. However, it's still challenging to integrate them into an existing mesh-based pipeline for downstream applications. In this paper, we present a comprehensive neural approach for high-quality reconstruction, compression, and rendering of human performances from dense multi-view videos. Our core intuition is to bridge the traditional animated mesh workflow with a new class of highly efficient neural techniques. We first introduce a neural surface reconstructor for high-quality surface generation in minutes. It marries the implicit volumetric rendering of the truncated signed distance field (TSDF) with multi-resolution hash encoding. We further propose a hybrid neural tracker to generate animated meshes, which combines explicit non-rigid tracking with implicit dynamic deformation in a self-supervised framework. The former provides the coarse warping back into the canonical space, while the latter implicit one further predicts the displacements using the 4D hash encoding as in our reconstructor. Then, we discuss the rendering schemes using the obtained animated meshes, ranging from dynamic texturing to lumigraph rendering under various bandwidth settings. To strike an intricate balance between quality and bandwidth, we propose a hierarchical solution by first rendering 6 virtual views covering the performer and then conducting occlusion-aware neural texture blending. We demonstrate the efficacy of our approach in a variety of mesh-based applications and photo-realistic free-view experiences on various platforms, i.e., inserting virtual human performances into real environments through mobile AR or immersively watching talent shows with VR headsets.Comment: 18 pages, 17 figure

    Real-time smoke rendering using compensated ray marching

    Full text link
    We present a real-time algorithm called compensated ray march-ing for rendering of smoke under dynamic low-frequency environ-ment lighting. Our approach is based on a decomposition of the input smoke animation, represented as a sequence of volumetric density fields, into a set of radial basis functions (RBFs) and a se-quence of residual fields. To expedite rendering, the source radi-ance distribution within the smoke is computed from only the low-frequency RBF approximation of the density fields, since the high-frequency residuals have little impact on global illumination under low-frequency environment lighting. Furthermore, in computing source radiances the contributions from single and multiple scatter-ing are evaluated at only the RBF centers and then approximated at other points in the volume using an RBF-based interpolation. A slice-based integration of these source radiances along each view ray is then performed to render the final image. The high-frequency residual fields, which are a critical component in the local appear-ance of smoke, are compensated back into the radiance integral dur-ing this ray march to generate images of high detail. The runtime algorithm, which includes both light transfer simula-tion and ray marching, can be easily implemented on the GPU, and thus allows for real-time manipulation of viewpoint and lighting, as well as interactive editing of smoke attributes such as extinction cross section, scattering albedo, and phase function. Only moderate preprocessing time and storage is needed. This approach provides the first method for real-time smoke rendering that includes sin-gle and multiple scattering while generating results comparable in quality to offline algorithms like ray tracing

    Compressed Animated Light Fields with Real-time View-dependent Reconstruction

    Get PDF
    We propose an end-to-end solution for presenting movie quality animated graphics to the user while still allowing the sense of presence afforded by free viewpoint head motion. By transforming offline rendered movie content into a novel immersive representation, we display the content in real-time according to the tracked head pose. For each frame, we generate a set of cubemap images per frame (colors and depths) using a sparse set of of cameras placed in the vicinity of the potential viewer locations. The cameras are placed with an optimization process so that the rendered data maximise coverage with minimum redundancy, depending on the lighting environment complexity. We compress the colors and depths separately, introducing an integrated spatial and temporal scheme tailored to high performance on GPUs for Virtual Reality applications. A view-dependent decompression algorithm decodes only the parts of the compressed video streams that are visible to users. We detail a real-time rendering algorithm using multi-view ray casting, with a variant that can handle strong view dependent effects such as mirror surfaces and glass. Compression rates of 150:1 and greater are demonstrated with quantitative analysis of image reconstruction quality and performance

    Compressed Animated Light Fields with Real-time View-dependent Reconstruction

    Get PDF
    We propose an end-to-end solution for presenting movie quality animated graphics to the user while still allowing the sense of presence afforded by free viewpoint head motion. By transforming offline rendered movie content into a novel immersive representation, we display the content in real-time according to the tracked head pose. For each frame, we generate a set of cubemap images per frame (colors and depths) using a sparse set of of cameras placed in the vicinity of the potential viewer locations. The cameras are placed with an optimization process so that the rendered data maximise coverage with minimum redundancy, depending on the lighting environment complexity. We compress the colors and depths separately, introducing an integrated spatial and temporal scheme tailored to high performance on GPUs for Virtual Reality applications. A view-dependent decompression algorithm decodes only the parts of the compressed video streams that are visible to users. We detail a real-time rendering algorithm using multi-view ray casting, with a variant that can handle strong view dependent effects such as mirror surfaces and glass. Compression rates of 150:1 and greater are demonstrated with quantitative analysis of image reconstruction quality and performance
    corecore