584 research outputs found

    Optimal Real-Time QBI using Regularized Kalman Filtering with Incremental Orientation Sets

    Get PDF
    Diffusion MRI has become an established research tool for the investigation of tissue structure and orientation from which has stemmed a number of variations, such as Diffusion Tensor Imaging (DTI), Diffusion Spectrum Imaging (DSI) and Q-Ball Imaging (QBI). The acquisition and analysis of such data is very challenging due to its complexity. Recently, an exciting new Kalman filtering framework has been proposed for DTI and QBI reconstructions in real time during the repetition time (TR) of the acquisition sequence \cite{Miccai:2007,Med. Image Analysis -Vol 12, Issue 5, June 2008}. In this article, we first revisite and thoroughly analyze this approach and show it is actually sub-optimal and not recursively minimizing the intended criterion due to the Laplace-Beltrami regularization term. Then, we propose a new approach that implements the QBI reconstruction algorithm in real-time using a fast and robust Laplace-Beltrami regularization without sacrificing the optimality of the Kalman filter. We demonstrate that our method solves the correct minimization problem at each iteration and recursively provides the optimal QBI solution. We validate with real QBI data that our proposed real-time method is equivalent in terms of QBI estimation accuracy to the standard off-line processing techniques and outperforms the existing solution. Last, we propose a fast algorithm to recursively compute gradient orientation sets whose partial subsets are almost uniform and show that it can also be applied to the problem of efficiently ordering an existing point-set of any size. Our work allows to start an acquisition just with the minimum number of gradient directions and an initial estimate of the q-ball and then all the rest, including the next gradient directions and the q-ball estimates, are recursively and optimally determined, allowing the acquisition to be stopped as soon as desired or at any iteration with the optimal q-ball estimate. This opens new and interesting opportunities for real-time feedback for clinicians during an acquisition and also for researchers investigating into optimal diffusion orientation sets and, real-time fiber tracking and connectivity mapping

    Online orientation distribution function reconstruction in constant solid angle and its application to motion detection in HARDI

    Get PDF
    International audienceThe diffusion orientation distribution function (ODF) can be reconstructed from q-ball imaging (QBI) to map the complex intravoxel structure of water diffusion. As acquisition time is particularly large for high angular resolution diffusion imaging (HARDI), fast estimation algorithms have recently been proposed, as an on-line feedback on the reconstruction accuracy. Thus the acquisition could be stopped or continued on demand. We adapt these real-time algorithms to the mathematically correct definition of ODF in constant solid angle (CSA), and develop a motion detection algorithm upon this reconstruction. Results of improved fiber crossing detection by CSA ODF are shown, and motion detection was implemented and tested in vivo

    Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom.

    Get PDF
    International audienceAs it provides the only method for mapping white matter fibers in vivo, diffusion MRI tractography is gaining importance in clinical and neuroscience research. However, despite the increasing availability of different diffusion models and tractography algorithms, it remains unclear how to select the optimal fiber reconstruction method, given certain imaging parameters. Consequently, it is of utmost importance to have a quantitative comparison of these models and algorithms and a deeper understanding of the corresponding strengths and weaknesses. In this work, we use a common dataset with known ground truth and a reproducible methodology to quantitatively evaluate the performance of various diffusion models and tractography algorithms. To examine a wide range of methods, the dataset, but not the ground truth, was released to the public for evaluation in a contest, the "Fiber Cup". 10 fiber reconstruction methods were evaluated. The results provide evidence that: 1. For high SNR datasets, diffusion models such as (fiber) orientation distribution functions correctly model the underlying fiber distribution and can be used in conjunction with streamline tractography, and 2. For medium or low SNR datasets, a prior on the spatial smoothness of either the diffusion model or the fibers is recommended for correct modelling of the fiber distribution and proper tractography results. The phantom dataset, the ground truth fibers, the evaluation methodology and the results obtained so far will remain publicly available on: http://www.lnao.fr/spip.php?rubrique79 to serve as a comparison basis for existing or new tractography methods. New results can be submitted to [email protected] and updates will be published on the webpage

    Imagerie de diffusion en temps-réel (correction du bruit et inférence de la connectivité cérébrale)

    Get PDF
    La plupart des constructeurs de systèmes d'imagerie par résonance magnétique (IRM) proposent un large choix d'applications de post-traitement sur les données IRM reconstruites a posteriori, mais très peu de ces applications peuvent être exécutées en temps réel pendant l'examen. Mises à part certaines solutions dédiées à l'IRM fonctionnelle permettant des expériences relativement simples ainsi que d'autres solutions pour l'IRM interventionnelle produisant des scans anatomiques pendant un acte de chirurgie, aucun outil n'a été développé pour l'IRM pondérée en diffusion (IRMd). Cependant, comme les examens d'IRMd sont extrêmement sensibles à des perturbations du système hardware ou à des perturbations provoquées par le sujet et qui induisent des données corrompues, il peut être intéressant d'investiguer la possibilité de reconstruire les données d'IRMd directement lors de l'examen. Cette thèse est dédiée à ce projet innovant. La contribution majeure de cette thèse a consisté en des solutions de débruitage des données d'IRMd en temps réel. En effet, le signal pondéré en diffusion peut être corrompu par un niveau élevé de bruit qui n'est plus gaussien, mais ricien ou chi non centré. Après avoir réalisé un état de l'art détaillé de la littérature sur le bruit en IRM, nous avons étendu l'estimateur linéaire qui minimise l'erreur quadratique moyenne (LMMSE) et nous l'avons adapté à notre cadre de temps réel réalisé avec un filtre de Kalman. Nous avons comparé les performances de cette solution à celles d'un filtrage gaussien standard, difficile à implémenter car il nécessite une modification de la chaîne de reconstruction pour y être inséré immédiatement après la démodulation du signal acquis dans l'espace de Fourier. Nous avons aussi développé un filtre de Kalman parallèle qui permet d'appréhender toute distribution de bruit et nous avons montré que ses performances étaient comparables à celles de notre méthode précédente utilisant un filtre de Kalman non parallèle. Enfin, nous avons investigué la faisabilité de réaliser une tractographie en temps-réel pour déterminer la connectivité structurelle en direct, pendant l'examen. Nous espérons que ce panel de développements méthodologiques permettra d'améliorer et d'accélérer le diagnostic en cas d'urgence pour vérifier l'état des faisceaux de fibres de la substance blanche.Most magnetic resonance imaging (MRI) system manufacturers propose a huge set of software applications to post-process the reconstructed MRI data a posteriori, but few of them can run in real-time during the ongoing scan. To our knowledge, apart from solutions dedicated to functional MRI allowing relatively simple experiments or for interventional MRI to perform anatomical scans during surgery, no tool has been developed in the field of diffusion-weighted MRI (dMRI). However, because dMRI scans are extremely sensitive to lots of hardware or subject-based perturbations inducing corrupted data, it can be interesting to investigate the possibility of processing dMRI data directly during the ongoing scan and this thesis is dedicated to this challenging topic. The major contribution of this thesis aimed at providing solutions to denoise dMRI data in real-time. Indeed, the diffusion-weighted signal may be corrupted by a significant level of noise which is not Gaussian anymore, but Rician or noncentral chi. After making a detailed review of the literature, we extended the linear minimum mean square error (LMMSE) estimator and adapted it to our real-time framework with a Kalman filter. We compared its efficiency to the standard Gaussian filtering, difficult to implement, as it requires a modification of the reconstruction pipeline to insert the filter immediately after the demodulation of the acquired signal in the Fourier space. We also developed a parallel Kalman filter to deal with any noise distribution and we showed that its efficiency was quite comparable to the non parallel Kalman filter approach. Last, we addressed the feasibility of performing tractography in real-time in order to infer the structural connectivity online. We hope that this set of methodological developments will help improving and accelerating a diagnosis in case of emergency to check the integrity of white matter fiber bundles.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
    corecore