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Abstract: Diffusion MRI has become an established research tool for the investigation of tis-
sue structure and orientation from which has stemmed a number of variations, such as Diffusion
Tensor Imaging (DTI) Diffusion Spectrum Imaging (DSI) and Q-Ball Imaging (QBI). The acqui-
sition and analysis of such data is very challenging due to its complexity. Recently, an exciting
new Kalman filtering framework has been proposed for DTI and QBI reconstructions in real time
during the repetition time (TR) of the acquisition sequence [27, 29]. In this article, we first revisite
and thoroughly analyze this approach and show it is actually sub-optimal and not recursively mini-
mizing the intended criterion due to the Laplace-Beltrami regularization term. Then, we propose a
new approach that implements the QBI reconstruction algorithm in real-time using a fast and robust
Laplace-Beltrami regularization without sacrificing the optimality of the Kalman filter. We demon-
strate that our method solves the correct minimization problem at each iteration and recursively pro-
vides the optimal QBI solution. We validate with real QBI data that our proposed real-time method
is equivalent in terms of QBI estimation accuracy to the standard off-line processing techniques and
outperforms the existing solution. Last, we propose a fast algorithm to recursively compute gradient
orientation sets whose partial subsets are almost uniform and show that it can also be applied to the
problem of efficiently ordering an existing point-set of any size. Our work allows to start an acqui-
sition just with the minimum number of gradient directions and an initial estimate of the q-ball and
then all the rest, including the next gradient directions and the q-ball estimates, are recursively and
optimally determined, allowing the acquisition to be stopped as soon as desired or at any iteration
with the optimal q-ball estimate. This opens new and interesting opportunities for real-time feed-
back for clinicians during an acquisition and also for researchers investigating into optimal diffusion
orientation sets and, real-time fiber tracking and connectivity mapping.
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Imagerie par Q-Ball Optimale et en Temps-Réel base de Filtre

de Kalman Regularisé et d’Orientations de Diffusion Définis

Incrémentalement

Résumé : L’IRM de diffusion, avec ses techniques récentes comme l’imagerie par tenseur de diffu-
sion (DTI) et l’imagerie par q-ball (QBI), est maintenant reconnue comme un outil important pour
l’étude de l’architecture neuronale du système nerveux central. Cependant le temps d’acquisition
et l’analyse de ce type d’imagerie de diffusion restent encore aujourd’hui complexes et très lourds.
Récemment, une nouvelle méthode d’acquisition DTI et QBI temps-réel a été proposée en utilisant le
filtre de Kalman [27, 29]. Dans ce rapport, nous revisitons d’abord cette très intéressante approche à
base de filtre de Kalman et montrons qu’elle est en fait, sous-optimale, et qu’elle ne minimise pas le
critère désiré à cause du terme de régularisation de Laplace-Beltrami. Nous proposons donc une nou-
velle approche optimale de QBI temps-réel qui est rapide et robuste, en incluant le terme de regulari-
sation Laplace-Beltrami directement dans le filtrage de Kalman. Nous démontrons que notre solution
minimise effectivement le bon critère à toute les itérations de l’estimation et que la solution temps-
réel est équivalente et aussi précise qu’une estimation QBI hors-ligne. Enfin, nous développons une
méthode récursive pour calculer un jeu d’orientations de gradients de diffusion, avec sous-ensembles
partiels d’orientations presque uniforme sur la sphère. Ceci permet de démarrer l’acquisition de
diffusion avec un minimum de directions de diffusion et de rajouter incrémentalement de nouvelles
directions jusqu’à ce que l’estimation désirée soit obtenue. L’acquisition peut donc être arrêtée à tout
moment, tout en ayant une estimation QBI optimale. Cette nouveauté ouvre des perspectives très
intéressantes pour l’interaction et l’intervention en temps-réel des cliniciens pendant l’acquisition,
afin de mieux optimiser les directions de gradients utilisées et de faire ensuite du suivie de fibres
(tractographie) en temps-réel.

Mots-clés : Imagerie par résonance magnétique (IRM), IRM de diffusion à haute résolution an-
gulaire, imagerie par q-ball (QBI), fonction d’orientation de distribution des fibres (ODF), IRM de
diffusion temps-réel, filtre de Kalman, harmoniques sphériques, regularisation Laplace-Beltrami.
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1 Introduction

Diffusion MRI (dMRI) is a recent Magnetic Resonance Imaging technique introduced in the middle
of the 80’s by [20, 21, 32]. Since the first acquisitions of diffusion-weighted images (DWI) in vivo by
[22, 23] and the development of the rigorous formalim of the diffusion tensor (DT) model by [2, 3, 4],
dMRI has become an established research tool for the investigation of tissue structure and orientation
and has opened up a landscape of extremely exciting discoveries for medicine and neuroscience.
dMRI utilizes the measurement of Brownian motion of water molecules to gain information about
tissue structure and orientation inside the brain and other organs. Using dMRI to infer the three
dimensional diffusion probability displacement function (PDF) requires the acquisition of many
diffusion images sensitized to different orientations in the sampling space. The number of diffusion
weighted images (DWI) required depends on how the diffusion is modeled. The well known DT
model assumes the PDF is Gaussian and requires at least 6 DWIs plus an additional unweighted
image. However, the Gaussian assumption is over-simplifying the diffusion of water molecules and
thus has some limitations. While the Gaussian assumption is adequate for voxels in which there is
only a single fiber orientation (or none), it breaks down for voxels in which there is more complicated
internal structure. This is an important limitation, since resolution of DTI acquisition is between 1
mm3 and 27 mm3 while the physical diameter of fibers can be between 1 µm and 30 µm [6, 26].
Research groups currently agree that there is complex fiber architecture in most fiber regions of the
brain [25]. In fact, it is currently thought that between one third to two thirds of imaging voxels in
the human brain white matter contain multiple fiber bundle crossings [7].

Therefore, it is of utmost importance to develop techniques that go beyond the limitations of dif-
fusion tensor imaging (DTI). To do so, high angular resolution diffusion imaging (HARDI) has been
proposed to measure diffusion images along several directions. Some HARDI reconstruction tech-
niques are model dependent, some model-free, some have linear solutions whereas others require
non-linear optimization schemes. A good review of these methods can be found in [12]. In this
paper, we will be using a recent HARDI technique known as the Q-Ball Imaging (QBI). Originally
proposed by [36], QBI allows to reconstruct the angular part of the diffusion displacement proba-
bility density function (PDF) of water molecules, also called the diffusion orientation distribution
function (ODF). This is a spherical function very useful to drive the tractography since its maxima
are aligned with the underlying fiber directions at every voxel. QBI and the diffusion ODF play a
central role in this work focused on the development of a real-time regularized ODF solution that
outperforms the state-of-the-art ODF estimation. However, note that the regularized Kalman filtering
framework could also be adapted easily to the fiber orientation density (FOD) [34, 35] reconstruction
as well.

Generally, HARDI requires much more diffusion weighted measurements than traditional DTI
acquisitions, but they can resolve some of the fiber crossing problems. This comes at the price of a
longer acquisition time, which can be problematic for clinical studies involving children and people
inflicted with certain diseases. Excessive motion of the patient during the acquisition process can
force a acquisition to be aborted or make the diffusion weighted images useless. Thus, one would
like to make only as many acquisitions as is necessary. According to the literature, this number is

RR n° 6793



6 R. Deriche, J. Calder, M. Descoteaux

likely to be somewhere between 50 and 200 diffusion weighted measurements but this is still an
open question.

Recently [27, 29] nicely addressed this issue and proposed an original algorithm for real-time
estimation of the diffusion tensor and the orientation distribution function (ODF) using the Kalman
filtering framework. [3] were the first to mention to the potential use of the Kalman Filtering in the
process of DTI reconstruction. However, to our knowledge, until the recent paper by [27, 29], no one
had developed this idea, implemented it and put it in practice. The DT model, without any positivity
constraints, is linear and easily fits into the Kalman filtering framework. However, the fast and robust
analytical ODF reconstruction algorithm proposed in [13] includes a regularization term to deal with
poor signal to noise (SNR) ratios, which adds a term in the minimization problem. In an attempt to
include this regularization term in their Kalman filtering algorithm, [27, 29] make some adjustments
to the reconstruction model. These adjustments make the Kalman filtering algorithm sub-optimal

in terms of the Laplace-Beltrami criterion with the largest errors occurring at the beginning of the
acquisition sequence. This has significant implications for the intended applications of the real-time
dMRI processing. As we would like to stop the acquisition as soon as the estimation has converged,
a good estimation of the ODFs is highly desirable at the beginning of the acquisition and thus, the
development of an optimal and incremental solution is important.

We propose a Kalman filtering solution that will correctly incorporate the regularization term
from [13] into the filter’s parameters without changing the ODF reconstruction model. The basic
idea is to go back to the derivation of the Kalman filtering equations and include this regularization
term. The surprising result is that only the initial covariance matrix needs to be modified to correctly
implement the regularization term. We will show that our proposed algorithm yields optimal ODF
estimations at each iteration (ie: continuously from the beginning to the end of the acquisition) and
hence clearly provides an important added value over the elegant and original approach pionnered
in [27, 29].

Therefore, we revisite and analyze the Kalman filtering framework to derive the correct equations
that allow to recursively estimate the optimal ODF at each iteration. In order for this framework to
be fully incremental and take its full power, we also tackle the problem of the optimal choice of the
diffusion weighted gradient orientation set. Typically, each measurement is acquired along a given
orientation extracted from an optimised set of orientations estimated and ordered off-line, before
the acquistion is started. Hence, another important contribution of this work will be to propose a
fast algorithm to incrementally compute gradient orientation sets whose partial subsets are almost
uniform. This will allow to start an acquisition just with the minimum number of gradient directions
and an initial estimate of the ODF so that all other processing steps, including next gradient direction
generation and ODF reconstruction, are recursively, incrementally and optimally determined. This
will truly allow the acquisition to be stopped at any time with the optimal ODF estimate.

As background for the reader, we describe the Kalman filter in section 2.2. In section 3, we first
thoroughly analyze the method from [27, 29] and then describe our proposed recursive solution and
prove that it is optimal with respect to the regularization criterion used in [13]. Next, in section 4
we propose a fast algorithm to recursively compute gradient orientation sets whose partial subsets
are roughly uniform and show that it can also be applied to the problem of efficiently ordering an

INRIA
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existing point-set of any size. Finally, in section 5 we present various set of experimental results
verifying our claims before concluding the paper.

2 Background

Before presenting the body of this paper, we will provide some background on Kalman filtering and
ODF reconstruction techniques as well as clarify some notation.

2.1 Linear Observation Model

Throughout this paper we will use the following notation for the linear observation model.

yi = Cix + ǫi (2.1)

where yi is a scalar observation at the discrete time step i, x ∈ R
n is the state vector we wish to

estimate, Ci is the 1 × n observation matrix and ǫi is a Gaussian random variable with zero mean
and variance Ri. We will use the notation E[·] for the the expected value of a random variable or
vector. Furthermore, we will assume that E[ǫiǫj ] = 0 for i 6= j . We will frequently combine all the
measurements up to time k into a linear system in order to compute the least squares estimation of
the state x. In this case, we will use the notation

yk = Bkx + ηk (2.2)

where yk = [y1 y2 . . . yk]T is a vector of observations, ηk = [ǫ1 ǫ2 . . . ǫk]T is the vector
of Gaussian random variables, and Bk = [CT

1 CT
2 . . . CT

k ]T is the k × n matrix containing all
the observation matrices up to time k. Here, we use the T operator to denote matrix or vector
transposition. Let us denote the covariance matrix of ηk by Wk. Since the noise sequence is zero
mean, this is written as Wk = E

[

ηkη
T
k

]

. Since we are assuming that the components of the
Gaussian noise vector are uncorrelated, Wk is diagonal with diagonal elements given by Var(ǫj) =
Rj for j = 1 . . . k.

We will denote by x̂k the minimum variance estimation of the state x given all observations from
time i = 1 . . . k. Thus, we can express x̂k as

x̂k = arg min
x∈Rn

(yk − Bkx)T W−1
k (yk − Bkx). (2.3)

The solution to equation (2.3) is easily obtained by differentiating with respect to x. We obtain

x̂k = (BT
k W−1

k Bk)−1BT
k W−1

k yk (2.4)

2.2 Kalman Filtering

The Kalman Filter is a linear optimal recursive estimator that first appeared in [19]. It was originally
designed for linear time-varying dynamic systems but has since been successfully used for non-
linear systems and problems involving state constraints. For an excellent textbook reference please

RR n° 6793
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also see [8] . We recall the observation model equation (2.1)

yi = Cix + ǫi.

As we record each new measurement, we gain an incremental amount of information about the
state x and by combining all the recorded measurements into a linear system, we can compute the
minimum variance estimation after k observations x̂k using equation (2.4).

x̂k = (BT
k W−1

k Bk)−1BT
k W−1

k yk

However, as we only gain an incremental amount of information about the state between observa-
tions yk−1 and yk, it is reasonable to expect that the corresponding change in the state estimate
between x̂k−1 and x̂k is also incremental. The Kalman Filter allows us to quantify this incremen-
tal estimation correction and express x̂k in terms of x̂k−1 and the new observation. The Kalman
filtering equations are given below.























x̂0 = E[x0]
P0 = E

[

(x0 − x̂0)(x0 − x̂0)
T
]

Gk = Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1

Pk = (I − GkCk)Pk−1

x̂k = x̂k−1 + Gk (yk − Ckx̂k−1)

(2.5)

zk = yk − Ckx̂k−1 is generally called the innovations sequence and Gk is called the Kalman gain
vector. It can be shown that

Pk = E
[

(x − x̂k)(x − x̂k)T
]

(2.6)

so Pk is the covariance matrix of the estimation error at time k.

2.3 Q-Ball Linear Model

QBI has the advantage over diffusion tensor imaging of being model independent [36]. He showed
that it was possible to reconstruct a smoothed version of the diffusion orientation distribution func-
tion (ODF), ψ(g) =

∫∞

0
P (gr)dr, directly from a single shell HARDI acquisition. The method

involves viewing the HARDI acquisition signals as samples of a function on the sphere and taking
the Funk-Radon transform (FRT) to arrive at the diffusion ODF. Many methods have been proposed
to compute the FRT of the HARDI signal and most recently, [13] proposed a fast and robust analyti-
cal method to estimate the ODF by decomposing the HARDI signal onto a spherical harmonic basis.
As in [27, 29], we will use this method because it is robust with respect to noise and well-suited for
real-time applications.

Hence, letting Y m
ℓ denote the SH of order ℓ and degree m (m = −ℓ, ..., ℓ) in the standard basis

and Yj (j(ℓ,m) = (ℓ2 + ℓ+ 2)/2 +m) be the SH in the modified real and symmetric basis [11, 13],
the HARDI signal can now be expressed with the linear observation model

S(θi, φi) =

n
∑

j=1

x̃jYj(θi, φi) = C̃ix̃ (2.7)

INRIA
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where n = (L+1)(L+2)/2 is the number of terms in the modified spherical harmonic basis of order
L, S(θi, φi) is the measured HARDI signal in the direction given by the polar coordinates (θi, φi)
and C̃i = [Y1(θiφi) Y2(θi, φi) . . . Yn(θi, φi)]. Since we have a linear observation model, given
any number of measurements, we can decompose the HARDI signal onto the spherical harmonic
basis by computing the least squares solution from equation (2.4). However, as diffusion weighted
images are typically very noisy, [11] have proposed a robust regularized estimation algorithm using
the Laplace-Beltrami operator, which leads to the following regularized minimization equation,

M(x̃) =
(

ỹk − B̃kx̃
)T (

ỹk − B̃kx̃
)

+ λx̃T L̃x̃, (2.8)

where B̃k = [C̃T
1 C̃T

2 . . . C̃T
k ]T and ỹk = [S(θ1, φ1) S(θ2, φ2) . . . S(θk, φk)]T contains the

HARDI measurements.
Now we are really interested in relating the ODF to the HARDI signal and as the spherical

harmonic functions are eigenfunctions of the FRT, there is a simple relationship between the HARDI
signal and the ODF in the spherical harmonic basis. In [13], the authors show that the spherical
harmonic coefficients of the ODF, x, are given by x = 1

S0

Px̃ where P is the n × n FRT matrix

with diagonal elements pkk given by pkk = 2πPℓ(j)(0) and Pℓ(j)(0)1 is the Legendre polynomial
of degree ℓ evaluated at 0 Since we want to estimate the ODF directly from HARDI data, we can
rewrite the minimization criterion (2.8) in terms of the spherical harmonic representation, x, of the
ODF. We have

M(x) = (yk − Bkx)
T

(yk − Bkx) + λxT Lx (2.9)

where Bk = B̃kP
−1 and yk = ỹk/S0 and L = P−1L̃P−1. So by minimizing equation (2.9) we

can robustly estimate the ODF directly from the HARDI signal. Now, although we have the same
linear observation model as used in the Kalman filter, the minimization criterion is slightly different
than equation (2.3) due to the additional regularization term. In the next section, we will address this
problem in the Kalman filtering framework.

3 Kalman Filtering with Regularization

The Kalman filtering algorithm presented in section 2.2 recursively solves equation (2.3) at each
time step k. However, as in the ODF estimation proposed by [13], we would like to consider the
following minimization problem

x̂k = arg min
x∈Rn

(yk − Bkx)T W−1
k (yk − Bkx) + λxT Lx (3.1)

which is slightly modified from equation (2.3) by the addition of λxT Lx which is a quadratic regu-
larization term on the state variable x. The closed form solution to equation (3.1) is easily obtained
by setting the partial derivatives equal to zero. This yields

x̂k = (BT
k W−1

k Bk + λL)−1BT
k W−1

k yk (3.2)

1ℓ(j) is the order associated with the jth element of the spherical harmonic basis, ie: for j =
1, 2, 3, 4, 5, 6, 7, . . . ℓ(j) = 0, 2, 2, 2, 2, 2, 4, . . .

RR n° 6793
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We would like to modify the Kalman filtering equations (2.5) so that we can recursively solve
equation (3.2) with the addition of each new observation. Currently, we are only aware of the work
by [27, 29] addressing this problem in practice for DT and ODF estimation with the Kalman filtering
framework, although the idea was first mentioned in [3] for DTI reconstruction. We show in the next
sections that the method in [27, 29] is actually sub-optimal for every time step except the last one.
Then, in section 3.2, we present a new Kalman filtering method that deals with this regularization
term with a very simple and elegant modification of the Kalman filtering equations from section 2.2.

3.1 Existing Method

In [27, 29], the authors suggest to start with the solution (3.2) and invert it to obtain a linear system,
whose least squares solution coincides with equation (3.2). Let N be the total number of mea-
surements in the MR acquisition. In [27, 29], they use N = 200 in their experiments and they
take the noise covariance matrix as the identity (ie: WN = IN×N ). The linear system they use is
yN = B+x + ηN where B+ is defined as

B+ =
(

(BT
NBN + λL)−1BT

N

)†

. The symbol (·)† is used to denote the Moore-Penrose pseudo-inverse operator. Now, denote the kth

row of B+ by C+
k . By using the linear system yN = B+x + ηN , [27, 29] are using the following

observation equation
yk = C+

k x + ǫk, (3.3)

as input to the Kalman filter at each time step k. In theory, there is no reason why this is the correct
incremental solver. Their results do show the Kalman filter estimation converging to the correct
estimate after N iterations, but this is evident (with some thought) from the definition of B+. It is
not clear, however, if any of the intermediate ODF estimations (ie: for 1 ≤ k < N ) are actually
minimizing the correct criterion (3.1) which is reproduced here.

M(x) = (yk − Bkx)T W−1
k (yk − Bkx) + λxT Lx (3.4)

In the next section, we analyze this approach and derive an explicit expression for the estimation at
each iteration. In doing so, we show that this approach in fact does not minimize equation (3.1) at
any iterations except for the last.

3.1.1 Analysis

In keeping with the exact method proposed in [27, 29], we assume the noise covariance matrix Wk

is the identity matrix for all time steps k. Before doing any detailed analysis, we can make some
notes just from the definition of B+ and the observation equation

yk = C+
k x + ǫk. (3.5)

As C+
k is a row of B+, it is clear from definition of B+ that every observation matrix C+

k depends
on BN and therefore on all N gradient acquisition directions. Hence, the acquisition of a given

INRIA
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diffusion gradient orientation will be modeled differently depending on how many acquisitions are
required in the acquisition. Furthermore, this means that when applying the Kalman filter to this
model, every estimation depends on the entire diffusion orientation set being used. Thus, chang-
ing some diffusion gradients at the end of the acquisition could influence the estimations from the
beginning. This is definitely undesirable behavior for an incremental optimal estimator. Based on
the experimental results in [27, 29] this method converges after all N acquisitions, but they do not
provide validation to show how close the intermediate estimations are to the optimal intermediate
estimations.

The best way to analyze the method from [27, 29] is to derive an explicit expression for the
Kalman filter output at each iteration under this method. First, we derive in appendix A a closed
form expression for B+. The result is

B+ =
(

(BT
NBN + λL)−1BT

N

)†

= BN

(

In×n + λ
(

BT
NBN

)−1
L
)

. (3.6)

Now let Dk = [C+
1

T
C+

2

T
. . . C+

k

T
]T be the k × n matrix containing the first k observation

matrices (or rows of B+). Using the result in equation (3.6), we can write Dk as

Dk = Bk

(

In×n + λ
(

BT
NBN

)−1
L
)

(3.7)

This formula comes from the fact that taking the first k rows of the product of two matrices (ie: DN

= BN×nAn×n) is equivalent to taking the first k rows of the first matrix, Bk×n and multiplying
them by the second matrix An×n (ie: Dk = Bk×nAn×n). Now consider the linear system

yk = Dkx + ηk. (3.8)

This linear system relates all the observations up to time k to the state x using the observation
equation (3.3) used in [27, 29]. So, after k observations, the “optimal” state estimate will be given
by the least squares solution to this linear system. That is, the output of the Kalman filter, x̂k at
iteration k is given by

x̂k =
(

DT
k Dk

)−1
DT

k yk

This can be simplified (see appendix B ) to

x̂k =
(

BT
k Bk + λBT

k Bk

(

BT
NBN

)−1
L
)−1

BT
k yk (3.9)

A quick comparison with equation (3.2) shows that this is not the optimal estimate unless

BT
k Bk = BT

NBN

or λ = 0. The former is only satisfied when k = N . Thus, we have shown that this method is sub-
optimal at every estimation step except for the last. We should note that we do not mean to imply
that the authors of [27, 29] are mistaken about their results. Since the state estimate will converge
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12 R. Deriche, J. Calder, M. Descoteaux

to the optimal estimate by the last diffusion gradient acquisition, there will be iterations, especially
near the end, where the estimate is very close to optimal. However, there will most definitely be
many intermediate iterations where the estimation is far from optimal and this was not investigated
in [27, 29]. The implications of this sub-optimality should be made perfectly clear. If the expected
number of acquisitions is set to N = 200 and the acquisition was stopped before completion (say
at k = 100) the ODF estimates obtained from the Kalman filtering method of [27, 29] will not be
minimizing the correct criterion from equation (3.1). They will in fact be minimizing

M(x) = (yk − Dkx)
T

(yk − Dkx) (3.10)

which yields a different minimizing argument (3.9) compared to the correct criterion (3.1) for k <
200.

3.1.2 Some Naive Approaches

There are some naive approaches one might take to correct the method from [27, 29]. The first comes
from the observation that this method could be ”corrected” by replacing N by k in the definition of
Dk (3.7). Then the least squares solution to yk = Dkx would be equal to the correct solution
from equation (3.2). This in fact would be true, but it is impossible to apply Kalman filtering in
this situation. Recall that the Kalman filter is derived from the linear observation model (2.1); it
depends heavily on the fact that Bk−1 and Bk differ by only the addition of one row Ck. If we
were to make this modification to Dk, then Dk would differ from Dk−1 by much more than just
the addition of a single row. Therefore, there would be no system of observation models of the form
yk = Ckx + ǫk such that Dk = [CT

1 CT
2 . . . CT

k ]T for all k. This makes it impossible to derive a
recursive relationship between x̂k and x̂k−1 and hence impossible to apply the Kalman filter.

The second approach is similar to the first; since we cannot apply the Kalman filter recursively
with the modification described above, we could apply the Kalman filter to all of the data when we
get a new observation. But by doing this, the solution is no longer obtained in a recursive way and
real-time processing is impossible. For example, to compute the estimation at iteration k the Kalman
filter would have to be iterated over all the previously recorded observations which is k times more

expensive than the truly recursive Kalman filter and thus not suitable for real-time applications.
In fact, there is little difference between this method and computing the offline estimation at each
iteration.

The purpose of this discussion is to clarify that there are no simple modifications that could cor-
rect the method from [27, 29]. In the next section, we will present a modification of the Kalman filter
that allows the regularization term to be incorporated while still producing the optimal estimation at
every time step.

3.2 Proposed Method

We propose a new Kalman filtering method that will incorporate the regularization term in the initial
condition of P0. Recall that we wish to solve the following equation (3.1)

x̂k = arg min
x∈Rn

(yk − Bkx)T W−1
k (yk − Bkx) + λxT Lx
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in a recursive manner. The Kalman filtering equations for our proposed approach are






































x̂0 = E[x0]

P̃0 = E
[

(x0 − x̂0)
T (x0 − x̂0)

]

P0 =
(

P̃−1
0 + λL

)−1

Gk = Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1

Pk = (I − GkCk)Pk−1

x̂k = x̂k−1 + Gk (yk − Ckx̂k−1)

(3.11)

The state prediction correction and covariance recursive update equations are unchanged and the
regularization term only appears in the initial condition. To derive these equations, we will start with
the solution to equation (3.1) which we reproduce here for convenience

x̂k = (BT
k W−1

k Bk + λL)−1BT
k W−1

k yk

We now apply Kalman filtering in this context by expressing x̂k in terms of x̂k−1. We go through
the detailed derivation. First note that

BT
k W−1

k Bk + λL =
[

BT
k−1 CT

k

]

[

W−1
k−1 0

0 R−1
k

] [

Bk−1

Ck

]

+ λL

= BT
k−1W

−1
k−1Bk−1 + CT

kR
−1
k Ck + λL

and

BT
k W−1

k yk =
[

BT
k−1 CT

k

]

[

W−1
k−1 0

0 R−1
k

] [

yk−1

yk

]

= BT
k−1W

−1
k−1yk−1 + CT

kR
−1
k yk

Using the above 2 equations with equation (3.2) we get
(

BT
k−1W

−1
k−1Bk−1 + CT

kR
−1
k Ck + λL

)

x̂k

= BT
k−1W

−1
k−1yk−1 + CT

kR
−1
k yk (3.12)

and by direct computation, we have
(

BT
k−1W

−1
k−1Bk−1 + CT

kR
−1
k Ck + λL

)

x̂k−1

=
(

BT
k−1W

−1
k−1Bk−1 + λL

)

x̂k−1 + CT
kR

−1
k Ckx̂k−1

= BT
k−1W

−1
k−1yk−1 + CT

kR
−1
k Ckx̂k−1 (3.13)

Subtracting equations (3.12) and (3.13) we have
(

BT
k−1W

−1
k−1Bk−1 + CT

kR
−1
k Ck + λL

)

(x̂k − x̂k−1) = CT
kR

−1
k (yk − Ckx̂k−1)

Now, let Gk =
(

BT
k−1W

−1
k−1Bk−1 + CT

kR
−1
k Ck + λL

)−1
CT

kR
−1
k and we have the recursive

equation
x̂k = x̂k−1 + Gk (yk − Ckx̂k−1) (3.14)
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14 R. Deriche, J. Calder, M. Descoteaux

which is exactly the same as the linear Kalman filter update equation and the regularization constraint
is incorporated in the Kalman gain matrix. To complete the derivations, we need to derive a recursive

equation for Gk. Let Pk =
(

BT
k−1W

−1
k−1Bk−1 + CT

kR
−1
k Ck + λL

)−1
so that Gk = PkC

T
kR

−1
k

and note that

Pk =
(

BT
k−1W

−1
k−1Bk−1 + CT

kR
−1
k Ck + λL

)−1

=
(

BT
k W−1

k Bk + λL
)−1

(3.15)

which leads to the recursive equation

P−1
k = P−1

k−1 + CT
kR

−1
k Ck (3.16)

Using the result in appendix C, we can invert the above equation and we have

Pk = Pk−1 − Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1
CkPk−1

Now, it can be shown (see appendix E) that

Gk = PkC
T
kR

−1
k = Pk−1C

T
k

(

CkPk−1C
T
k +Rk

)−1

which gives us the following recursive equations for Gk and Pk

Gk = Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1

Pk = (I − GkCk)Pk−1

We can see that these are the same as for the linear Kalman filter without regularization but it is
important to note that although the recursive update equations for Pk and Gk do not change with the
added regularization term, the matrices themselves are different and this is taken into account by the
initial condition P0 which is no longer the covariance matrix of x0. To discuss the initial condition,
let x̂0

k be the optimal estimate without regularization (ie: λ = 0) and let P̃k be the corresponding
sequence of covariance matrices for the linear Kalman filter. In appendix D it is shown that

P̃k = E
[

(x − x̂0
k)(x − x̂0

k)T
]

=
(

BT
k W−1

k Bk

)−1

Recall also that we have defined Pk as

Pk =
(

BT
k W−1

k Bk + λL
)−1

Using these two equations, we have the relation

P−1
k = P̃−1

k + λL

So, even though Pk does not have the usual physical interpretation as the error covariance when
λ 6= 0, we have found a relation between Pk and P̃k. A special case of the above formula is

P−1
0 = P̃−1

0 + λL
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which gives us

P0 =
(

P̃−1
0 + λL

)−1

(3.17)

So the initial matrix P0 can be expressed in terms of the initial matrix P̃0. Combining all these
results, we have the Kalman filtering equations with a quadratic regularization term







































x̂0 = E[x0]

P̃0 = E
[

(x0 − x̂0)
T (x0 − x̂0)

]

P0 =
(

P̃−1
0 + λL

)−1

Gk = Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1

Pk = (I − GkCk)Pk−1

x̂k = x̂k−1 + Gk (yk − Ckx̂k−1)

By implementing these Kalman filtering equations we can recursively solve equation (3.1) at every
time step k. As we started the derivations with the correct minimization criterion we are assured that
this will produce the optimal estimation at every iteration. In the experimental Section , we show our
optimal solution on real HARDI data. We illustrate that our proposed real-time method is equivalent
in terms of QBI estimation accuracy to the standard off-line processing techniques and outperforms
the existing solution of [27, 29], especially at an early stage of the acquisition.

At this stage, we have revisited and analyzed the proposed Kalman filtering algorithm for ODF
estimation and we have shown it is actually sub-optimal and not recursively minimizing the intended
criterion due to the Laplace-Beltrami regularization term. More importantly, we have also derived
the correct equations that allow to recursively estimate the optimal ODF at each iteration i.e we have
shown how to update the optimal ODF each time we have a new measurement. Hence, to take full
advantage of this new framework, it is of interest to see if successive gradient encoding directions
can also be computed in real-time to roughly have a uniform distribution on the sphere. In the next
section, we will tackle this problem of finding the optimal choice of the diffusion gradient orientation
sets and propose a fast algorithm to incrementally compute gradient orientation sets whose partial
subsets are almost uniform.

4 Diffusion Gradient Orientation Sets

The choice of diffusion orientations sets for diffusion MRI has been extensively studied in the liter-
ature. For single shell HARDI acquisitions, a standard approach is to acquire N measurements that
are uniformly distributed on the unit sphere so that the errors in measures derived from the diffusion
weighted images are independent of tissue orientation. The problem of distributing N points uni-
formly on a sphere is not a new problem in diffusion MRI; it has been studied by mathematicians
and physicists for at least 100 years. In fact, British Physicist J. J. Thomson proposed the problem of
determining the minimum energy configuration ofN classical electrons distributed on the surface of
a sphere in his 1904 paper [33]. It has since been termed The Thomson Problem and has been thor-
oughly studied since [15]. There has been a significant amount of research on this within the context
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16 R. Deriche, J. Calder, M. Descoteaux

of diffusion MRI. We first describe the state of the art methods and then propose a fast algorithm
that achieves similar results.

4.1 Existing Methods

In the context of diffusion MRI the problem of uniformly distributing points on a sphere needs to be
slightly modified due to the fact that the diffusion of water is symmetric meaning that a measurement
in the direction g = [x, y, z] is equivalent to a measurement in the direction −g. To account for
this, [18] proposed a slight variation on The Thomson Problem where each gradient direction is
modeled by an antipodal pair of charged particles and the desired configuration is the one obtained by
minimizing the sum of the forces on the particles. [24] proposed a similar approach by maximizing
the minimum distance between any 2 charged particles. We define the electrostatic energy between
2 orientations (or 2 pairs of charges) as

E(gi,gj) =
1

||gi + gj ||
+

1

||gi − gj ||
(4.1)

and therefore, the total electrostatic energy between all pairs of orientations is

EN (g1, . . . ,gN ) =

N−1
∑

i=1

N
∑

j=i+1

E(gi,gj) (4.2)

In this work, we define an electrostatic point-set of size N as the collection of directions that mini-
mizes equation (4.2). [10] have computed the electrostatic point-sets for 3 ≤ N ≤ 150 and publicly
provide them as part of the Camino Diffusion MRI Toolkit ( [9]). They computed these point-sets
using Levenberg-Marquardt optimization starting from 500 different initial conditions and taking the
lowest minimum. In this work, we will use these electrostatic point-sets as a reference for comparing
different diffusion orientation sets.

The electrostatic point-sets approach can produce optimized orientation sets when one considers
all the diffusion acquisitions, however, if the acquisition is aborted before completion due to motion
of the patient, the subset of acquired orientations will be directionally biased and will be unusable
for DT or ODF estimation. [10] and [14] have proposed algorithms for generating uniform point-
sets whose ordered subsets are also approximately uniform. Thus, if a acquisition is aborted before
completion, the acquired orientation set will be fairly uniform and the acquisition can be partially
saved.

[14] propose to order the orientations by acquisition time and make a modification of equation
(4.2) to ensure that orientations that are close together in the acquisition sequence are more separated
spatially. To do this, they add an interaction weight αij to the electrostatic energy

EN (g1, . . . ,gN ) =

N−1
∑

i=1

N
∑

j=i+1

αijE(gi,gj). (4.3)

When the interaction weight is constant (αij = 1) the minimizing point-set will be equal to the
electrostatic point-set modulo a permutation of the acquisition order. For an acquisition where cor-
ruption is a possibility due to motion of the patient, they propose to set αij = 1 for orientations close
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Optimal Real-Time QBI using Regularized Kalman Filtering with Incremental Orientation Sets 17

in time and αij < 1 for orientations that are distant in time. The idea is that by placing a higher elec-
trostatic penalty on gradients that are positioned close together in the acquisition sequence, we can
encourage ordered subsets of gradient directions to be more uniformly distributed. This method can
produce very nice results, but one drawback is that a point-set that minimizes equation (4.3) does not
necessarily minimize (4.2). Also, [10] empirically determined that the incorporation of interaction
weights increases the number of local minima making the global minimum more difficult to find.

[10] have proposed to take the optimal electrostatic point-sets and choose an optimal ordering
based on the sum of the energies of the partial subsets

f =

N
∑

P=6

EP (g1, . . . ,gP )P−2. (4.4)

The electrostatic energy of P isotropically distributed pairs is approximately proportional to P 2 so
they have chosen the normalization factor P−2 to ensure that each subset of orientations contributes
similarly to the objective function. As the points themselves are fixed, the minimization is done only
over the ordering of the points. This can be done by exhaustive search for small N but by N = 18
the search space becomes absurdly large, so [10] propose to perform the minimization by simulated
annealing and they provide their software for public use through the Camino Diffusion MRI Toolkit
( [9]). [10] conclude that ordering the acquisition scheme has a significant impact on the quality of
partial acquisitions. They also compare their method to [14] and conclude that both methods yield
similar results.

4.2 An incremental algorithm to generate orientation sets

We propose a fast recursive algorithm to incrementally generate orientation sets whose ordered sub-
sets are approximately uniform. What we propose is not an improvement or a replacement for the
existing algorithms as they are already very effective at what they do. What we propose is a different
approach altogether. The algorithms proposed in [14] and [10] perform their respective minimiza-
tions over all the points in the orientation set. Thus, the algorithms are very slow and the global
minima are difficult to find as there are many local minima present. Our idea comes from the ob-
servation that this problem naturally leads to a recursive solution; instead of minimizing over all the
orientations at once, we propose to minimize incrementally over each ordered subset. Clearly we
will not be able to minimize the same criterion from [14] or [10], but we will show that we can gen-
erate comparably uniform point-sets with an algorithm that whose complexity is linear with respect
to the number of points in the orientation set. Furthermore, inspired by [10] we will show that our
approach can be slightly modified and used to order an existing electrostatic point-set so that the
ordered subsets are roughly uniformly distributed. Our proposed methods will be further described
and compared to existing methods in the next few sections.

Fast Recursive Computation of Orientation Sets

We propose a new and fast algorithm for incrementally computing uniformly distributed orientation
sets whose partial subsets are also uniform. This method is defined recursively: given a set of k
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18 R. Deriche, J. Calder, M. Descoteaux

Figure 1: Comparison of point-sets: (left to right) Electrostatic point-sets, our recursive method,
method of [10], method of [14]. Point-sets are shown for (top to bottom) 20, 40 and 60 points.
The point-sets from [10] and [14] were specifically optimized for 60 orientations. Our method was
recursively generated starting with 1 gradient direction.

orientations, choose direction k+1 so as to minimize the incremental electrostatic energy. We should
note that this method will not minimize the criterion from [10] or [14] over all k + 1 orientations.
We are, however, minimizing the total electrostatic energy of the k + 1 orientations given that the
first k must remain fixed.

To further describe our method, let Σk = {g1, . . . ,gk} be a set of k orientations, let g(θ, φ) be
the unit vector in the direction given by the spherical coordinates (θ, φ) and let Ψk(θ, φ) be defined
as

Ψk(θ, φ) =

k
∑

i=1

E (gi,g(θ, φ)) (4.5)

Thus, Ψk(θ, φ) gives the incremental electrostatic energy associated with choosing g(θ, φ) as the
next encoding direction. Now, given a set of k orientations, Σk, we compute the next orientation by
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Figure 2: Our point-set generation method was used recursively to generate a set of 500 orientations
starting with a single gradient. Shown in the figure are the ordered subsets corresponding to 20, 40,
60, 80, 100, 150, 200, and 500 orientations.

the formula gk+1 = g(θ̂k, φ̂k) where

(θ̂k, φ̂k) = arg min
(θ,φ)∈[0,π)×[0,π)

Ψk(θ, φ) (4.6)

Thus Σk+1 = {Σk,gk+1}. Now there are many algorithms that could be used to perform this min-
imization, but since the search space is relatively small, we will use an exhaustive search. First,
however, we should note that if we were to implement an exhaustive search on equation (4.5), the
computational complexity of the function Ψk would grow linearly with k. To increase the perfor-
mance of our algorithm, we will exploit a nice recursive relationship between Ψk and Ψk−1:

Ψk(θ, φ) = Ψk−1(θ, φ) + E (gk,g(θ, φ)) (4.7)

Using the above recursive relationship, we can maintain a sampled representation of Ψk which
is updated after each new gradient direction is computed. Through experimentation, we have de-
termined that sampling with a precision of 0.01rad (0.57◦) yields the correct minimum and only
requires a fraction of a second to update Ψk and perform the minimization. With regards to the
memory requirements of our algorithm, since we are sampling with a precision of 0.01, we need to
store (π/0.01)2 ≈ 98700 samples. If we store the samples with 32-bit floating point precision, the
memory requirement is approximately 400 kB which is very modest by today’s standards.

We have compared our methods with the state of the art point-sets using sizes of N = 60, 150.
For the comparison with [10], we used the ordered electrostatic point-set for N = 60 that is pro-
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Figure 3: A comparison of the normalized energy of our recursive method, [14] and [10] over 60
acquisitions.

vided with the Camino Diffusion MRI Toolkit ( [9]). For N = 150, we computed the ordering
using the code they provided with Camino. We used the default initial conditions and allowed the
simulated annealing to run for 137 hours until the temperature was at 2.67e−6 before we terminated
the program. For the comparison with [14], for N = 60, we have used the orientation set that is
given on page 140 of their paper(entitled A60). Figure 1 shows a visual comparison of the 3 algo-
rithms alongside the optimal electrostatic point-sets for N = 60. Our algorithm was initialized with
g1 = [1 0 0]T and all directions gk, k > 1 were generated recursively. In figure 1, we terminated
our algorithm at N = 60 to do a proper comparison. Figure 2 shows the results if we continue our
algorithm to N = 500.

We have also done a numerical comparison of the normalized electrostatic energy (NE)between
the three algorithms which is shown in figures 3 and 4. The normalization was done by dividing the
electrostatic energy of each algorithm’s ordered subsets by the optimal energy of the electrostatic
point-set of equal size. This provides a good measure of how uniform the ordered subsets are; in
comparing two point-sets, a value closer to one indicates a more uniform distribution of gradient
acquisitions. From figures 3 and 4 we can see that for both N = 60 and N = 150 our algorithm
performs comparably to the existing methods. Our algorithm yields more uniform point-sets at
certain points and less uniform sets at other points.

The one glaring difference is that our algorithm is not optimized for a certain number of ori-
entations, so it will never be exactly optimal whereas the method from [10] produces the optimal
electrostatic point-set, by design, at the end of the acquisition. Intuitively, we know from the Kalman
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Figure 4: A comparison of the normalized energy of our recursive method and [10] over 150 acqui-
sitions.

filtering results that, after a certain point, each additional acquisition will affect the diffusion tensor
or ODF estimation less than the previous acquisition. This implies that as the number of orientations
grows, the uniformity (or lack thereof) of the orientation set will have less of an influence on the DT
or ODF estimation. It is very possible that the small sub-optimality that our algorithm shows at the
end of the acquisition would have little influence over the results of the acquisition. However, this is
an open issue that can really only be proven experimentally and it would depend on many different
variables.

The advantage our algorithm has over the current techniques is that its linear complexity en-
ables the algorithm to be run in real-time during an MR acquisition. The recursive ODF estimation
approach we proposed in the previous section could also take a great benefit from this algorithm.
We could start a acquisition acquisition just with the minimum number of gradients directions and
an initial estimate of the ODF and then all the rest, including the next gradient directions and the
ODF estimates, are recursively and optimally determined, allowing the acquisition to be stopped as
soon as desired or at any iteration with the optimal ODF estimate. Also, the linear complexity of
our algorithm makes it possible to generate large orientation sets (ie: 1000+ points) very quickly
whereas the existing methods would quickly become too slow to be useful. Therefore, we think that
this work opens new and interesting opportunities for clinicians and researchers.
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Fast Ordering of Orientation Sets

We have proposed in the previous subsection a fast algorithm to compute diffusion gradient orien-
tation sets whose partial subsets are roughly uniform. Now, inspired by [10], we can also apply
our method to the problem of ordering an existing electrostatic point-set of size N . Thus we can
guarantee all the ordered subsets of diffusion orientations are approximately uniform and that after
N acquisitions, the point-set is exactly equal to the electrostatic point-set of size N . Let ΣN be
an electrostatic point-set of size N . Recall we defined an electrostatic point-set as the collection of
orientations that minimizes equation (4.2). Now, the goal is to order the set ΣN so that every ordered
subset of orientations is roughly uniform. We select the first orientation, g1 at random and define
the next N − 1 recursively:

gk+1 = arg min
g∈ΣN

k
∑

i=1

E(gi,g) (4.8)

This algorithm will likely not produce the optimal ordering that [10] have computed, but it can
produce a much superior ordering to the conventional orderings, with the added benefit that the
complexity of the algorithm is linear with respect to the number of points in the orientation set.

We have compared this method forN = 60, 150 to the point-sets from [10] that were described in
the previous section. We have also shown a random ordering of the points to demonstrate the added
value of ordering. The results are shown in figure 5. We can see that our method performs very
well compared to the random ordering. Furthermore, it is very similar to [10] yet usually produces
a slightly less uniform point-set at each iteration. This should be expected; our method is a classic
greedy algorithm simply minimizing the incremental energy at each iteration. The advantage of our
algorithm is the linear complexity, thus our algorithm may be suitable for very large orientation sets
where the simulated annealing proposed in [10] takes far too long to converge.

Further Possibilities

So far, we have presented a fast algorithm for computing a roughly uniform set of orientations with
roughly uniform subsets. Our algorithm was defined recursively and we have always chosen only
the first gradient and the rest were determined recursively. However, we have the flexibility to select
any initial condition of as many orientations as we would like. This gives us some freedom to
design orientation sets that could suit certain needs. In fact we can even mix our algorithm with the
algorithms from [10] and [14] by selecting one of their optimized point-sets as an initial condition for
our algorithm. For example, consider a scenario where we might desire 150 to 200 measurements,
but we require that the first 60 acquisitions be exactly uniformly distributed. One solution is to use
the method from [10] to order the electrostatic point-set for N = 60 and then recursively apply our
algorithm for all N ≥ 61. We have done this and the normalized energy is plotted in figure 6. We
can see that the hybrid method does indeed achieve the optimal electrostatic set atN = 60, however,
we can see that there is a trade-off here; the point-set may be optimal at N = 60, but because we
forced this optimality, it becomes sub-optimal between iterations N = 65 and N = 140. There
are doubtlessly countless ways that our algorithm could be combined with others, but we should
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Figure 5: A comparison of the normalized energy of our recursive ordering algorithm, [10] and a
randomized ordering.

always keep in mind that at some point, optimizations in certain parts of the acquisition sequence
will directly decrease the optimality in other sections.
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Figure 6: A comparison of the normalized energy of our recursive method, [10], and a hybrid be-
tween the two. The hybrid method uses the ordered point-set from [10] for N = 1 . . . 60 and uses
our recursive method for N ≥ 61.
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5 Experimental Validation

In order to validate our method, we have tested it on real HARDI data and compared with the offline
methods. Before we present the details of our results, we should clarify the exact algorithm that we
have implemented as the Kalman filtering equations were derived in some generality.

5.1 Implementation Details

In any implementation of the Kalman filter, one must be careful in selecting proper initial conditions,
most importantly so is the initial error covariance matrix P0 (written P̃0 in the previous section) .
One usually selects P0 = σ2In×n, and chooses an appropriate value for σ. In the case of ODF
estimation, before the first measurement, we have no a priori information about the diffusion prop-
erties at any voxel. To convey our ignorance of the system’s state to the filter, we must set σ to a
sufficiently large value so that the Kalman filter does not place any weight on the initial state x0

which we set to the zero vector. In our experiments we typically use σ = 1000. We should note
that this is in direct contradiction with [27, 29] who suggest to set σ = 1. However, they provide no
justification for this selection and we have not been able to reproduce their results without using a
large value for σ.

The only other parameter to be set is the noise covariance matrix Wk. To ensure that we are in
fact minimizing equation (2.9), we use Wk = Ik×k which means that Rk = 1 in all the Kalman
filtering equations. The Kalman filtering equations used in our implementation are



































x̂0 =0

P0 =
(

1/σ2In×n + λL
)−1

Gk =Pk−1C
T
k

(

CkPk−1C
T
k + 1

)−1

Pk =(I − GkCk)Pk−1

x̂k =x̂k−1 + Gk (yk − Ckx̂k−1)

where σ = 1000. We should note here that in the case where L is invertible, we can take the
limit as σ → ∞ and initialize P0 = (λL)−1. However, for the case of ODF reconstruction, the
Laplace-Beltrami operator has no dependence on the zeroth order spherical harmonic coefficient
which makes L singular.

5.2 Results and Discussion

Two sets of MRI data have been used in these experiments. In all experiments, a rank 4 spherical
harmonic basis was used so there are 15 coefficient to estimate. The comparison metric used is the
mean squared error (MSE) between the spherical harmonic coefficients of the ODFs over all relevant
portions of the brain. The relevant regions of the brain were deduced from the T2 image. The first
database is from the CEA Neurospin Lab in Paris, France. It is the public HARDI database of [28].
The second is from the Max Planck Institute(MPI) in Leipzig, Germany [1]. We will refer to these
by the acronyms CEA and MPI from now on. The CEA data was acquired on a 1.5T acquisitionner
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with 200 encoding directions, b = 3000s/mm2, 60 slices with 2mm thickness, 25 b = 0s/mm2

images, 128x128 image matrix, TE=93.2 ms, TR = 19 s. The MPI data was acquired with a 3T
acquisitionner using 60 encoding directions and the average of three measurements per direction,
seven b = 0 images, a b-value of 1000s/mm2, 72 slices with 1.7 mm thickness, 128x128 image
matrix, TE = 100 ms, TR = 12s.

First, the proposed algorithm has been tested and compared at each iteration with the optimal of-
fline estimation. Figure 7 shows the evolution of the MSE for the MPI and the CEA datasets. We see
that in both graphs the MSE monotonically decreases and converges to zero after the last diffusion
gradient acquisition. From these graphs we can conclude approximately how many measurements
are actually necessary. For the MPI dataset, there is little change between iteration 20 and 60, thus
20 measurements might be appropriate here. For the CEA dataset, the equivalent number is probably
somewhere between 80 and 120. Keep in mind however, that these graphs are highly dependent on
the fact that we have used a rank 4 spherical harmonic basis. Using a higher rank would result in
more coefficients to be estimated and thus require more acquisitions. Furthermore, we cannot con-
clude with certainty how many measurements are required without investigating the effects on fiber
tracking, fiber clustering and any other algorithms that depend on the ODF estimation.

The results in figure 7 are very convincing, but they do not actually prove that our method yields
the smallest MSE at each iteration. We do, however, have a closed form for the optimal estimation
after each acquisition in equation (3.2), so this is what we should be comparing our solution to. We
have computed offline the optimal estimation after each diffusion gradient orientation as per equation
(3.2) and compared our Kalman filtering method to this at each iteration. The results are shown in
figure 8. This in fact validates our method, as the difference between our method and the optimal
estimation is seen to be negligible at each iteration.

Next, we need to support our claim that the method from [27, 29] is sub-optimal. We have
implemented their method and tested it with the same datasets. Figure 9 compares the MSE between
our proposed method and the method of [27, 29] on both the MPI and CEA datasets. We can see that
at the beginning of the acquisition, the MSE associated with the method from [27, 29] is an order of
magnitude higher than our proposed method. Our method yields a lower MSE for every iteration in
the acquisition until both methods converge to the optimal offline estimation at the last iteration.

To make a visual comparison between the two algorithms, we have generated ODF visualizations
for a small region within a single axial slice of each dataset. The locations of the regions are shown
in figures 10. Axial slice number 36 was chosen in both datasets and the ROIs were chosen in fiber
crossing regions from the genu of the corpus callosum with peripheral fibers from the lateral cortex.
In figures 11 and 12, we show the evolution of the ODFs under both algorithms next to the optimal
estimation at that iteration for the MPI and CEA datasets respectively. We should note that the MPI
HARDI data has an very high SNR, estimated to be roughly 37 (since 3 averaging) in the white
matter, so the visual difference between the optimal estimation using 15 versus 60 acquisitions is
very small. Thus, this is an excellent example showing visually that the Kalman filtering method
from [27, 29] is sub-optimal. After 15 acquisitions, the optimal estimation is very good and close to
the true ODFs, but the method of [27, 29] is clearly quite far from optimal and in fact has very little in
common visually with the true ODF field. After 20 acquisitions, the two methods are visually much
more similar, but numerically still much different, and we see that by 60 acquisitions, they both
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Figure 7: Mean squared error between the SH coefficients of the final offline estimation and each
iteration’s Kalman filter output using our proposed Regularized Kalman filtering method. The MSE
is monotonically decreasing and converges to zero by the last acquisition
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Figure 8: Mean squared error between the SH coefficients of the offline estimation and each itera-
tion’s Kalman filter output using our Regularized Kalman filtering algorithm. The offline estimation
is computed for the subset of gradient acquisitions corresponding to the current Kalman filter itera-
tion, thus it is the “best” we can do at each iteration. The MSE is approximately zero for the entire
acquisition. This validates our algorithm by showing that it is equivalent to the offline estimation
methods at each iteration.
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Figure 9: Mean squared error between the SH coefficients of the final offline estimation and each
iteration’s Kalman filter output. This graph compares our proposed Regularized Kalman filtering
method to the method proposed in [27, 29]. We can see that our proposed algorithm is superior at
every iteration with the largest differences coming in the first half of the acquisition. In order to
show the important features, the tops and bottoms of the plots are on different scales
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MPI data CEA data

Figure 10: The Kalman filtering methods are visually compared in figures 11 and 12 on small regions
of the MPI and CEA data respectively, illustrating fiber crossing regions from the genu of the corpus
callosum with peripheral fibers from the lateral cortex.

converge to the optimal solution. For the CEA data, the ODFs become visually indistinguishable
after about 60 to 80 acquisitions.

To validate that the algorithm is indeed real-time, we measured the execution time for the CEA
dataset. The total processing time to update the Kalman filter across the entire volume (ie: all slices)
after a new acquisition was approximately 6.23 seconds for both our algorithm and the method from
[27, 29]. As this is less than the repetition time of 12.5 seconds stated in [27, 29], both algorithms are
truly real-time. The important difference between the algorithms is not the execution time, but that
our proposed method solves the correct minimization problem at each iteration and hence provides a
better estimation of the ODFs. For the test, both algorithms were implemented in C++ and executed
on a 64-bit Linux machine with a dual-core 3.4GHz processor and 3.0 GBytes of RAM. However,
the code was not written to take advantage of a multi-core processor and it was verified during the
test that only one processor was being used. Theoretically, it would be possible to improve the per-
formance by parallelizing the code, but this has not been investigated. We should note that we have
defined real-time as the ability to produce the spherical harmonic coefficients of the ODF in real-
time. In many applications, especially in a clinical setting, visualization is very important and one’s
definition of real-time depends on the applications at hand. Visualization is a very computationally
intensive process and on a single workstation cannot be done in real-time. Further work could be
aimed at implementing this algorithm on a cluster of workstations so visualization could also be
performed in real-time.

Another topic for future work is the issue of the true Rician nature of the noise in the diffusion
weighted images [5, 16, 31]. In this work we have modeled the noise as Gaussian because it is
required by the linear Kalman filter. At high SNR, the Gaussian distribution is a good approximation
to Rician noise, but the approximation is poor at low SNR which is typical of diffusion MRI. We
can see these differences in the quality of the estimations between the MPI and CEA datasets. The
MPI data is acquired by averaging three measurements per orientation. Firstly, this lowers the noise
variance, and secondly, from the central limit theorem in probability theory we know that the average
of identically distributed random variables will tend to a Gaussian distribution. Thus, the noise in
the MPI dataset is well modeled by a Gaussian distribution whereas the noise in the CEA data is not.
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Figure 11: Visualization of the ODFs computed from the MPI data by (left) Optimal least squares
solution (middle) our proposed Regularized Kalman filtering method, and (right) the method pro-
posed by [27, 29]. The ODFs are shown after 15, 20, 30, and 60 diffusion gradient acquisitions (top
to bottom).
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Figure 12: Visualization of the ODFs computed from the CEA data by (left) Optimal least squares
solution (middle) our proposed Regularized Kalman filtering method, and (right) the method pro-
posed by [27, 29]. The ODFs are shown after 20, 40, 60, and 80 diffusion gradient acquisitions (top
to bottom).
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The incorporation of the Rician noise model into a recursive filtering algorithm would likely yield
better results for data with low SNR than the linear Kalman filter used in this work. However, this is
a topic for future research.
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6 Conclusion

We have developed a truly incremental Regularized Kalman filtering algorithm for real-time process-
ing of diffusion Magnetic Resonance Q-Ball Imaging. This method allows for real-time estimation
of the orientation distribution function (ODF) during an ongoing MRI scan. We have validated that
our proposed method is equivalent to the standard offline processing techniques and is therefore fit
to be used as a real-time processing algorithm in MRI acquisitions. We have also analyzed the only
other proposed method known to the authors [27, 29] and have shown that it is sub-optimal and
not truly an incremental solution. We have also proposed a fast algorithm for incrementally gener-
ating orientation sets that have uniformly distributed ordered subsets. Our results are encouraging
and open some new exciting challenges and perspectives. For instance, the problem of motion and
distortion correction is a challenge in practice and could potentially be tackled in real-time. These
motion and distortion artefacts can be induced by the patient’s motion during acquisition and from
different DWIs depending on the applied gradient [30]. Other applications of real-time Kalman
filtering for Q-ball imaging are numerous. It could be used to provide clinicians with a quality mea-
sure of the acquisition after each diffusion measurement and provide a stopping condition for the
acquisition. This could shorten many HARDI acquisitions and reduce the probability of having to
abort the acquisition due to motion of the patient. Aside from its obvious clinical applications, this
real-time Kalman filtering framework will likely prove to be a useful tool for investigations into opti-
mal diffusion gradient orientation sets, real-time fiber-tracking and connectivity mapping, real-time
fiber orientation distribution function (FOD) estimation through spherical deconvolution [17, 35],
and many other areas. We are currently working towards achieving these objectives.
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Appendices

A Pseudo-inverse of B
+

First we remind that pseudo-inverse exists and is unique for every matrix. For an invertible matrix,
the pseudo-inverse coincides with the actual inverse. Furthermore, the pseudo-inverse is a reversible

process and is its own inverse (ie:
(

A†
)†

= A).
We remind also the following results concerning the computation of pseudo-inverses.

Lemma 1. Let A be an m-by-n matrix. If the columns of A are linearly independent then the

pseudo-inverse of A is

A† =
(

AT A
)−1

AT

Proof. Since the columns of A are linearly independent, Rank(A) = n. Now, AT A is an n-by-
n matrix with Rank(AT A) = Rank(A) = n thus AT A is a square matrix with full rank and is
therefore invertible. It is now easy to verify that the above formula satisfies the definition of the
pseudo-inverse.

Lemma 2. Let A be an m-by-n matrix. If the rows of A are linearly independent then the pseudo-

inverse of A is

A† = AT
(

AAT
)−1

Proof. The proof is exactly the same as lemma 1.

Now, we will derive a closed form formula for Ak =
(

(BT
k Bk + λL)−1BT

k

)†
. We first show

that (BT
k Bk + λL)−1BT

k has full rank. For this, we will rely a bit on the physical process we are
modelling. First, we need to take k large enough such that the system yk = Bkx is an overdeter-
mined linear system (ie: k ≥ n). In the case of ODF estimation using a spherical harmonic basis of
order 4 this means k ≥ 15. In this case, it is easy to see that Bk has full rank for if it did not, then a
column of Bk could be eliminated which would imply that one of the spherical harmonic basis func-
tions is redundant, violating their orthogonality. It follows that BT

k Bk is non-singular and therefore
positive definite. Now we will make some assumptions on L. Given that it is the weighting matrix
for a penalty of the form xT Lx on the state variable, we can without loss of generality assume that
L is symmetric and positive semi-definite. Therefore, the sum BT

k Bk + λL is positive definite and
hence non-singular (invertible). And since Bk has full rank, the image of BT

k has dimension n so
the image of (BT

k Bk + λL)−1BT
k has dimension n and therefore has full rank.
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Now, since (BT
k Bk + λL)−1BT

k has full rank, its rows are linearly independent, so we can use
lemma 2. We have

Ak =
(

(BT
k Bk + λL)−1BT

k

)T

[

(

(BT
k Bk + λL)−1BT

k

)

(

(BT
k Bk + λL)−1BT

k

)T

]−1

= BN (BT
k Bk + λL)−1

[

(BT
k Bk + λL)−1

(

BT
k Bk

)

(BT
k Bk + λL)−1

]−1

= Bk(BT
k Bk + λL)−1(BT

k Bk + λL)
(

BT
k Bk

)−1
(BT

k Bk + λL)

= Bk

(

In×n + λ
(

BT
k Bk

)−1
L
)

(A.1)

B Analysis of Kalman Filtering from [27,29]

We will derive a formula here for
(

DT
k Dk

)−1
DT

k . First, we have

(

DT
k Dk

)−1
=

[

(

Bk + λBk

(

BT
NBN

)−1
L
)T (

Bk + λBk

(

BT
NBN

)−1
L
)

]−1

=

[

BT
k Bk + λL

(

BT
NBN

)−1
BT

k Bk + λBT
k Bk

(

BT
NBN

)−1
L

+ λ2L
(

BT
NBN

)−1
BT

k Bk

(

BT
NBN

)−1
L

]−1

=

[

(

BT
NBN + λL

) (

BT
NBN

)−1
BT

k Bk

+
(

BT
NBN + λL

)

λ
(

BT
NBN

)−1
BT

k Bk

(

BT
NBN

)−1
L

]−1

=
[

(

BT
NBN + λL

) (

BT
NBN

)−1
(

BT
k Bk + λBT

k Bk

(

BT
NBN

)−1
L
)]−1

=
(

BT
k Bk + λBT

k Bk

(

BT
NBN

)−1
L
)−1

(

BT
NBN

) (

BT
NBN + λL

)−1
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and

DT
k =

(

Bk + λBk

(

BT
NBN

)−1
L
)T

= BT
k + λL

(

BT
NBN

)−1
BT

k

=
(

BT
NBN + λL

) (

BT
NBN

)−1
BT

k

Combining the above two equations we have

(

DT
k Dk

)−1
DT

k =
(

BT
k Bk + λBT

k Bk

(

BT
NBN

)−1
L
)−1

BT
k (B.1)

C Matrix Inversion Formula

In the following lemma, we will prove a useful result used to derive a recursive formula for the
Kalman gain matrix.

Lemma 3. Let A,B,C be n × n, m × m, and n × m matrices respectively such that A, B,
(

A−1 + CB−1CT
)

, and
(

B + CTAC
)

are nonsingular. Then

(

A−1 + CB−1CT
)−1

= A−AC
(

B + CTAC
)−1

CTA

Proof. By direct computation, we have

(

A−1 + CB−1CT
)

(

A−AC
(

B + CTAC
)−1

CTA
)

= A−1A−A−1AC
(

B + CTAC
)−1

CTA

+ CB−1CTA− CB−1CTAC
(

B + CTAC
)−1

CTA

= In×n − CB−1
(

B
(

B + CTAC
)−1

+ CTAC
(

B + CTAC
)−1
)

CTA

+ CB−1CTA

= In×n − CB−1
(

B + CTAC
) (

B + CTAC
)−1

CTA+ CB−1CTA

= In×n − CB−1CTA+ CB−1CTA = In×n

D Formula for Kalman Filter Covariance Matrix

For completeness, we will reproduce here a result from the exercises in [8]. In particular, we will
show that

E
[

(x − x̂0
k)(x − x̂0

k)T
]

=
(

BT
k W−1

k Bk

)−1
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Recall that x̂0
k is the optimal state estimate for λ = 0 and that under the Gaussian noise assumption

of the Kalman filter, we are modeling the observations as

yk = Bkx + ηk

where ηk is a Gaussian random vector with covariance matrix

E
[

ηkη
T
k

]

= Wk

So, we have

E
[

(x − x̂0
k)(x − x̂0

k)T
]

=E

[

(

x −
(

BT
k W−1

k Bk

)−1
BT

k W−1
k yk

)

(

x −
(

BT
k W−1

k Bk

)−1
BT

k W−1
k yk

)T
]

=E

[

(

x −
(

BT
k W−1

k Bk

)−1
BT

k W−1
k (Bkx + ηk)

)

(

x −
(

BT
k W−1

k Bk

)−1
BT

k W−1
k (Bkx + ηk)

)T
]

=E

[

(

(

BT
k W−1

k Bk

)−1
BT

k W−1
k ηk

)(

(

BT
k W−1

k Bk

)−1
BT

k W−1
k ηk

)T
]

=
(

BT
k W−1

k Bk

)−1
BT

k W−1
k E

[

ηkη
T
k

]

W−1
k Bk

(

BT
k W−1

k Bk

)−1

=
(

BT
k W−1

k Bk

)−1
BT

k W−1
k WkW

−1
k Bk

(

BT
k W−1

k Bk

)−1

=
(

BT
k W−1

k Bk

)−1 (
BT

k W−1
k Bk

) (

BT
k W−1

k Bk

)−1

=
(

BT
k W−1

k Bk

)−1

E Formula for Kalman Filter Gain Matrix

For completeness, we include another result concerning the Kalman gain matrix. We will show that

Gk = PkC
T
kR

−1
k = Pk−1C

T
k

(

CkPk−1C
T
k +Rk

)−1
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Using the result from appendix C we have

Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1

=Pk−1C
T
k

(

R−1
k −R−1

k Ck

(

P−1
k−1 + CkR

−1
k CT

k

)−1
CT

kR
−1
k

)

=
(

Pk−1 − Pk−1C
T
kR

−1
k Ck

(

P−1
k−1 + CkR

−1
k CT

k

)−1
)

CT
kR

−1
k

=

(

Pk−1 − Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1 (
CkPk−1C

T
k +Rk

)

R−1
k Ck

(

P−1
k−1 + CkR

−1
k CT

k

)−1

)

CT
kR

−1
k

=

(

Pk−1 − Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1 (
CkPk−1C

T
kR

−1
k Ck + Ck

)

(

P−1
k−1 + CkR

−1
k CT

k

)−1

)

CT
kR

−1
k

=

(

Pk−1 − Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1
CkPk−1

(

CT
kR

−1
k Ck + P−1

k−1

)

(

P−1
k−1 + CkR

−1
k CT

k

)−1

)

CT
kR

−1
k

=
(

Pk−1 − Pk−1C
T
k

(

CkPk−1C
T
k +Rk

)−1
CkPk−1

)

CT
kR

−1
k

=PkC
T
kR

−1
k

=Gk

F Another Kalman Filtering Solution

The Kalman filtering solution we have presented in this work aims to modify the Kalman filter for
a different minimization criterion. There is, however, another way of approaching this problem
that involves some subtle manipulation of the minimization criterion, but provides some insight into
the somewhat surprising result that only the initial condition is affected by the Laplace-Beltrami
regularization. Recall the minimization criterion from equation (2.9)

M(x) = (yk − Bkx)
T

(yk − Bkx) + λxT Lx (F.1)

We can assume, as we have said before in this paper, that because λxT Lx is a quadratic penalty on
the state, that L is both positive semi-definite and symmetric. Thus, we can take the square root of
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λL. Now, we can write the minimization above as

M(x) = (yk − Bkx)
T

(yk − Bkx) + λxT Lx

=(yk − Bkx)
T

(yk − Bkx) +
(

(λL)
1/2

x
)T (

(λL)
1/2

x
)

=

[

0 − (λL)
1/2

x

yk − Bkx

]T [

0 − (λL)
1/2

x

yk − Bkx

]

Now, this is the minimization criterion for the least squares solution to the following linear system

[

0

yk

]

=

[

(λL)
1/2

Bk

]

x (F.2)

By applying the Kalman filter to this linear system, we can recursively minimize equation (2.9).
Essentially what this shows is that the Laplace-Beltrami regularization can be incorporated by run-
ning the Kalman filter on n “fake” measurements with a value of zero before the scan begins using
observation matrices given by the rows of (λL)

1/2. Once the Kalman filter has been iterated these
n times, the state estimate will still be zero and, as we will now show, the covariance matrix Pn will
be equal to the initial covariance matrix we derived for the regularized Kalman filter (3.11). This
gives a more intuitive explanation of why our proposed method only requires the modification of the
initial covariance matrix.

Now, we would like to show that running the Kalman filter on these n “fake” measurements be-
fore the true measurements will initialize the Kalman identically to our proposed regularized Kalman
filtering algorithm. So, given that P0 = σ2In×n we would like to derive a formula for Pn after the
first n “fake” measurements. From the Kalman filtering equations (2.5) we have the following re-
cursive equation for Pk

Pk = Pk−1 − Pk−1C
T
k

(

CkPk−1C
T
k + 1

)−1
CkPk−1

where Ck are now the rows of (λL)
1/2 for 1 ≤ k ≤ n and for simplicity, we will assume the noise

variances Rk are all unity. Furthermore, to simplify the calculations, we will take L to be diagonal
as in the case of the Laplace-Beltrami regularization. Thus

(λL)1/2 =







(λℓ1)
1/2

. . .
(λℓn)1/2






=







C1

...
Cn







Since (λL)1/2 is diagonal, Pk will remain diagonal for 1 ≤ k ≤ n. Furthermore,
(

CkPk−1C
T
k + 1

)−1

is a scalar, so the recursive equation for Pk can be re-written for 1 ≤ k ≤ n as

Pk = Pk−1 − Pk−1C
T
k CkPk−1

(

CkPk−1C
T
k + 1

)−1
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Now, since Pk is diagonal and Ck has one non-zero entry, is is not hard to see that Pk−1C
T
k CkPk−1

will be an n × n matrix with all zero entries except for the kth diagonal entry, which will be given
by λℓkσ4. Furthermore, we have

(

CkPk−1C
T
k + 1

)−1
=
(

λℓkσ
2 + 1

)−1
. Putting all this together,

we see that each iteration will only affect one diagonal entry of Pk and that Pn will be a diagonal
matrix where the kth diagonal entry is [Pn]k

[Pn]k = σ2 − λℓkσ
4/(λℓkσ

2 + 1)

= (λℓkσ
4 + σ2 − λℓkσ

4)/(λℓkσ
2 + 1)

= σ2/(λℓkσ
2 + 1)

= (1/σ2 + λℓk)−1

Thus we have that Pn = (1/σ2In×n + λL)−1 which is the exact same formula we have derived
for P0 for the regularized Kalman filter in section 5.1. So the two methods provide different ways
of looking at the same Kalman filtering problem. This method is useful in showing us why only the
initial covariance matrix needs to be modified for our regularized Kalman filtering solution.
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